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The method of correlated basis functions (CBF) is applied to the evaluation of the ground-

state energy of atomic fermion fluids as a function of density. As a first step, liquid 3He in both

unpolarized and fully polarized spin configurations is considered variationally, using Slater-

Jastrow trial wave functions, Results are reported for a conventional analytic choice of the

state-independent two-body correlation function f(r) and for the optimal f(r) determined by

the solution of a suitable Euler equation. The Jastrow treatment is found to be inadequate in

that (i) the energy expectation value lies above the experimental equilibrium energy by some
1.5 K, and (ii) the polarized phase is predicted to be more stable than the unpolarized one. For
a given polarization, a correlated basis is formed by application of the assumed Jastrow correla-

tion factor to the elements of a complete set of noninteracting-Fermi-gas Slater determinants,

The exact ground-state energy may be developed in a perturbation expansion in the correlated

basis, the leading term being the Jastrow energy expectation value. Considerable improvement

on the Jastrow description of the unpolarized phase is achieved upon inclusion of the correlated

two-particle —two-hole component of the second-order CBF perturbation correction. At the ex-

perimental equilibrium density, this contribution, which incorporates important momentum- and

spin-dependent correlations, can amount to some 0.6—1.1 K [depending on the choice of f(r) ].
The required correlated-basis matrix elements are calculated by Fermi hypernetted-chain

(FHNC) techniques, crucial Pauli effects of the elementary diagrams being introduced through

the FHNC/C algorithm. The Euler equation is approximated within the same framework. The
momentum-space integrations in the second-order perturbation correction are evaluated by a

Monte Carlo procedure. One may reasonably expect that further refinements of the CBF
method will lead to an accurate microscopic description of the ground-state energetics of liquid

He. Bulk atomic deuterium with all electronic spins aligned is treated at the same level of ap-

proximation as applied to helium. Three choices of nuclear-spin distribution are examined, with

a single spin state present, or two or three equally populated nuclear spin states. The finite-

density energy minimum is found to lie very close to zero energy in all three examples; a very

precise many-body calculation will thus be needed to decide their liquid or gaseous nature at

zero temperature under zero external pressure.

I. INTRODUCTION

The expectation that diverse phenomena of funda-
mental interest will be observable in spin-polarized
quantum fluids, stabilized for example by a strong
magnetic field at low temperature, is generating a
great deal of excitement. ' In a recent paper by three
of us (CKP), a comprehensive microscopic approach
to strongly-interacting Fermi fluids was formulated
within the method of correlated basis functions, and
results were reported for unpolarized and fully polar-
ized 3He and for two species of electron-spin-aligned
D. The present article is devoted to important refine-
ments and extensions of that work.

It is convenient for us to adopt the following nota-
tion, ' in discussing polarized versions of bulk He and
deuterium. 'He with all nuclear spins aligned parallel

to a reference direction (ordinarily the direction of
the magnetic field), will be designated 3Hef, while
the unpolarized system may be denoted simply 'He,
without an arrow. Deuterium with all electronic
spins aligned antiparallel to the field will be symbol-
ized by D j. The nucleus of the D atom has spin 1

and therefore three possible orientations with respect
to the reference direction, Mq =0, —1, and 1. We
identify certain especially simple choices of the popu-
lations of nuclear spin states in bulk D, labeled D j~,
D jq, and D j3. The simplest, D j~, is a D j system in
which only one nuclear spin state is occupied (say
Ms =1); in D j2 two nuclear spin states are present
(say Ms =1,0) with equal populations; and D j3 in-
volves all three nuclear spin states, assumed to be
equally occupied. Our calculations are limited to the
pure examples 'Hei, 'He, D j~, D j2, and D j3, cases
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of partial polarization interpolating these choices be-
ing left for future study. In terms of the single-
particle level degeneracy v entering the connection

p = vs'/6m' between density (0 and Fermi wave
number k~, the examples selected correspond,
respectively, to v =1, 2, 1, 2, and 3.

Interest in these systems springs primarily from
their extreme quantum nature. Following Nosanow,
Parish, and Pinski, one may define a quantum
parameter q =g /m—err' in terms of the particle mass
m and the depth and range parameters e and e of a
Lennard-Jones fit

v(r) = 4o[((r/r )"—( rr/r )']
to the interatomic potential. The larger q, the more
important are the effects of quantum zero-point
motion. ' The values q =0.274 for D] and q =0.241
for 'He[ and 'He may be compared to the values

g =0.182, 0.076, and 0.038 for He, H2, and D2,
respectively.

The quantum nature of systems is of course re-
flected in the effects of statistics as well as zero-point
motion. The parameter determining the statistical
properties of the systems under study is the degen-
eracy v. A given value of v may be regarded as
characterizing either (a) a one-component system of
identical fermions, with equal occupation of v distinct
internal states, or (b) a v-component system contain-
ing v distinct fermion species, in equal numbers. [It
may be assumed, to a good approximation, that the
interaction v(ji) depends only on the separation

r(/ l r
&

—r, l, so that any internal, nonclassical de-

grees of freedom are manifested only through v. ]
%e are presented with the opportunity of studying the
behavior of fermion fluids as a function of the de-
generacy parameter v, with all other variables (particle
mass, interaction) held fixed. The smaller v, the more
extreme will be the Fermi nature of the system, while
v ~ with p a constant represents the Bose limit.

In this paper we shall concentrate on the ground-
state energetics of the designated systems. However,
we will not be concerned with subtle effects of the
hyperfine interaction (which in the deuterium case
would mix in small components of the "wrong"
electron-spin state, ]). Nor will we include the ener-

gy of interaction of the system with any external
magnetic fields which may be imposed to maintain
the spec1f1ed polarization.

Our approach to the calculation of the ground-state
energy as a function of density (which determines the
zero-temperature equation of state) has been
described at some length in Ref. 2. The reader may
find it necessary to consult that paper for certain de-
tails of definition and notation. The essentials of the
method of correlated basis functions (CBF) are the
following. %e adopt a basis of correlated states

the 4~ forming a complete orthonormal set of
Fermi-gas energy eigenfunctions corresponding to
density p and degeneracy v, with m =0 denoting the
filled Fermi sea. The correlation operator F is taken
in state-independent Jastrow form, 6

F = ff f(rj) =F (2)

with f(r) either (a) an analytic one-parameter func-
tion f(r) =exp[ —

2
(h/r) ] as employed by Schiff

and Verlet' (SV), (b) a Pandharipande-Bethe' (PB)
function, i.e., the lowest solution of a two-body
Schrodinger-like equation with outer boundary condi-
tion of smooth healing of f to unity at a specified
healing distance d, or (c) an "optimal" correlation
function, determined by an (approximate) Euler
equation derived from the Jastrow energy functional
E[f] —= (H) = (OolHl+0) =Hoo. [In cases (a) and

(b), the parameters hand d, respectively, may be ad-

justed so as to minimize (H). ]
For prescribed f, the ground-state energy is

evaluated by nonorthogonal perturbation theory in
the Jastrow-correlated basis. The exact ground-state
energy may be expanded as

b =Hoo+5S"' +8 g"('+ +88("'+ . (3)

Formulas for the lowest few CBF perturbation correc-
tions 58 ', n =2, 3, 4, are given in Ref. 9, in terms of
the CBF matrix elements H „=( Ip lH l 4„) and
1((( „=(4 le'„). Herein we shall take account of (at
most) the leading correction of the Jastrow energy

Hpp, namely the second-order term

(,)
IHmo —Hoo&mo I'

IN III

(4)
III &0 Hmm Hoo

This contribution is itself approximated: we include
only the effects of "correlated two-particle —two-

hole (2p-2h) excitations, " the sum over m being so
restricted that 4 differs from the Fermi-gas ground
state 4p in exactly two orbitals. The resulting esti-
mate of the energy shift due to non-Jastrow correla-
tions is denoted 8$

The required CBF matrix elements [or rather, the
appropriate combinations Hpp, H —Hpp, and

(HIII„—H00NIII„) (1 —5III„) of them] are calculated via
the extended Fermi hypernetted-chain (FHNC) pro-
cedure outlined in Ref. 2, i.e., in terms of the solu-
tions of the so-called FHNC/C and (FHNC/C)'
equations.

It was found in Ref. 2 that the Jastrow model,
based on the single correlated configuration

g f(rs) 4'0, does not provide an adequate (quantita-

tive) description of the ground state of unpolarized
3He, even if f(r) is determined optimally. We note
in particular that (i) momentum-dependent correla-
tions (which, for example, correspond physically to
backflow around a moving particle), (ii) spin-
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dependent correlations involving the operators
a. , a~ (and corresponding in particular to spin-
density fluctuations), and (iii) direct three-particle
correlations [triplet t'j kc-orrelations not expressible
in the form f (rd) f(r;k)f (r&k) ] are missing from the
Jastrow ansatz. Correlations of types (i) and (iii)
have been considered to be the most important for
the gross energetics of the system'0; however, spin-
dependent correlations may also have a substantial
effect on the energy, and are known to play a crucial
role in some system properties such as magnetic sus-
ceptibility and superfluidity.

It may further be concluded from the results of
Ref. 2 that the Jastrow model gives a considerably
better description in the case of polarized 'He than it
does for the unpolarized system, in the sense that it
produces a closer bound on the relevant ground-state
energy. This finding is understandable in qualitative
terms: in the polarized phase the Pauli principle is
more effective in preventing close approach of parti-
cles, which reduces the influence of direct three-body
correlations (and possibly also of momentum-
dependent correlations); moreover, the particles are
constrained to interact exclusively in the spin state
~SMs) = ~11), which suppresses the role of spin-

density fluctuations. Thus the shortcomings of the
Jastrow ansatz will be of relatively little consequence

- in this case, at least if we confine our attention to the
ground-state energy.

These conclusions and judgments regarding He
are generally supported by the Monte Carlo calcula-
tions of Levesque" based on the Jastrow model (see
also Ref. 30). Accordingly, we seek to improve upon
the Jastrow variational energy for the unpolarized
system by incorporating the CBF correction 5$ ".
Calculation of this correction for the polarized system
is precluded by the technical obstacle2 that singulari-
ties arise within the present formulation when v is re-
duced from 2 to 1, However, as argued above, it
does not appear to be so imperative to go beyond the
Jastrow description for He[.

The deuterium systems are treated analogously;
that is, we adhere to the Jastrow model in the case of
D[q (v =1), but include the CBF correction 5$t2 2l

in the cases D[2 (v=2) and D[3 (v =3).
In Sec, II we take up certain crucial aspects of the

calculational procedure employed, aspects which ei-
ther were not made explicit in Ref. 2 (CKP) or else
reflect significant improvements upon the techniques
used in that study. For completeness, the FHNC'
equations are written out explicitly in Appendix A,
and some details of the f-optimization routine are
described in Appendix B. The Monte Carlo pro-
cedure used to compute 5g is sketched in Appen-
dix C. The current numerical results on the helium
and deuterium systems are presented and discussed
in Sec. III. Relative to CKP, the main improvement
is in the evaluation of 5$ '", which may now be re-

garded as quantitatively reliable. Extensions relative
to CKP consist of application of the method to D]3
and calculations on the D] systems with Pand-
haripande-Bethe and optimal (as well as Schiff-
Verlet) correlation functions.

II. CALCULATION MATTERS

A. Optimization procedures

The variational problem

50pp[ f]
5 lnf

is expressed most conveniently in Fourier space,
where it reads'

(t2k'/4m) [S(k) —1] +S'(k) —= cu(k) =0 . (6)

In Eq. (6), S(k) is the static structure function gen-
erated by the Jastrow trial state Op = g f(rp) 4p and
S'(k) is a corresponding generalized structure func-
tion. '2'd'6 The structure functions S(k) and S'(k)
are in turn simply expressible in terms of the
compound-diagrammatic quantities of FHNC and
FHNC' theory. An outline of the derivation of the
Euler equation (6) and of FHNC equations for
S'(k) —the so-called FHNC' equations —is provided
in Appendix A.

Three different procedures for solving Eq. (5) are
in current use. "Solution" consists here of executing
an iterative scheme in one of the key ingredients of
variational theory [namely, the correlation function
f(r), the radial distribution function g (r), or the
FHNC quantity I'dd(r) =—f (r)exp[Ndd(r) +Edd(r)]
—I] until convergence of tp(k) to zero is achieved.
The three procedures are (i) the Lagrange-multiplier
technique of Lantto and Siemens, "aimed at deter-
mining the optimal g'/'(r), (ii) Owen's simplified
Newton-Raphson iterative scheme" for producing the
optimal I'dd(r) [or rather gtt '(r) = [1+1dd(r)]'
and (iii) straightforward adaptation of the working
formulas of the paired-phonon analysis'6 (PPA) to
yield a solution essentially for the optirhal f(r).

Taking the Lantto-Siemens approach, one works in
practice with Euler-Lagrange equations based on
functional variation of an approximate expression for
the energy functional Hpp[f] (in particular, the
FHNC/0 approximation, '6 being used). On the oth-
er hand, in methods (ii) and (iii), one approximates
the Euler equation derived from the exact Hpp[f]
(the FHNC/C versions"7 of various compound di-

agrammatic quantities being inserted); after solving
this approximate equation the energy expectation
value is computed via a correspondingly approximate
energy functional. The latter strategy has the advan-
tage that certain exact properties of the compound-
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diagrammatic ingredients of the theory (see Appen-
dix A) may be preserved; it is then possible to estab-
lish unambiguously that the structure function S(k)
associated with the Jastrow state has the proper
long-wavelength behavior. A (usually minor) disad-
vantage of procedures (ii) and (iii) is that, in some
cases, the value obtained for the approximate energy
functional at the resulting optimal f is found to lie
slightly higher than for a suitably chosen Schiff-
Verlet function fsv This can happen because f,„,
is not determined by minimizing the approximate
functional with respect to f.

Application of the Lantto-Siemens Lagrange-
multiplier technique in conjunction with the FHNC/0
approximation is precluded here by thc following
consideration. As explained in Sec. II 8, the
compound-diagrammatic products or by-products of
optimal FHNC theory enter into thc subsequent
evaluation of CBF quantities, and especially the CBF
perturbation correction. The Lantto-Siemens
FHNC/0 prescription leads, unfortunately, to an
unacceptable large-r behavior for the effective pertur-
bation. [In the language of FHNC' theory, ' one
finds" I'dq(r) -r ' (r ~).] Accordingly, our nu-
merical investigations have been confined to thc
Newton-Raphson treatment (ii) and paired-phonon
analysis (iii). We hasten to add that the procedure of
Ref. 15 will be equivalent to (ii) and (iii) as applied
below, provided the same low-k corrections —viz. ,
those of the FHNC/C scheme —are made.

In Owen's procedure (ii), the Euler equation is

linearized, i.e.,
f

~(r) + Jl « '
",i, ', Sgs'"(r') =0 (7

gg 1/2

is used to generate a correction Sgs (r) to a given

iterate gg'~'(r) [at which ~(r) —= (2~) 'p ' Jt~(k)
x exp(ik r )dk and the derivative in large
parentheses is evaluatedl. If we exploit the fact that
the derivative need only bc roughly correct, this
equation can be simplified considerably; thus

—-(k)/S, (k) =-(g'k'/m) fag,'i2(r)]*(k)

+S,(k) [~(r)Sg,' '(r) ]*(k) (g)

suffices for the determination of 5gs'i'(r). In the
latter equation, the S superscript stands for
dimensionless Fourier transform, e.g. , X (k)
=p Jl X(r) exp(ik r )d r, and Sr(k) is the struc-
ture function of the noninteracting Fermi gas. For
further details, see Ref. 13.

Turning to the PPA scheme, a correction Su(r) to
a given iterate for u(r) = lnf2(r) is formed (in
Fourier space) via

sa(k) =s '(k) {I—[$(k) +(4lrt/&'k')s'(k) 1'"],

where $(k) and S'(k) are computed with u(r). A
corresponding correction 51'~(r) to the latest I'dd(r)
is obtained by lincarizing the FHNC equation for
I'dd(r) and making use of Eq. (9),

gI'dd(r) = [I +I'gg(r) ] [gu(r) + M'ga(r) ],
gu(k) + gN„(k) =S,'(i) {I —[$(k) + (4m/g'k2) S'(k) ]'i')S-'(k), (lo)

where we have reverted to the conventional tilde no-
tation for dimensionless Fourier transform and I'qq,

/t/dq, and Sq are as defined in CKP (Ref. 2) or Ap-
pendix A.

It is found that these two iteration methods,
Newton-Raphson and paired phonon, are comparably
efficient, the latter having the small advantage that
numerical second differentiation can be avoided at
sensitive places. Some technical features of the nu-
merical procedures we have adopted are taken up in
Appendix B. However, we should mention here that
both Newton-Raphson and paired-phonon iteration
schemes rely on fulfillment of thc exact long-
wavelength properties $(k) —k and S'(k)
—k'(k 0+). Indeed, within the context of the
FHNC/0 approximation (which does not maintain
these properties) the two schemes are not applicable,
unless a very special iteration path is followed ~hose
consistency with the proper low-momentum behavior
of S(k) and S'(k) is yet to be established. There-
fore we are led quite naturally to the use, in the op-

timization problem, of the FHNC/C approximation
of Ref. 17 (or the successive approximations of the
Krotscheck-Ristig version of FHNC theory6 "") for
the required compound-diagrammatic quantities.
These approximations involve simple estimates of the
crucial elementary diagrams so as to preserve the
aforesaid long-wavelength properties of S(k) and
S'(k). Consequently they guarantee, at the level of a
transparent and rigorous identity, the correct large-r
asymptotic behavior f(r) —1 —r ' of the optimal
correlation function —provided only that a stable
solution of the variational problem exists. By con-
trast, in the current Lantto-Siemens scheme the
correct asymptotic behavior must result from certain
delicate nontrivial cancellations.

8. Single-particle energies and effective interactions

It is an especially attractive feature of the formula-
tion of the optimization problem in terms of the
FHNC and FHNC' equations, that its execution
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yields as natural by-products the essential ingredients
of further attributes of the Jastrow model such as
single-particle energies (and effective mass), magnet-
ic susceptibility, and pairing matrix elements. ' '
But in addition, these same by-products furnish the
raw material for an improvement upon the Jastrow
description via the method of correlated basis func-
tions. To be more explicit: two of us'9 have recently
extended the conventional diagrammatic cluster-
expansion resummation techniques to nondiagonal
matrix elements in the Jastrow-correlated basis (1)-
(2), and have shown how to construct effective in-

teractions as well as single-particle energies in terms
of quantities generated automatically upon solution of
the FHNC and FHNC' equations. In this work, the
Clark-Westhaus (CW) prescription" for expressing
matrix elements of the kinetic-energy operator was
employed. On the other hand, the optimization pro-
cedures sketched above are tied to the Jackson-
Feenberg (JF) form' "for (H ) . Accordingly, we
have reformulated the construction of Ref. 19 in
terms of the JF treatment of the kinetic energy
which, though somewhat more complicated than that
of CW, has the distinctive virtue that the three-body
terms it produces are almost negligible. The required
formulas are derived from the Jackson-Feenberg
operator identity

p~2p & (~2@'2+@2@'2)

+ —,
' F'[V, [V, InP']] ——„' [ 7, [7,F'll, (11)

sandwiched between model states (4 l on the left
and l4„) on the right.

Consider now the assembly of 6$ using expres-
sion (4), with the sum restricted to correlated two-
particle —two-hole (2p-2h) excitations, corresponding
to lC& ) of the type a~ a, al, az l@0). The energy

denominator of Eq. (4) is then given by

H —Hoo= e(p~) +e(p2) —e(ht) —e(h2), (12)

i.e., as the difference of the Jastrow single-particle
energies' of particles and holes,

e() ) =r() )+u(z)+U, (13)

represents the average momentum-dependent field.
The compound-diagrammatic inputs X„(k„)and
X„(kz) have been specified in Ref. 2 (see also Ap-
pendix A), and i(kFr) is the familiar Slater
exchange-line function, l(x) =3x ' (sinx —x cosx).
The gradient '7I" in Eq. (15) is supposed to act only
on the exchange line attached to point 1.

The combination H 0
—HOON 0 of off-diagonal

CBF matrix elements entering the numerator of the
2p-2h summand in Eq. (4) serves to define a nonlo-
cal t}vo-body effective perturbation operator 'U (12).
Calling on results from Ref. 19 (cf. also Ref. 20), we
may write

H~o HOP'~0 = (p—& p2 I V (12—) I h 1 h 2),

(p jp21~( I 2) I h I h2) .
+

2 [e(p~) +e(p2) —e(h~) —e(h2)]

&& (pip~le(12) lhih2). ,

wherein the two-body matrix elements of the nonlo-
cal operators X(12) and %"(12) have the factoriz-
able structure

(A. =p~, p2, h~, h2). In the latter expression,
r(X) ==iI, 'kq /2m, Uo is an irrelevant addend indepen-
dent of momentum, and the nontrivial quantity

u(Z) = " — + [ —,X„(k„)+ I'(k„)],X,', (kg) h2k)',

1 —X„(k„)
(14)

with

ik~ Y(k~) = [VI"X„(r~~)] (kg) —ik~X„(k~)

(15)

(plp2I+(12) I hlh2&a = D ' (pip2I&'(12) I hih2) a (17)

(p,p, l~ (12) I h, h, &. = D-'[ (pip, l~'(12)
I h, h2) a+ —,

' [u(p, ) + u(p, ) + u(h, ) + u (h, ) ] (p,p, let'(12) I h) h2), ],
with

D =—{[1 —X„(k~,) ] [1—X„(k~ ) ] [1 —X„(kp, ) ] [1—X„(kl, ) ] }'

The subscript "a" means antisymmetrized. The re-
duced nonlocal operators%a(12) and'We(12) are
given by expansions in basic diagrams as defined in
Ref. 19.

The simplest approximations to 'Xe(12) and
'We(12) consist in retaining the leading terms of
their respective diagrammatic expansions, these lead-

[

ing terms being local. More explicitly, one adopts

X (12) =XP (12) =r«(r~~)

%" (12) =~g, (12) =I'gg(r)p) +(t /4m)V I «(r/2)

(19)
with I «(r~2) and I «(r~2) as specified in Appendix
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A [the prime denoting the graphical derivative of
I «(r]2), not its gradient].

It must be pointed out, however, that the local ap-
proximation to Xs(12) gives, for long-range correla-
tions f(r) —1=0(r '), r ~, the ]vrong strength
for the singularity of (p]p2IX(12) Ih]h2) occurring at
zero momentum transfer, i.e., in the limit /tl k~,
—kt, I

= /tq 0—. This defect is ascribable to the

neglect of "elementary" diagrams, the archetypical
set of which is shown in Fig. 1. The sum of contri-
butions from all diagrams of the indicated topological
structure, taken together with the leading, local con-
tribution, may be cast in the form

2'

2

FIG. l. Elementary diagrams contributing to the nonlocal
operator X~(12), whose kernel in configuration space is

denoted ~~(12;1'2') (see Ref. 19).

&p]p, lx (12) lh, h, ) = [I+I„,(p],h])][1+E„,(p, ,h, )]&p]p, lr«(F») lh, h, ), (20)

with E„,(p, h) —X„(kF) in the q 0 limit. Corresponding "elementary-diagram" contributions to 'Ws(12) are
generated from D ] (p]p2IRs(12) I h]h2) by graphical differentiation. We arrive at the representation

D &p]p2I~(12) Ih]h2) = [I+E„,(p],h]) l [I +E„,(p2, h2) l (p]p21~]'., (F») lh, h, )

+(2 [[u(p]) +u(h])][1+Ee„(p],h])] +2E„,(p],h])][1+E„,(p2, h2)]

+ —, [[u(p2) + u(h2) ] [1+E„,(p2, h2) ] +2E„,(p2, h2) ] [I +E„,(p],h, ) ])

x (p]p2IF«(r]2) lh h2) (21)

which unites the "elementary" contributions to the
%s matrix ele]nent (factorable contributions involv-

ing E and/or E' quantities) with the separable terms
in u arising from the structural decomposition (17).
The property

lim E„,(p, h) = —u (kF) [1 —X„(kF)]

guarantees the regularity of O'N and hence O'U in the
limit of zero momentum transfer.

It is to be stressed that when I'«(r) is of long
range [as in the case that f(r) is determined optimal-
lyl, we must not retain the u terms in Eq. (21) while

I

neglecting their "elementary" (E and/or E') coun-
terparts. Such a procedure would lead to a singular
behavior of H p Hoo/V 0 at the Fermi surface (or
more precisely in the q 0 limit). The cancellation
of this singularity by the "elementary" contributions
to %"s(12) has the same physical origin —namely,
wave-function antisymmetry —as the cancellations,
alluded to in Sec. II A, which are responsible for the
correct long-wavelength behavior of the structure
functions. In concert with the /C treatment of the
FHNC and FHNC' equations, we estimate the effect
of the essential elementary quantities by setting

E~~(p, h) =
2 [SF(lk~ —k]]l) —1][X„(kF)+X„(k]])]

[u(p) + u(h) ][I +E„,(p h) ] +2E„,= SF( Ik, —k] I) [u(p) + u(h) ]
(22)

Again, justification for this sort of estimate derives
not only from numerical experience with the relevant
elementary diagrams, but also from the fact that in
the present case these diagrams have little effect oth-
er than to eradicate the singularity at q 0. Once
the singularity is removed, the main contributions to
the second-order correction 5$ ' come from the re-
gime of moderate momentum transfer, q & 2kF,
where the elementary diagrams are practically negligi-
ble.

Besides the u and E (and/or E') terms collected in

Eq. (21), another set of factorizable contributions to

[

the 'Ws(12) matrix elements must be identified,
which are generated in the JF treatment of the kine-
tic energy, Specifically, they arise from manipula-
tions in which one of the '7; of the kinetic energy
operator acts on one of the exchange-line factors of
one of the X„functions appearing in the normaliza-
tion denominator D, the other '7; acting either on
the momentum-transfer exponential or on an
exchange-line factor in another X„function present
in O. Following the graphical analysis of Ref. 19, we
can express these separable "kinetic" contributions
through



GROUND-STATE ENERGETICS OF HELIUM AND DEUTERIUM. . . 6389

(plp219pk n (») I &i&2& = «'/4~) [-(k„-kh ) [kp Y(pl) kp Y(p2) kh Y(/tl) + kh Y(/t2) ]

+ k, .
kh, Y(p ) Y(h ) + k kh Y(p2) Y(h2) ) (ptpqlr ~(r„)Ih)h2)

Finally, there are separable contributions which combine elementary (sub-) diagrams entering Eq. (21) and
"kinetic" (sub-) diagrams of Eq. (23); these contributions are generated from Eq. (21) by replacement of the
factor

(23)

—I[u(p;) +u(h;)][I +E„,(p;, h;)] +2E„,(p;, h;) )

(A /4m) (
—(k~ —k„) [k~ Y(p) —kh Y(h)]+k~ kh Y(p) Y(h;)] ), I =1, 2

Let us step back momentarily to the local approxi-
mation (19) to%s(12) and 'Ws(12) and spell out a

corresponding "local" approximation to the effective
perturbation. %e observe that quite generally —i.e.,
whatever one uses for X and W —the separable
numerator terms in the hole quantities u ( h~), u ( h2)
may be entirely cancelled off upon substitution of
Eqs. (13) and (17) into Eq. (16). On the other hand,
the separable numerator terms of Eq. (17) involving
the particle u's remain. From the foregoing remarks
about singularities it is clear that consistency requires
the deletion of these latter terms when the local ap-
proximation (19) is invoked.

C. Numerical evaluation of perturbation corrections

We have carried out extensive numerical analysis
of the second-order correction, based on (a) an
"angle-averaging" method patterned after
MacKenzie's treatment" of the ordinary second-
order perturbation correction for soft potentials and
(b) Monte Carlo evaluation of the six-dimensional
integral involved in 58t2 2~. Procedure (a) has been
used in earlier calculations within CBF perturbation
theory (for example, Refs. 2, 9, 22, and 23). Essen-
tial elements of this procedure are (i) partial-wave
expansion of the effective-perturbation matrix ele-
ments, (ii) angle averaging of the Pauli operator, (iii)
quadratic ("effective-mass") approximation of the
field function u for holes, neglect for u for particles,
and (iv) averaging of the I —X„ factors in the
denominator D of Eq. (17) over the angle between
center-of-mass and relative momenta, according to

[I —X„(k,, ) ][I —X„(k,,) ]

[I —X„[(k,' +k,', )/2]'~')'

(and similarly for hole factors). Procedure (b) is
described in Appendix C.

Our studies reveal that —at least for unpolarized
'He —substantial cancellations between central and
noncentral portions of 'U (12) seriously limit the ac-

I

curacy of the "angle-averaging" prescription. In par-
ticular, consider the weighted average

]. /2™(H.,—H„,N.,)
hlh2, 00

I

= Ioo (@ol+'(H —Hoo) p'p-„p -, I @o) (24)

of the CI3F perturbation H o HooN o, where I4~)
is a 2p-2h state characterized by momentum
transfer tq, I„„—= (@„IF'Fl@„),and

i q ~ r

p-, = g,. e '. It is easily seen that the right-hand
side of Eq. (24) coincides with ~(q) as defined by
Eq. (6). Thus the left-hand side of Eq. (24) should
vanish identically in q for an optimal 3astrow func-
tion. However, in actual calculation this condition
will hold only if the Pauli operator associated with the
h], h2 sums is treated exactly —which is surely not
the case in the MacKenzie procedure (a). More
broadly, the consequences of angle averaging, espe-
cially for systems in which the bare interaction itself
does not introduce any overt state dependence into
the problem, are difficult to assess, Uncertainties
due to the approximation (iii) for the quantities u

further erode the reliability of method (a), though er-
rors due to (i) and (ii) may actually be compensated
somewhat by those due to (iii). [Approximation (iv)
turns out to be rather accurate, owing to the fact that
X„(k) is a slowly-varying function over the relevant
interval. ] At any rate, Monte Carlo integration al-

lows us to bypass (i) —(iv) and perform a quantita-
tively reliable evaluation of the perturbation correc-
tion.

Valuable insights into proper numerical evaluation
of CBF perturbation corrections have been gained in
another recent numerical study. 2' However, that
work focused on a simple potential model of nuclear
matter (the OMY model6), and one need not expect
approximation techniques which work well there to
be as effective under the more extreme conditions of
small particle spacing, strong correlation, and (specifi-
cally) strongly energy-dependent effective mass'
found in helium.
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III. RESULTS

A. Helium systems

Our calculations for unpolarized He and for JHe[
are based on the standard Lennard-Jones potential
with ~ =10.22 K and o- =2.SS6 A. Results are
presented here for Schiff-deerlet and optimal correla-
tion functions, denoted, respectively, by fsv(r) and

f,p, (r). The range Parameter b in fsv was simPly
fixed at the value b =2.888 A =1.13o- arrived at in
Ref. 7, no attempt being made to redetermine a best
b at each degeneracy v and density p within the con-
text of our theory. [Judging from our results for
(H) using f„„we expect that only a small lowering
of the Jastrow energy would accompany such a
redetermination (see also Ref. 11).] The com-
pound-diagrammatic quantities (I'dq, I"qd, X«, etc.),
needed in the computation of the Jastrow energy
(H ) = HBB, in the construction of the Euler equation
~(k) =0, and in the calculation of the CBF perturba-
tion correction 5h ~2'~ were evaluated in the
FHNC/C approximation. The iteration procedure
(iii) described in Sec. II A (i.e., the PPA procedure)
was used to obtain f,P,.

Extensive numerical results on the Jastrow
ground-state energy (H) are collected in Table I
(wherein CW, JF, and PB refer, respectively, to the
use of Clark-Westhaus, Jackson-Feenberg, and
Pandharipande-Bethe forms for the kinetic-energy ex-
pectation value ). Detailed information on the
behavior of the second-order correction 5S(2 " is
provided in Tables II and III (an effective interaction
in JF form being adopted). As usual, energy entries
are given in K per particle.

Commenting on Table I, we should point out that
the SV entries differ somewhat from the values given
in CKP (Ref. 2) due to improvement of the numer-
ics, particularly with regard to the treatment of large-r
effects of the correlations. The f„,entries are also

somewhat different, for the same reason. Note that
for the unpolarized system we now report some
results at p values beyond the empirical equilibrium
density p, =0.0164 A '. The reader should concen-
trate on the JF values for the energy, as these are
known [from formal considerations and also from
comparison with the results of Monte Carlo (MC)
evaluation" of (H) ] to be generally the most reli-
able. Typically (see for example Ref. 6) the exact
Jastrow energy lies somewhere between (H) JF and

(H ) PB, the estimate (H )JF thus providing a safe
upper bound. [In the He systems, (H)Mc for fsv is

closer to (H) JF than to (H)PB, over the interesting
density range (see Fig. 2).]

The changes in numerical methods put into effect
here will of course have some repercussions for other
properties of the Jastrow model which were extracted
in CKP, in particular the effective mass m' at the
Fermi surface, the dimensionless pairing matrix ele-
ments 5, and the magnetic susceptibility X. However,
the associated modifications are of minor signifi-
cance, especially in view of the fact that the Jastrow
predictions for the latter properties have been sho~n
to be physically incorrect. Quantitative treatment of
m' (for unpolarized He and for JHe[) and of x and
the various 5 (for unpolarized He) require further
development of the method of correlated basis func-
tions24 or some other approach transcending the Jas-
trow model.

One may notice upon close inspection of Table I
that, at the higher densities, (H) JF (P = 2) evaluated
with f=f„,actually lies shghtly above (H)JF (JJ=2)
evaluated with f= fsv. The excess reaches some
0, 1 —0.2 K, a discrepancy that is significant relative to
the scale of numerical errors (less than 0.1 K) intrin-
sic to our computations. This anomaly is a reflection
of the fact that we have not treated the Euler equa-
tion Q)(k) =0 exactly (the FHNC/C appfoxlmatlon,
with its limited accounting of elementary-diagram ef-
fects, has been applied) and we have not carried out

TABLE I. Jastrow ground-state energies of unpolarized He and of Het, Energies in K per particle.

3He, fsv 'Het. fsv
P {10 A 1 JJ~ (H)CW (H) JF (H)PB (H)CW (H) JF

'He, f,p, 3Het, fop,
(H)PB (+)CW (H)JF (H)PB (+)CW (H)JF (H)PB

7.6
11,2
13.0
14.2
14.8
16.6
18.0
20.0

0.127 —0.48
0, 187 —0.56
0.217 —0.38
0.237 —0.15
0.247 0.00
0.277 0.60
0.301 1,25
0.334 2.44

—0.58
—0.93
—0.96
—0.91
—0.87
—0.63
—0.31

0,30

—0.71
—1.34
—1.60
—1.75
—1.81
—1.95
—2.02
—2.02

—0.05
—0, 18
—0.06

0.11
0.22
0.66

—0.24
—0.84
—1.07
—1.16
—1.21
—1.33

—0.48
—1.63
—2.29
—2.75
—2.99
—3.74

—0.70
—0.78
—0.58
—0.33
—0.16

0.52
1.26
2.87

—0.72
—1.00
—0.98
—0.91
—0.84
—0.52
—0.13

0.66

—0.76
—1.27
—1.45
—1.56
—1.61
—1.67
—1.70
—1.63

—0.52
—0.78
—0.77
—0.65
—0.55
—0.09

—0.54
—1.07
—1.29
—1.34
—1,36
—1.34

—0.58
—1.45
—1.95
—2.28
—2.45
—2.93
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TABLE II. Data on perturbation correction in unpolarized He for f». Energies in K per parti-

cle. The last column is taken as standard and denoted 88

p(10 3 A 3) a~Me [+0] sg (2, 2) [p]

7.6
11.2
13.0
14.2
14.8
16.6
18.0
20.0

e(h) ) e(p)
—0.66
—0.89
—1.07
—1.18
—1.56
—1.93

e(h) ) e(p)
—1.0
—1.2
—1.5
—1.6
—2.1

—0.46
—0,83
—1.07
—1.27
—1,38
—1.77
—2.17
—2.85

+0.02
+0.04
+0.04
+ 0.05
+0.05
+0.06
+0.07
+0.07

—0.26
—0.47
—0.62
—0.75
—0,82
—1.08
—1.35
—1.84

+0.01
+0.02
+0.03
+ 0.03
+ 0.04
+ 0.05
+ 0.04
+ 0.05

an exact evaluation of (H) (again, the FHNC/C ap-

proximation has been used). More precisely, one
should say that oJ(k) =0 and (H) have not been
treated consistently. ' Thus, e = (H) JF[f„t]

(H) JF[fsv] if positive, provides a measure of the
inconsistency of the FHNC/C approximation. That
this measure is found to grow with density in unpo-
larized 3He is in line with the density dependence of
elementary-diagram contributions; that e(v=2) is

still relatively small near the experimental equilibri-

um density gives reassurance that our computational
techniques are reasonable. It is also noteworthy that
no such inconsistency surfaces in our results for the
spin-aligned phase —perhaps only because the fsv
choice with b =1.13a- is not so propitious in this
case. More definitive information on the precision of
the FHNC/C scheme will be examined toward the
end of this subsection.

But now let us consider Tables II and III, which

juxtapose the results of a variety of numerical treat-
ments of the second-order CBF correction 58 in
unpolarized 'He. The following notational conven-
tions serve to identify the various approximations.
The subscripts on 5$ indicate how the integra-

tions implied by the sum over label m were per-
formed: AA for partial-wave expansion plus angle
averaging, MC for Monte Carlo integration. The
symbols in curly brackets refer to the specific treat-
ment of single-particle quantities and of nonlocal
contributions to W and X, and the disposition of
the (1 —X„)' ' factors of D ' [see Eqs. (12)—(23)].
Thus, (ao] involves quadratic approximation of
u = u (h) for holes, neglect of u = u (p) for particles,
omission of all nonlocal contributions to W and 3t~,
and averaging of D as described in Sec. II C; in ap-
proximation (n ] one continues to drop the u(p)
terms in the g formulas (16) and (17) and the afore-
said nonlocal contributions, but u(p), u(h), X„(p),
and X„(h) as given by the FHNC/C evaluation re-
ceived "exact" numerical treatment in the energy
denominator H —Hoo and in D; finally, approxi-
mation (P } improves on (n ] by including, within
the /C framework, the u terms of Eqs. (16) and (17)
and indeed alt the nonlocal separable contributions
identified in Section IIC, This set of approximations
is rooted in the notion of expanding 'JJps(12) and
Xs(12), as they stand in Eq. (17), in basic-diagram
series. ' '

TABLE III. Data on perturbation correction in unpolarized He for f,p, . Energies in K
per particle. The P evaluation (fourth column) is taken as standard and denoted 8$

p (10 A ) 5$„'„(~o] Sharc (n] sg (2, 2) {pj

7.6
11.2
13.0
14.2
14.8
16.6
18.0
20.0

—0.33
—0.45
—0.55
—0.60
—0.78
—0,95

—0.22
—0.40
—0.52
—0.61
—0.66
—0.83
—0,99
—1.23

+ 0.014
+0.02
+0.03
+0.03
+0.03
+0.03
+0.03
+0.03

—0.21
—0.35
—0.44
—0,51
—0.55
—0.68
—0.81
—1.04

+0.005
+0.009
+0.01
+0,01
+0.02
+0.02
+0,02
+0.03

—0.13 +0.006
—0.22 +0.007
—0.28 +0.008
—0,33 +0.008
—0.36 +0.008
—0.46 +0.01
—0,55 +0.01

—0.20 +0.01
—0.30 +0.02
—0.36 +0.02
—0.42 +0,02
—0.45 + 0.02
—0.55 +0.02
—0.64 +0.02
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FIG. 2. Local effective interaction in unpolarized He as a
function of separation. The solid curve traces the Jackson-
Feenberg version I dd(r) +(k /4m) V 1 d~(r) of this quantity

for the SV choice of f(r), while the open circles indicate

corresponding results for the Clark-%esthaus version I dd(r)
[taking account of the effect of the three-body part of the
CW kinetic-energy operator (Refs. 19 and 20)]. The trian-

gles mark the JF results for the optimal f(r).

An alternative path may be delineated thus: first
recast the CBF perturbation H 0

—HOON 0 in the
form

[I-X„(p,) ] [I-X„(p,) ]

[1 —X„(ht) ] [I —X„(h2)],
then expand the factor R(hth2p~p2). That is, ex-
pand'Wa(12) and OI~(12) divided by [1 —X„(pt)]
x [I —X„(p2)]. The simplest approximation within
this alternative scheme, labeled (na }, retains only
the leading term in the expansion of R, i.e., 'ttra(12)
and R~(12) are replaced by their local parts and the
denominators [I —X„(p)] of R are set to unity. In
all other respects the computation runs as in approxi-
mation (n) specified above; thus, (na ) will differ
from (n ) simply in the presence of an additional fac-
tor ([1—X„(p&)][1—X„(p2)] ) in the integrand of
the working formula for 5$"". One may in like
manner set up an alternative approximation {Pa )

corresporiding to {P)—by retaining separable dia-

grams of the type displayed in Eqs. (20) and (21).
This amounts in our approximation (i.e., including
one-I'dd-line separable diagrams) to the replacement
of 1+E„,(p;, h;) by 1 +X„(p;),'+E„,(p;, h;) in Eq.
(20) and correspondingly in Eq. (21). We see that
the contributions of the separable diagrams in the
"a" expansion vanish in the zero-momentum-
transfer limit. Additional support for the a scheme
comes from the fact that, upon carrying on with the a
expansion, the average of R (hth2p~p2) over hole
states will successively approximate the optimization
condition Oj(k) =0 [cf. (24)]; moreover, some analyt-
ical cancellation between central and the average of

noncentral effective interactions takes place.
%e observe in Tables II and III that all these treat-

ments of the correction 5$ to the v=2 Jastrow
energy yield results of reasonable size. These results
depart markedly from those of Table II of CKP,
which are invalidated by a programming error. (Here
it should be stressed that, in contrast to CKP, the
denominator D was not replaced by 1 in any of the
present calculations. ) The entries 5hMt2L'l (P), corre-
sponding to what we consider the most complete and
precise evaluation, are taken as standard; henceforth
they will often be denoted simply 5g

One motivation for the neglect of u(p) numerator
terms in approximations (no), (n}, and {na } is that
u(k) damps toward zero as k increases, ultimately
becoming negligible compared to r(k) [A similar . ra-
tionalization can be given for setting X„(p) =0 in the
denominator of R (h~h2p~p2), since X„(k) also
damps to zero for large k.] Our results show that
(n } is not a very good approximation when fsv is

used; it is much better for optimal correlations. Of
course, in the latter case the u(p) terms lead to a

singularity at the Fermi surface, so if they are includ-
ed at all they must be accompanied by counter terms
from the basic-diagram expansion of 'W~(12). We
see that in the f,v, case the overall effect of u(p)
numerator terms and nonlocal separable-diagram con-
tributions from the 'N~ expansion is rather modest.
Regarding the alternative a evaluations, we take en-
couragement from the finding that 5$~~'p" (Pa ), cal-

culated for f„„does not deviate greatly from its
correspondent 58Mt2L2l (P }; the difference between
the {Pa ) and (P ) results may be taken as an esti-
mate of the effect of neglected separable diagrams.

It is interesting that the angle-average values
5$A~' (no } are in fairly close accord with
58Mt'p2~ (n },which should be the case if the opera-
tions (i)—(iii) of the treatment (a) of Sec. IIC are
justified. However, we infer from the results
58&Pl (n ) in Table II that the degree of such agree-
ment is enhanced by partial cancellation of errors due
to (i) —(ii) by errors due to (iii). One other technical
point is of some interest. A comparison, for fsv, of
the "local effective interactions" I"dd(r) + (t2/4m)
x '7'I qq(r) and I'dd(r) of JF and CW formulations,
respectively, shows them to be in excellent numerical
agreement, as seen in Fig. 2. This concurrence lends
further credibility to our evaluation of the perturba-
tion correction 58 "~. For completeness, we also
compare, in Fig. 2, the JF local effective interactions
for SV and optimal correlations; Fig. 3 displays the
function I'qq(r) associated with each of these two

choices of f(r).
Turning now to matters of broader concern —in

particular, the confrontation of our theoretical results
on unpolarized He with experiment —we remind the
reader that the function of CBF perturbation theory
is to correct the (Jastrow) variational energy for the
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FIG. 3. "Dressed correlation line" I"dd(r) in unpolarized

He as a function of separation. The solid curve corre-
sponds to the SV choice of f(r), the dashed curve to the
optimal choice.

inadequacies of the (Jastrow) trial ground-state wave
function. Thus, if f„,as determined here is actually
the "best" two-body correlation function (or nearly
so) we would expect 8b(2 " to be smaller in magni-
tude for f„,than for fsv. Such is indeed the case;
moreover the difference

8g(2, 2) [f ] 8 g(2, 2) [f ]

is a smooth, monotonically increasing function of
density, ranging from 0.05 K at p =0.0076 A 3 to
0.80 K at p=0.020 L '. [Inspecting Figs. 2 and 3,
we attribute this difference to differences in
I'dd(r) —which of course enters prominently in the
effective perturbation (16), through Eqs. (17) and
(19)—rather than in the "local effective interac-
tion. "] For either choice of f, the energetic effect of
the residual, non-Jastrow correlations (angle, momen-
tum, spin dependent), as represented by the values
for 8|IIM(P) (P ] listed in Tables II and III, is substan-
tial. Nevertheless, the correction we calculate is not
sufficient to bridge the gap between (H) and the
measured energy. The experimental energy at sat-
urated vapor pressure, corresponding to p, =0.0164
A 3, is —2.47 K (per particle). Taking b (()

(H )FuN('/( —JF + 8 8 ' as the improved theoretical
estimate of the energy, we find 8())[f, ,] = —1.22 K
and b(»[fsv] =—1.71 K at p=0.0164 '. As a
function of p, h())[f„,] reaches a minimum of
—1.41 K at p =0.0136 A ', the corresponding
numbers for fsv are —1.71 K at p =0.0160 A 3. We
shall refine these estimates later, upon returning to
the question of the accuracy of the FHNC/C approxi-
mation.

%e note in passing that the convergence of the
CBF perturbation expansion is presumably better for

f„,than for fsv —the effective perturbation is
stronger for the former choice, producing a larger
I88(2'2) ~. However, having only the leading correc-
tion term at our disposal, it is not possible to ascer-

tain in either case whether the rate of convergence is
rapid enough for the present approach to be viable.
The correction 58 '" amounts to only a small per-
centage (some 5—8% at p, ) of the Jastrow potential
energy ( V), and a considerably larger percentage
(but &25%) of the Jastrow interaction energy
(H) —TF, where TF is the ground-state energy of the
noninteracting Fermi gas. Of course, neither com-
parison yields a legitimate measure of convergence of
the CBF expansion. It is our judgment —based on
what has been learned about the behavior of the ef-
fective perturbation itself —that the portion of 58 '
involving at most correlated 3p-3h excitations will not
be negligible, but should not be overwhelming. In
this connection it must be recalled that we have not
evaluated the full second-order perturbation correc-
tion, but only the portion 5$' of it arising from
correlated 2p-2h excitations. The omitted portion
58 ' due to correlated 3p-3h excitations is also neg-
ative and would serve to further close the gap
between theory and experiment. On proceeding to
higher-order perturbation corrections (8h(4), . . . )
and/or higher classes of correlated excitation (4p-
4h, . . . ), an awkward technical feature of CBF per-
turbation theory is encountered. "' In a given per-
turbative order, spurious, unlinked parts will arise
which are cancelled by like contributions from dif
ferent orders of the expansion (3). For example, if
we examine the correlated 4p-4h portion of 5$ ",we
find unlinked contributions with an unphysical
dependence on the particle number. These contribu-
tions are eradicated by portions of 55' ' involving
correlated 2p-2h excitations and additional sixth-order
terms of similar structure. It is difficult to make any
useful general statement about the numerical impor-
tance of the physical survivors of such cancellations,
although we expect that —aside from previously iden-
tified pieces of 8$ and 88 (viz. , 8$ ' 88
8b('2), and 8$('3)) —they are unlikely to become sig-

nificant except at high density.
In view of the uncertainties touched on in the

preceding discussions, it would clearly be desirable to
go beyond CBF perturbation theory, in effect sum-
ming out the important subseries of contributions
within the CBF expansion (3). Such a possibility is
offered by the CBF-coupled cluster scheme
developed in Ref. 26.

Two additional pieces of information help to il-

luminate still further the current status of many-body
theories of the ground-state energetics of unpolarized
liquid He. First, the Lennard-Jones interaction is
known from virtually exact Green's-function Monte
Carlo calculations to underbind liquid He by about
0.5 K at the experimental equilibrium density 0.0219
A 3 when the Axilrod-Teller three-body interaction"
is taken into account. For liquid 'He at its lower
equilibrium density, a corresponding but smaller defi-
cit in binding will be ascribable to use of the
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Lennard-Jones potential. [Of course, within this con-
text the energy to be fit by the many-body calculation
would be —2.47 K minus the positive contribution
(perhaps 0.1 K) from the Axilrod-Teller interaction. )

Second, studies by Levesque and Lhuillier and in-
dependently by Kalos and collaborators indicate that
elaboration of the Jastrow ansatz by a triplet-
correlation factor g, &,&„f3(.r„., rk, r~"k), where the de-

viation of f3 from 1 is small unless all three of ijk are
close together, can lead to an appreciable lowering of
the energy expectation value, by some 0.4 K at
p

—=0.0164 A . Presently, attention is swinging to
the problem of the proper incorporation of
momentum-dependent backflow correlations' ' and
spin-dependent correlations. " We believe' that our
formalism is well suited to the inclusion of these
mechanisms, and that their contribution to the ener-
gy is already sensibly approximated by BS
Furthermore, it may be that the refinements of
Levesque and Lhuillier and of Kalos and co-workers
provide in effect an estimate of the energetic contri-
bution of CBF 3p-3h excitations.

Our results on the helium systems are summarized
in Figs. 4 and 5. The relative stability of 3Het and
unpolarized 'He, within the Jastrow model, remains
essentially as reported in CKP, i.e., beyond some
rather low density, (H) for u =1 lies below that for
v=2, the difference widening with increasing p. This
ar'tificial behavior is due, of course, to the inadequa-
cy, for the unpolarized system, of the simple correla-
tion ansatz F= g«, .f(r„-)—a description which be-
comes less and less realistic as the density rises.
Upon supplementing (H)tF(v=2) by 88(22) as
determined above, the energy estimate for unpolar-
ized 3He is pushed (safely) beneath that of the spin-
aligned system, in the case of Schiff-Verlet correla-
tions. For our "optimal" correlations, the stability
picture, though also greatly improved, is not fully
rectified —the onset of artificial instability being
raised from p =0.0105 to =0.0150 A 3. Strictly,
these comparisons are not consistent —one should also
augment (H)tF(v=1) with its gg . Still, as ar-
gued in the Introduction, the latter quantity (or more
precisely the correction to the Jastrow energy) is like-
ly to be quite small. (Note that there is simply not
much room between the Jastrow (H) for v =1 and
the exact energy of this system, which is expected to
lie a few tenths of a degree above that for the unpo-
larized liquid. )

To gauge the accuracy of the FHNC/C evaluation
of (H), several data points extracted from the
"benchmark" variational Monte Carlo results of
Levesque" have been included in Fig. 4. (For the
unpolarized phase, Levesque does not give (H)
values corresponding to the parameter choice
b =1.13o-, modest interpolation or extrapolation of
his results was required in that case. Quoted statisti-
cal errors are typically +0.15 for the v =2 system and
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FIG. 4. Ground-state energy per particle vs density for
unpolarized and fully polarized He, based on the Lennard-
Jones potential and the Schiff-Verlet correlation function

1 0
fsv(r) =exp[ —

2 (b/r) j with b =2.888 A. Solid curves

without data points: Jastrow energy expectation value (H)
for unpolarized He, computed in FHNCIC approximation
using (as labeled) CW, JF, and PB expressions for the kinet-
ic energy. Solid curves with triangle data points: Jastrow ener-

gy expectation value for fully polarized He computed in
FHNCI C approximation. Short-dash lines connect Monte
Carlo data points of Levesque (Ref. 11) for (H), designated
by open circles (unpolarized He) and triangles (fully polar-
ized He). Long-dash curve: CBF estimate of ground-state
energy of unpolarized system, formed by adding the second-
order perturbation correction 88(2 2) to (H) tF(FHNC/C}.

+0.20 for u =1.) The FHNC/C curves for (H)tF lie
somewhat above the respective Monte Carlo (MC)
results, the discrepancy being unimportant for the po-
larized system (i.e. , within the numerical error bars)
and some 0.2—0.4 K in the unpolarized case. (It is
interesting that this comparison does not reveal a
pronounced increase of the discrepancy with
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FIG. 5. Ground-state energy per particle vs density of un-
polarized and fully polarized He, based on the I.ennard-
Jones potential and the optimally determined correlation
function, f„~,(r). Notation as in Fig. 4, except that Monte
Carlo results for (H) are not available for comparison in
the present case.
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density —which one would expect to see if the
elementary-diagram contribution is growing rapidly. )
Taking the Levesque results as accurate, a refined
CBF estimate of the energy may be formed, viz. ,
/~2~= (H)Me+58& . For SV correlations we then
obtain, at p =0.0164 A,

' =p„ the value

55~2~ = —1.95 K. Reasoning that for truly optimal
correlations and accurately evaluated expectation
values (H) [f,~, ] will be less than (H) [fsv], and as-

suming that the 5$ evaluation of Table III
remains valid, we may quote —1.56 K as an upper
bound to 8i2~ for the optimal f(r) Thes. e revised
theoretical estimates improve on our earlier compar-
ison with experiment; indeed 6 ~2&[fsv] brings us
within striking distance of the measured energy. Use
of Levesque's benchmarks in conjunction with the
CBF correction 5$ " also distinctly improves the
theoretical situation in the SV case with regard to the
relative stability of polarized and unpolarized phases,
since (H)FHNc/c —JF (H)Mc is larger for v=2 than l.
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B. Deuterium systems

In our investigations of the deuterium systems

Dj~, D [2, and D j3 we adopt the accurate theoretical
pair potential for the b X+ state which has been con-
structed by Kolos and Wolniewicz. ' Calculations
were performed for Pandharipande-Bethe correlation
functions' fps as well as Schiff-Verlet and optimal
choices. The parameter h in fsv was determined at
each v and each p by minimization of (H)&F. [Actu-
ally, for Dj~ and D j2 we have used b(v, p) as sup-
plied by M. D. Miller, after checking that his values
minimize, or nearly minimize, (H)qp as approximat-
ed here. 1 Otherwise our deuterium studies run
essentially parallel to those detailed above for 'He.
The main numerical results are collected in Tables
IV —VII and summarized (for the f„,case) in Fig. 6.
For the most part, the features and trends seen in

these results echo those noted for the helium sys-
tems. Thus, much of the discussion of Sec. III A
could be repeated here, with D j2 (or D j3) playing the
role of unpolarized 'He and D j~ that of 'He]. Let us
instead concentrate on the novel aspects of the deu-
terium problem which emerge from our results.

Table IV and Fig. 7 extend the study of the deu-
terium systems with the SV correlation function' to
D j3, the case of three equally populated nuclear spin
states. At very low density, there is very close agree-
ment among (H)cw, (H)JF, and (H)pa. As the
density increases, the spread between the three forms
of the energy expectation value grows, but not nearly
so fast as with He. This suggests that the elemen-
tary diagrams are less important for deuterium.

Examining the JF entries in Tables IV —VI for D j2
and D j3, we find that the PB and optimal choices of
fyield an energy expectation value (H) which is
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TABLE V. Jastrow ground-state energies of deuterium systems for fp&, with d/ro =2.2. Energies in K per particle.

p (10-' A-') pO (H)cw
Dj)

(H) JF (H ) PB (H )Cw

D)2
(H) JF (H)PB (H)CW

D)3
(H )JF (H)pa

1.41
2.82
3.52
4,23
4.93
5.63
6.34
7.04

0.071
0.142
0.177
0.213
0.248
0.283
0.319
0.354

0.47
0.44
0.52
0.72
1.06
1.55
2.19
3.00

0.49
0.35
0.31
0.32
0.40
0.53
0.79
1.10

0.51
0.27
0.09

—0.13
—0.35
—0.64
—0.83
—1.12

0.24
0.25
0.38
0.64
1.06
1.65
2.45
3.47

0.24
0.20
0.26
0.41
0,68
1.08
1.61
2.29

0.24
0.15
0.15
0.17
0.29
0.49
0.73
1.07

0.10
0.09
0.21
0.47
0.89
1.51
2.35
3.42

0.11
0.05
0.11
0.28
0.59
1.03
1.61
2.42

0.11
0.02
0.01
0.09
0.28
0.52
0.85
1.38

generally lower than for the SV choice. However,
the difference is less than the estimated numerical
uncertainty (-0.1 K) arising from the limited
number of grid points. In the case of DJJ, f„,gives
a slight energetic imProvement over fps and fsv, ex-
cept at the highest densities. We note that the SV
choice for f seems to serve well for the deuterium
systems, as it does in helium.

Energy curves for D/J, D)2, and D JJ based on the
optimal choice of fare displayed in Fig. 6. The
predicted locations of the finite-density energ mini-

ma are 3.7 X 10 J A. (DJJ) and 3.0 x10 (D/2
and DJJ), when the CBF perturbation correction is
included in the energy estimates for D(2 and D/3.

In concert with our findings on the effects of
nuclear-spin polarization in 'He, the Jastrow model
predicts that fully spin-polarized deuterium D )J
would be preferred over the partially polarized state
D J2 and the spin-saturated state D JJ above some re-

latively low density. Again, this may be taken as an
indication of the inadequacy of the simple correlation
ansatz (2) for P ) 1. Over most of the density range
of Fig. 6, the results for D(2 and DfJ exhibit a physi-

cally more realistic behavior with respect to one
another: at a given p, (H)(v=3) lies below

(H) (F =2). Nevertheless, at high density the D JJ
curve drops below the curve for D JJ. Qualitatively,
the differences between the energy curves for D)J
and D JJ are not as prominent as between either D JJ
or D JJ and D JJ. This is in line with the observation
that the v dependence enters the calculations essen-
tially as v ', which makes a smaller "jump" as v

changes from 3 to 2 as compared to the change from
3 or 2 to1.

In contrast to our findings for polarized and unpo-
larized liquid helium, the equilibrium (dirJ/dp =0)
results of the Jastrow model for DJ are consistent
with expectations based on elementary physical argu-
ments" in that the (finite-density) minimum of (H)
vs p for v =3 lies below that for v =2, which in turn
lies below the minimum for v =1.

Table VII collects data on 88t'2J for D J2 J, ob-
tained with the optimal choice of f. For reasons stat-
ed in Sec. I, no results are reported for v =1 at this
time. As with unpolarized 3He, the current values of
88"'J for D J2 are markedly different from those
quoted in Ref. 2; the results in Table VII may be
considered reliable. Inspection of Table VII reveals
that ~8$ (F =2)~ is larger than [8$ (v=3)).
Consequently, when added to (H) JF from Table VI

TABLE VI. Jastrow ground-state energies of deuterium systems for f,pt Energies in K per particle.

p(10 3A 3) p(T (H)cw
Dl&

(H)JF (H ) PB '(H ) CW

D)2
(H) JF (H)ps (H)cw

D)3
(H),F (H)ps

1.41
2.82
3.52
4.23
4.93
5.63
6.34
7.04

0.071
0.142
0.177
0.213
0.248
0.283
0.319
0.354

0.41
0.32
0.37
0.54
0.84
1.31
1,97

0.43
0.29
0.24
0.26
0.35
0.55
0.83

0.45
0.23
0.07

—0.09
—0.26
—0.43
—0.61

0.22
0.25
0.39
0.66
1.10
1.74
2.62
3.76

0,23
0.21
0.28
0.43
0.70
1.10
1.66
2.35

0.23
0.16
0.15
0.18
0.25
0.38
0.58
0.79

0.09
0,23
0.52
0.97
1,69
2.63
3.88

0.05
0.12
0.30
0.57
1.03
1.65
2.47.

0.00
—0.00

0.05
0.14
0.37
0.61
0.97
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TABLE VII. Perturbation correction in deuterium sys-

tems, for f,&,. Energies in K per particle.

p (10-' A-')
DI2

s8(2, 2) {pI
DI3

s8(2, 2) QI

1.41
2.82
3.52
4.23
4.93
5.63
6.34
7.04

—0.07
—0.15
—0.20
—0.27
—0.34
—0.43
—0.55
—0.69

+0.004
+0.01
+0.01
+0.01
+0.02
+0.02
+0.02
+0.03

—0.13 +0.01
—0.18 +0.01
—0.24 +0.01
—0.30 +0.02
—0.37 + 0.02
—0.45 +0.02
—0.54 + 0.03

to form a CBF estimate of the energy, 8 = (H)qF
+Mt'2I, the energy curve for D)2 drops below that
for D j3 at a lower density than when (H)qF alone is
used. The ordering of equilibria mentioned above,
i e., min8(tr =3) (min8(tr =2), is, however,
preserved.

Finally, we address once again the question of
whether spin-aligned deuterium will be found to be a
gas or a liquid at T =0 and zero external pressure,
Based on the minima of the curves corresponding to
our best estimates of the energy, D)3 would be a

liquid, D f2 and D f~ being gases, even at T =0
However, since we have calculated only the 2p-2h
contribution to the second-order correction, there
remains the distinct possibility that DI, 2 is also a
liquid in its absolute ground state. Further, were it
to be the case for deuterium, contrary to expectations
for liquid 'He, that 88""(u=1) & 58" "(u = 2, 3),
then even fully spin-polarized deuterium DJ~ may
turn out to have a liquid ground state. We point out
that if in fact the energy versus density curve for any
of the three examples fails to dip below zero, the en-

ergy at the finite-density minimum will still be so
small that a very modest pressure will suffice to
liquefy the system.

The above predictions concerning the ground-state
phase are made against a background of serious com-
plications. %'e have just referred to the fact that the
Jastrow energies are extremely small, as a result of
near cancellation of large kinetic and potential energy
terms. Consequently, in some cases, the magnitude
of (H) is less than the numerical uncertainty of the
calculation. The differences among (H) cw, (H) JF,
and (H) vs are also of the order of this uncertainty in
the vicinity of the minima of the energy curves. It
would be helpful, therefore, to have Monte Carlo
benchmarks for the deuterium systems, similar to
those available for helium, " that would allow
us to assess the accuracy of the FHNC and CBF
schemes. We might then proceed to a more confi-
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FIG. 6. Ground-state energy per particle vs density for
three species of electron-spin-aligned deuterium, based on
the Kolos-Wolniewicz potential and the optimally deter-
mined correlation function, f,„,(r). Solid curve with triangle

data points: Jastrow energy expectation value (H) for DI&
(one nuclear spin state present), computed in FHNC/C ap-

proximation using the JF expression for the kinetic energy.
Solid curve with square data points. ' same but f'or D )2 (two
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KROTSCHBCK, SMITH, CLARK, AND PANOFF

dent prediction of ground-state phase and other prop-
erties of the deuterium systems at zero temperature.
It should be stressed that the atom-atom interaction
in deuterium is very accurately known; compared to
the situation in nuclear matter or even liquid 'Hc,
the two-body potential introduces negligible uncer-
tainty into the problem. Spin-aligned deuterium
offers, therefore, both an outstanding computational
challenge to many-body theorists and a new proving
ground for thc predictive power of many-fermion
theories.

APPENDIX A: EULER AND
FNHC' EQUATIONS

An Euler equation for the Jastrow wave function
(2) has been derived previously by one of us (Ref.
14). The aim of that work was, however, to uncover
properties of the solution of the exact variational
problem (5), free from the imposition of any
cluster-expansion or -resummation treatment. More-
over, thc C% expression for the energy expectation
value, rather than the JF representation, was em-

ployed.
A derivation tailored to the present, computational,

effort proceeds as follows. Appealing to thc
Jackson-Feenberg identity (11), the energy expecta-

tion value may be cast in the JF form:

Boo = (@o IF'HF
I q'o) ~oo'

= Tr+Ioo'J dpi d7gF2(I . A)

A'2
&& gvJF(r„-)+ $V' I@o(I. &) I',

8m,
(Al)

Here, Joo is thc squared norm of the Jastrow ground-
state trial function, Tr = (3t'kF'/10m)A is the kinetic

energy of the noninteracting Fermi gas, J"dr; stands

both for integration over the spatial coordinates and
summation over the spin variable of particle i,
i =1. . . , , A, and v~F is the Jackson-Fecnberg effec-
tive interaction

vsF(r) =v(r) —(g /4m)'7 u(r)

in which u(r ) =ln f'(r ). It is quite straightforward
to generate an Euler equation based on this energy
functional (cf. Ref. 14). We obtain

0 = — —(r) =—(lr'/4m) V'g(r)+g'(r), (A3)
aa„[f]

Su

where g(r) is the familiar radial distribution function
and g (r) is a generalized distribution function de-

fined by

g (r) Ioo 2
I dr3 ' ' ' drgF (1 A)i A(A —I) 2

P

x X»F(r, )+ X&~' l@o(I &)I' —g(r)(Hoo —Tr)
8m

(A4)

One may note that the V' g(r) term in Eq. (A3)
comes from variation of thc JF effective interaction
(A2) with respect to u(r), whereas the g'(r) term
arises from the dependence on u(r) of the radial dis-
tribution functions involved in the energy expectation
value. Transforming Eq. (A3) to Fourier space, and
denoting the Fourier transform of g'(r) by S'(k), we

arrive at Eq. (6).
The distribution function g ( r ) entering Eq. (A3),

or alternatively the structure function S(k) in Eq.
(6), may be dealt with by means of FHNC theory.
Our task is evidently not complete without a parallel
analysis, and reduction to calculable form, of the
primed counterparts g'(r) and S'(k) of g(r) and
S(k). The formulation of FHNC-type equations for
these quantities is most expeditiously achieved via
the functional differentiation procedure of Ref. 19
(see also Feenberg'2), although for formal con-
siderations it is advisable also to keep in mind the di-

agrammatic content of the various quantities which
come into play. In analogy with thc non-nodal Xsets

and nodal %sets of the FHNC diagrammatic analysis
of g(r), one is led to introduce X' sets and N' sets of
g'(r) diagrams. However, whereas Xo and N~, dia-
grams (with ij = dd, de, ee, or cc in the now-
conventional notation') are individually composed of
dynamical correlation bonds f (r,b) —1 and exchange
bonds l(kFr, b) alone, their primed counterparts also
involve exactly one of the following: (i) an effective
interaction line f (r,b) vqF(r, o), (ii) a differentiated
exchange line (lr /2m) V l(kFr, o), or (iii) a connect-
ed pair of differentiated exchange lines
(g'/2m) '7, l(krr, ~) '7, l(krr„).

Graphical analysis or simple functional differentia-
tion,

S'(k) =X 'S(") X.'„(k),
mn 5X~n(k)

(A5)

A„{k)= X " X.„(k),
mn BX „(k)

leads to these explicit equations in terms of primed
L 's and quantities known from FHNC analysis ':
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S'(k) = S (k) Xdd(k) +2S(k) Sd(k) Xd, (k) +Sj(k)X„(k)

Ndd(k) = [Sd (k) —1]Xdg(k) +2I'dd(k) Sd(k) Xd, (k) + I'dd(k) X„(k)

Ndg( k) = Sd(k) [S(k) —Sd(k) ]Xdd( k)

+ {I' „(k)[S(k) —S„(k)]+S„(k)[S (k) —I' „(k)]—1}X,(k)

+r„„(k)[S„(k)-1„(k)]X„(k),
N„(k) = [S(k) —Sd(k) ] Xdd(k) +2[S(k) —Sd(k) ] [Sd(k) —I «(k) ]Xd,(k)

+ {[Sd(k)—I'dd(k) ]' —1}X„(k)

N„(k) = {[1—v 'l(k)]/[I —X„(k)]'—1}X„(k)

We have introduced the abbreviation

S (k) =, {1+[1+X„(k)]I'(k)}/[1 —X,(k)]

(A6)

(A7)

(Ag)

(A9)

(Al 0)

(Al 1)

In a similar manner we may in turn construct r-space equations for the sums L;,' of the X' sets of diagrams:

Xdd(r) = [1+V«(r) ] [u~p(r) +Ed'd(r) ] + F«(r)Nd'd(r)

Xd, (r) = F«(r) [Nd, (r) + Ed, (r) ] + [1 + 1 dd(r) ]Ed', (r) + I «(r) Nd', (r)

X,', (r) =I'«(r) { v'L (r—) + [Nd, (r) +Ed, (r)] +N„(r) +E„(r)}

+2[1+I'dd(r)] {L(r)N,', (r) + [N„(r) +E„(r)1[N,', (r) +E,', (r)] +E,', (r) }

+I'dd(r)N, ', (r) —(0'/2m) [1+I'dd(r)] {L(r)'7'l(kyar) + ['7l(krr)] }

X,', (r) = —u
' {I'dd(r)L(r) + [1+I'dd(r)]E,', (r) }+I'dd(r) [N,', (r) —(f /4m)'7 l(krr)]

(A12)

(A13)

(A14)

(AIS)

wherein the E;,(ji= dd, de, ee, cc) are the corre-
sponding sums of elementary diagrams, I dd(r)
=X'(r) +Nd'4(r), and

L(r) =—I(kFr) vN„(r)— (A16)

I

Here, Sr(k) is the static structure function of the
noninteracting system.

The exact long-wavelength behavior of the quanti-
ties Xd, (k) and X„(k) was established in Ref. 14. It
is found that

Equations (A7) —(A10) and (A12) —(A15) comprise
what we call the FHNC' equations. We have not
written out additional small contributions to X,', (r)
and X,', (r) arising from the three-body part of the
Jackson-Feenberg effective kinetic energy operator;
these terms are, however, included in the numerical
computations. The FHNC equations determining the
compound-diagrammatic objects X~ and W„" and the
functional derivatives required to form S'(k), N~, (k),
and X„'(r) are well known2 6 and need not be
reproduced here. Still, we should note the definition

r«(r) = f'(r) exp[Ndd(r) +-E«(r) ] —1

and the relation Xdd+Ndd ——I dd. The so-called /0
truncation of the FHNC and FHNC' equations is ob-
tained by setting all the elementary quantities E„"and
E„' equal to zero.

In our approximation procedures for solution of
the FHNC' equations and optimization of f(r), the
free-fermion component of X„(k) is singled out for
special attention

X„(k)= (t2k2/4m) [Sr(k) —1—] + 0( f2 —1)

X„(k)= O(k)
( k 0+) . (A 1 8)

1+X„(k)=Sr(k) +O(k ),

X„,(k) = O(k)
k 0+

X„(k)= O(k')

It is important to note that Eqs. (A 1 8) and (A19)
hold not only for the full diagram sums, but also
within approximations in which appropriate sets of
elementary diagrams are retained. Adherence to
these "identities" produces considerable improve-
ment of convergence in iterative treatment of the
FHNC and FHNC' equations, and is in fact indispen-
sible to our optimization procedure. If one is work-
ing within the FHNC/n ordering scheme, Eqs.

(A19)

These properties may be traced to the Pauli exclusion
principle, and are required for the proper long-
wavelength behavior of the static structure function,
namely, S(k) =O(k), k 0+. Correspondingly, the
following low-k behavior of the primed quantities
Xd, (k) and X„(k) may be established:
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(A18) —(A19) can, strictly speaking, only be
preserved if infinite sums of elementary diagrams are
incorporated. Even so, given the /0 approximations
to Xq, (k) and X„(k) and their primed counterparts,
we can adequately simulate the effects of the missing
elementary diagrams, so far as the above small-k

properties are concerned, by adopting the FHNC/C
algorithm, " I

f

L.

.789 A

Xy, (k) =SF(k)Xg, (k)
-/c - /0

-/c -/0
Xee (k) = [SF(k) —I 1 [X (k) —[SF(k) —I ]]

+X„(k), (A2o) 5
r (A)

l5

and similarly

X„(k)=S,(k)X„(k),

X„(k)= S'(k) [X„(k)+ (Ir k /4m ) [S (k) —1]}

FIG. 8. Solid curve represents the function r I"dd(r) in

unpolarized He as obtained by PPA iteration, measured in
units of cL, the predicted asymptotic (r ~) value of this
function. The indicated k~ corresponds to p =0.0166 A
4

i.e., essentially the experimental equilibrium density.
-(t'k'/4m) [S,(k) —I] . (A21)

and via the arguments of Ref. 14 we have

S(k)/SF(k) 1 + pkpcL/4 (k 0+) (A2S)

For the purpose of computing the Jastrow energy ex-
pectation value, the radial distribution function is
constructed using Eq. (6) of Ref. 17 rather than by
Fourier inversion of S(k) —1 derived from the struc-
tural relation'

S(k) = [1+X„(k)]S(k)/[1 —X„,(k)] . (A22)

The FHNC and FHNC' equations are handled just as
in the /0 scheme, with the sole exception that the

XJ ( k) and X~ ( k) appearing in the chain equations
[i.e. , the A',J(k) equations (A7) —(Alo) and their
unprimed counterparts' ], are "dressed" according
to Eqs. (A20) and (A21).

Finally, we should take notice of the fact that the
long-wavelength limit of S'(k)/S'(k),

S'(k)/S'(k)
I „,

=—X(O+) e (k'/4m) [k/S(k) ]'~ „,, (A23)

where X(0+) is composed of FHNC quantities, may
be related to Landau's symmetrical Fermi-liquid
parameters (see Ref. 14 for detailed expressions).
The relation in question presumes, however, that all

elementary diagrams are included; thus we can only
expect it to be of qualitative value if our calculated
results, based on the /C estimates (A20) —(A21), are
used for the FHNC ingredients.

Nevertheless, Eq. (A23) provides the key quantity
in predicting the long-range component of the Jas-
trow function f (r) —1. From Eq. (6) together with

Eq. (A23) we find

[SF(k)/S(k)]'I „+=1 +9mX'(0+)/4t k (A24)

r'rdd(r) —c, (r — ) . (A26)

In Fig. 8, the asymptotic behavior of I'dd(r) as
predicted by means of Eqs. (A24) —(A26) is com-
pared with the behavior of I'dd(r) actually obtained
by PPA iteration. The excellent agreement attests to
the numerical consistency of our solution of the o-e op-
timization problem.

APPENDIX 8: NUMERICAL OPTIMIZATION

In order to demonstrate the efficiency and stability
of our optimization procedure, we have deliberately
adopted the simplest of numerical tools. Calculations
were performed on an equidistant mesh of 128 points
in coordinate space, and likewise in momentum
space. All integral equations were solved by itera-
tion, using a linear Filon integration in conjunction
with the fast Fourier transform (FFT) method for
the evaluation of trigonometric sums.

Considerable savings were accrued by taking I dd(r)
as the unknown function. This obviates the most
cumbersome of the FHNC equations and decouples
the cc equation from the de and ee equations, At
each step of the PPA scheme one constructs f (r)
from the updated I'dd(r) and Ndd(r)

Some care had to be exercised to avoid spurious
numerical results due to finite-box-size effects. Such
errors may be caused by a mismatch between the
predicted and the calculated asymptotic tail of f (r),
or by large weight factors of those correlation com-
ponents which fall off faster than r ' and cannot be
treated analytically.

We should point out that the manner of conver-
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gence of the PPA iterations (and in particular of the
JF energies corresponding to successive iterations)
did not in itself suffice to indicate whether the itera-
tions were converging to a spurious solution, nor did

inspection of g(r) or S(k).
In addition to direct examination of the function

r I'dq(r) for large r (as in Fig. 8), we found that com-
parison of the two-body approximations to the CW
and JF energy expressions provides a very sensitive
test of the reliability of our numerical techniques.
Ideally, of course, the CW and JF energies should
coincide at the two-body level. In practice, evalua-
tion of the C% energy, which involves only integrals

d r over functions that vanish asymptotically at

least as fast as r~, is not plagued by the above
finite-box-size effects, in contrast to the situation for
the JF form.

The PPA optimization procedure described here
and in Sec, II A proves to be quite an efficient algo-
rithm. The most critical of the original four pairs of
nonlinear integral equations is eliminated, and re-

placed by a set of four pairs of linear integral equa-
tions (the FHNC' equations). In general, some ten
iterations within the PPA scheme (each iteration in-

volving the calculation of a new correlation function
from the current solution of the FHNC and FHNC'
equations) were required to achieve a reasonably ac-

curate solution of the optimization problem, and a

few more served to ensure stability. Our optimiza-
tion procedure is in fact not much more demanding
than the determination, within the FHNC frame-
work, of a suitable parametrized choice of f (r),
especially if a search in multidimensional parameter
space is in the offering. Moreover, the former is
clearly preferred in view of the large assortment of
further applications of CBF theory, which in any case
call for solution of the FHNC' equations.

The PPA algorithm was found to be workable in a
wide density range around the experimental point,
the upper density limit depending essentially on the
box size chosen. However, it is clear that a reliable
study of physical instabilities in both low- and high-
density regimes will entail the adoption of substan-
tially refined numerical techniques. '

APPENDIX O' MONTE CARLO INTEGRATION
TECHNIQUES

The use of Monte Carlo methods makes it possible
to evaluate the perturbation correction to the energy
without need for further approximations. Moreover,
such methods have additional applications in calculat-

ing perturbation corrections for other quantities. '
For present purposes, we consider only the energy
correction, which takes the form

5g(2, 2) 2

dq I dk~ dk2n(k~)[1 —n(k~ +q) ]
4gy J J

& n(k)) [1 —n(k)+q)]%(k~, k2, q)/D(k~, k~, q) (Cl)

where

W(k ), k2, q) = ( Wd + W, —2v '
Wd W, )/2

identity

goo 4rrq'F (q)
J dq F(q) = dq w(q)Jp w

(C4)

D(kt k2. q) =( k +q+ k +q

(c2)

x z(k, ) z(k, ) z(k, + q) z(k&+q),

the function w(q) being chosen piecewise linear on
the range 0 to Q, where Q is typically 16. For w nor-

r Q
malized such that dq' ~ q' =1, take q = qj,
where q solves the quadratic equation

and

uo= ' w(q')dq',Jp (c5)

Wd ——(k~ + q, —k, —q ~
W(12) ~

k ~,
—kg)

W, = (k(+q, —k2 —
q~ W(12)~ —k2, kt)

(c3)

All momentum variables are scaled in units of kF.
First, the q integration is transformed with the

in which uo is a uniform random number on [0,1].
For this q, the k~ and k2 points are drawn indepen-
dently from the distribution 8(1 —k) e(

~
k + q ~

—1).
The three components of a k are obtained by draw-

ing u~, u2, and u3 independently from the uniform
distribution on [0,1]. There are three cases to con-
sider, according to the magnitude of q, We define
c(k, q) = k~[3k'+8kq +6(q~ —1) ]/24q and f(k)
=2k'/3. Then, depending on the case, one solves
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for b, k, and z in the equations

b(q) = c(l,q) —c(1 —q, q)
c(k q) =b(q)u)+ c(1 qq—), q & 1

z = (1 —k2 —q2)/2kq

b(q) = c(l,q) —c(q —l,q) +f(q —1),
u, =f(q —1)/b(q)

ul &u,

e (k, q) = b(q)u)+c(q —l,q) f(q ——1),
z = (1 —k' —q')/2kq

f(k) = b(q)u, ,

Z 1 f

b(q) = —,
2

k=u 2 4g
Z 1 f

The only operation which cannot be directly carried
out is the solution of c(k,q) =constant, which is ac-
complished by Newton-Raphson iteration. Finally, ,

the projection of k on the j axis is given by

cos(k q) =(1—z)u2+z, (C7)

the azimuthal angle of k around j is

k~ =2mu3, (cs)
and the weight associated with the volume element
dk is 2mb(q).

A single sample of the integral is then given by

S = —
—,
' p'(3/4' v)'[4n q'/w(q) ] [2m b(q) ]'N/D .

(c9)
The value of the integral is obtained by averaging
these samples, while the variance is estimated easily
if one also computes the average square of the sam-
ple S.

In the first runs, the integrand had not been sym-
metrized between the direct and exchange terms as
displayed in Eq. (C2). This led to a convenient
weight w(q) but to occasional positive values of the
integrand, although of course the integral itself was
correct. %hen the numerator %was made sym-
metric, the integrand samples were all negative, but
the variance rose because the ~eight was spread out
over a larger range of q. These problems were cir-
cumvented by writing

X'=&[e(q-lki+kz+~l)+&(lki+kz+fl-q)] .
(C10)

Then, since the integrand is symmetric under the in-
terchange of q with k] + k2+ q, one may drop the
second 0 function and multiply by an additional fac-
tor of 2 to compensate. Thereby the negative defin-
iteness of the integrand is maintained, and, in spite
of the extra zeros introduced by the 0 function, a
better variance is achieved. Moreover, we note that
if the 0 function is zero, the interpolations of the ta-
bulated functions are not necessary.
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