
PHYSICAL REVIE% B VOLUME 24, NUMBER 11 1 DECEMBER 1981

Static susceptibilities of the hydrodynamic
order-parameter variables of He-A

Michael Dorfle
Faehbereich I'hysik, Uniuersitat Essen, 4300 Essen, 8'est Germany

(Received 27 February 1981; revised manuscript received 11 June 1981j

The 1/k divergence of the static susceptibilities of the hydrodynamic order-parameter
variables of He-3 is calculated by microscopic means. It is shown that the self-consistent

gap equation plays a crucial role in discriminating the hydrodynamic and microscopic
variables. The Bardeen-Cooper-Schrieffer approximation and the Landau correction of
the superfluid densities in spin and real space and of c~, c~~, E~, ET, and E, are deter-
mined. The results for the superfluid densities @re exact within the mean-field approxi-
mation, and we find that p~~

———2c~~. As far as c&, E~, ET, and E, are concerned, the
Landau parameters up to 1=3 have been included. It is shown that E, is only influenced

by F3. The results are compared with those of other work and their effect on experimen-
tally accessible quantities is discussed.

I. INTRODUCTION

The pioneering work of Landau' on liquid He
has given the possibility of describing all essential
features of this strong-coupling system by a set of
parameters EI' and EI'. Unfortunately, only Eo, E&,
and Fo, which enter the compressibility, the effec-
tive mass, and the spin susceptibility, are accessible
to experiments. All other Landau parameters are
unknown and often assumed to vanish as far as
theoretical work is concerned. It is a different
matter if He turns superfluid. The existence of a
p-wave order parameter gives rise to a new set of
static susceptibilities which enter the static and
dynamic behavior of the system under investiga-
tion. The symmetry of the order parameter allows
Fi' and E3' to influence macroscopic measurable
susceptibilities. Up to now, all theoretical work on
He-A neglects the Landau parameters altogether

or takes into account only E&' and neglects the
higher ones.

As far as the B phase is concerned we have
shown in a previous paper that the static sucepti-
bilities of 8 (the hydrodynamic order-parameter
variable in spin space) is uniquely determined by
F& and F3. This result is rigorous in the whole
temperature regime. In real space, the B phase has
a very simple structure. The only additional hy-
drodynatnic variable is the phase P. Thus, the
real-space dynamics of He-B is isomorphic to a
neutral s-wave superconductor and it is not surpris-
ing to find that F& is the only Landau parameter
entering the static susceptibility of P in real space.

The 3 phase, on the other hand, has a much more
complicated symmetry in real space; therefore, one
can hope to get more information on the higher
symmetric Landau parameters from this phase.

In this paper we calculate the static suceptibili-
ties of the hydrodynamic order-parameter variables
of He-A in spin and real space, respectively. We
derive the mean-field result containing all Landau
parameters for the superfluid densities in spin and
real space, and we show that at intermediate tem-
peratures all Landau parameters contribute to the
static susceptibilities. At very low temperatures,
only F~' survives in the case of the superfluid den-
sities. As far as the elastic constants of 1 are con-
cerned all Landau parameters must be taken into
account due to the anisotropy of the gap.

In order to give explicit results, we have to as-
sume that the higher Landau parameters (I )5) can
be neglected. It will be shown, that one of them is
only influenced by F3, not by Fi. The inclusion of
higher Landau corrections generates five new
temperature-dependent functions, generalizations of
pz and p~~. The influence of E3' on the static sus-
ceptibilities of the hydrodynamic order parameter
variables are shown to be non-negligible, although
smaller than that of Fi'. A definition of new re-
normalized Landau parameters which describe the
temperature dependence of the static susceptibilities
as the variation of an effective Landau parameter,
equivalent to the B phase is not possible.

Some of the aforementioned results can be com-
pared with previous results of Ambegaokar, de
Gennes, and Rainer, who calculated the gradient
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part of the free energy Fg„d in the Ginzburg-
Landau regime. We reproduce their results if we
restrict ourselves to the lowest order in 1 —T/T, .
More closely related to our work is that of Cross,
who also determined Fg„d. His results are valid in

the whole temperature regime and include the first
Landau parameters F i and Fi. We arrive, al-

though on a quite different path, at results identi-
cal to his if we neglect all corrections due to Lan-
dau parameters F&' with I p 1.

The method applied is a generalization of a pro-
cedure used by Leggett to investigate the static
and dynamic properties of the s-wave superconduc-
tor. We extend it to the case of triplet pairing and
then calculate the linear response function of the
order-parameter variables.

A detailed discussion of the method is given in
Ref. 2, and we restrict ourselves to a summary
stressing only those points that are peculiar to the
A phase. In particular, we point out that care has
to be taken that the statistical ensemble is well de-

fined in order to avoid the occurrence of unphysi-
cal hydrodynamic modes. This is done in Sec. II.
In the following section we calculate the order-
parameter susceptibilities in the weak-coupling lim-

it. Section IV is devoted to the Fermi-liquid
corrections and contains the central results of this
paper. In the last section we discuss the results, in

particular, the experimental implication, and make
a comparison with other work.

II. GENERAL REMARKS

The order parameter A;~ of the axial A phase
consists of a real unit vector in spin space and a
complex vector in real space. Thus, two continu-

ous symmetries are broken in spin space and three
in real space. To each of the broken symmetries

belongs an additional hydrodynamic —that is,
slow —variable. Because the Hamiltonian is invari-

ant against global rotations and phase transforma-

tions, it costs no energy to rotate the ground state
homogeneously, and the smaller the deviation from
the equilibrium, the more time the system will re-

quire to restore it. In other terms, the inverse stat-
ic susceptibilities of the slow order-parameter vari-
ables measuring the restoring forces must vanish if
the perturbation becomes uniform and their static
susceptibilities are assumed to behave as 1/k for
k~0. In the following we will calculate them by
microscopic means.

The complex order parameter of superfluid He
is defined as A;~ = (A;J ), where

A; = J d xF*(x)g~(r —
2 x)g~(r+ —,x)

XJ.
X (oo, ) p.

ix[
(2.1)

If not indicated otherwise, the caret denotes that
the quantity under investigation is an operator. Its
expectation value is denoted by a superscript 0 or
( . ). Sums over repeated indices are always
implied. Greek indices take the values 1,2; italic
indices take 1,2,3. The unit vector xj /

~

x
~

selects
the p-wave part of the anomalous expectation
value, whereas (o.o2} gives the projection onto the
triplet spin axes. F~(x) is chosen in such a way to
ensure always that

A,)Ag~
——1 .

In the A phase A,J factorizes into two vectors:

n, aj- .

(2.2)

(2.3}

n is a real unit vector n =1, AJ a complex vector
with b 6=0 and 5.5*=1. A small deviation
from the equilibrium can be parametrized by

MJ(x) =i AJ 5$(x) lq bk51k(—x), (24)

where 1 =iA)& 5*. The definitions of 6 and 1

imply that 1 51(x)=0 (1 breaks the rotational
symmetry in real space, n the rotational symmetry
in spin space).

The small dipole-dipole coupling of spin and real
space will be neglected in the following, and we

may choose n parallel to the 3-axis, the real part
of 6 parallel to the 1-axis, and the imaginary part
parallel to the 2-axis. The equilibrium value of the
order parameter A,~ takes the form

000
(2.5a)'

.1 0.
~p

and 1 is parallel to the 3-axis. There are five hy-
drodynamic variables, 5n

&
and 5n2 in spin space

and 5$, 51~, and 5l2 in real space, which give rise
to a large number of static susceptibilities. The
1/k dependence is common to all of them. It can
be shown by symmetry arguments that there is no
coupling between real- and spin-space variables.
Thus, susceptibilities of the type X~„~or X~„, @,
vanish. Within the real space all couplings be-
tween 5$, 51~, and 512 exist, but the system can be
further simplified if we restrict the wave vector
k—without loss of generality —to the 1-3 plane.
Then 51~ becomes decoupled from (5$,512) and can
be dealt with independently. In the appropriate
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coordinate system the operators 5n;, 5l;, and 5P
can be built up from linear combinations of A,J(x )

and can be written

5n, = [(A11+A11)+i(A11 —A „)],&8
A Af Af A

5n =
&

[(A2, +A 2, )+i (A 21
—A2, )],&8

[(A 32+A 32) 1 (A 31 A 31)]v8

5l, = (A33+A 33),&8

(2.5b)

g

5l2 (A 33 A33)&8

Owing to the axial symmetry of the 3 phase nine
different parameters are involved. We get only two
superfluid densities (Mr and M~~) in spin space be-

cause of the degeneration of the variables 6n
&

and

5n2 The. static susceptibility of 5$ contains two
superfluid densities pz and p~~, whereas the static
susceptibilities of vector field 1 are described by
the Franck constants Ei,E2,E3. From the cou-
pling between 5$ and 512(X~ g ) we get cr —c~~.

The constants cz and c~~ describe the contribution
of curl 1 to the number current. If we restrict our
attention exclusively to the hydrodynamic order-
parameter variables, we cannot separate the two
constants. cz can be obtained calculating the static
susceptibility of 6l& and g2—the momentum per-
pendicular to 1 and k.

In order to identify the nine parameters we com-

pare our microscopic results with the results of the
phenomenological theory based on symmetry ar-
guments which predict for the static susceptibility
in spin space:

2 2
Xs" s" (k) Xs» s» (k) (Mrkr+Mllk

(2.6)

[Xg g (k)] = (E1kr+E3kii) . (2.7)

[The right-hand side of Eq. (2.7) is the inverse of a
single element of the susceptibility matrix and not
an element of the inverted matrix. ] The second

grouP consists of Xa)1 @(k),Xs~ g, (k), and

Xg g (k). We build up a matrix of them and take

its inverse:

It will prove to be more convenient to identify the
constants involved, making use of inverse static
susceptibilities. Although the inverse static suscep-
tibilities of the hydrodynamic order-parameter
variables contain parts due to the coupling to the
momentum density, the static susceptibilities them-
selves to not depend on g, i.e., they remain un-

changed if the normal fluid velocity is locked. In
this paper, we are exclusively interested in the stat-
ic susceptibilities of 51 and 5$. Therefore, we take
the inverse of a submatrix of static susceptibilities,
which contains only the contributions of the hydro-
dynamic order-parameter variables, not the inverse
of the entire matrix of static susceptibilities.

Xg g (k) proves to be independent from the rest,

and the phenomenological theory states

X~ ~(k) X~ g, (k) p/ik f/+prkz (ci[ —cr)kifkr

4m (c(( —cr)k)(kr E2kg+K3
(2.8)

pz ———, exp —P A 0—ri J d x[A,,&(x)A,&(x)+A,;i(x)A;i(x)]

Xg, ~(k) Xg, ,g, (k)

In the case of locked normal velocity, the expression in Eqs. (2.7) and (2.8) coincide with the inverse suscep-
tibility matrix used in the Mori formalism. With v»+0 expressions (2.7) and (2.8) have no physical
meaning —only the static susceptibilities themselves have —but these expressions are still useful to determine
the nine constants involved.

A first task in a microscopic theory is to determine the various properties predicted by the phenomenolog-
ical theory —the decoupling of spin and real space and the decoupling of 61& from the other variables in an

appropriate system of coordinates. This will be done in the next section within the Bardeen-Cooper-
Schrieffer (BCS) approximation. It is very easy to prove that these features remain unchanged if we include
Landau corrections. Then we may identify the static susceptibilities in a second step.

Before turning to the actual calculations of the response functions, we have to add a cautionary remark in

regard to the statistical ensemble used. It is well known that one has to pass from the grand canonical en-

semble to a restricted ensemble if the symmetry of the ground state is lower than that of the Hamiltonian.
In the case of superfiuid He it is convenient to use
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with

~,=H —~~X—v'"'r —yh-S . (2.9)

0 is the Harniltonian, X the number operator, P
the operator of the momentum and S the spin
operator. p, v'"', h, zlzz, ,J, and p are Lagrange
parameters which are fixed by the expectation
values of the associate variables. Not all matrix
elements A,,&

diA'er from zero. In order to see this
we have to look for the commutation relations of
A" with the generators of the continuous sym-

A A
metrics X, L, and S. The number operator X is
the generator of phase transformations, J generates
rotations in real space, and S generates rotations in

spin space. Performing the commutations, we ob-
tain

dynamic susceptibilities of the neutral s-wave su-

perconductor.

III. THE BCS APPROXIMATION

A detailed description of the procedure has been
given in a previous paper. Therefore we will only
outline the line of thought and stress only those
points which are peculiar to the A phase.

The static susceptibilities of any microscopic
variable can be calculated from the correlation
function for imaginary times:

((Ag, (1)AJz(2) » = (A;k(1)Ap(2) &

([S,A,"]&
= —2A,'. ,

( [L(,A,J ] & =i 2e(p, A;k,

([S,,A; ] & = '2; A„

(2.10)

(2.11)

(2.12)

The time ordering is always implied by the nota-
tion. This expression is related to the linear
response function W for imaginary times:

W(12, 1'2') =—Gz(12, 1'2') —G (1—1')G(2 —2') .

These formulas are valid for any superfluid phase
of He, not only He-A. If we choose the coordi-
nate system indicated above, only the matrix ele-
ments 3» and A 32 and their complex conjugates
do not vanish.

Equations (2.10)—(2.12) show that there are four
elements, 323, A i3, 323, and A ]3, which commute
with all three generators and have vanishing expec-
tation values. Thus, the ground state of the A

phase is not broken with respect to these four vari-
ables and the corresponding Lagrange parameters
in Eq. (2.9) are zero.

If we want to calculate the static susceptibilities
we must be aware that they are determined by
dynamical processes on the time scales of the con-
served variables. Thus, the procedure we exploit
must ensure the conservation laws. On the other
hand, the long-time relaxation processes are mainly
influenced by quasiparticle scattering processes. A
procedure that takes into account both aspects was
first given by Leggett for calculating the static and

62 denotes the two-particle Green's function and G
the one-particle Green's functions.

W is a 4&4 matrix in particle-hole space, con-
taining all possible types of propagations (particle-
particle, .hole-particle, etc.). Each element of the
particle-hole matrix W consists of 16 elements
which describe the various spin orientations of the
excitation. The lower right 2)&2 particle-hole sub-
matrix (the normal part of W) contains the fluctua-
tions of variables, which are also common in the
normal fluid phase, such as density-density Auctua-
tions. The upper left particle-hole submatrix —we
denote it W' (the anomalous part of W)—is pecu-
liar to superfluid systems. Here we find the Quc-
tuations of the hydrodynamic and microscopic
order-parameter variables. The nondiagonal sub-
matrices of W describe the coupling of the ordcr-
parameter variables with the conserved ones.

%e are only interested in the static susceptibili-
ties of the order-parameter variables that are con-
tained in the anomalous part W'.

d3 d3 '
( (Aik ~jl '&

& = f —,f,y(q)qk(o oz) p z g ~ ',pp(q& q'~t "~ )7(q )q (~q~z) p
(2m) (2n ) P

where

iy(q)qk= f d xF(x) — e'q'"

and q is the unit wave vector. The symbol (f) is

Af
meant to imply that both A;~ and 3;k may be in-
serted.

In the following, we restrict ourselves to the
leading order in T, /T~. In this case, W can be
taken from the Bethe-Salpeter equation:
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~=L(1—r"L, )-', (3.2)
I

d
I

FF=A(q, T)+ , u—F(q k)
where L is the bare quasiparticle response function
and I the quasiparticle irreducible vertex part.
Thus, we have included the BCS approximation
and the Landau corrections, but we neglect correc-
tions of the order of (T, /T~) . The integration
with respect to the quasiparticle excitation energy
and the projection of W onto the different spin
axes by means of the Pauli matrices (|»;o2) jt can
be carried out immediately.

In the case of the 3 phase, L splits into three in-
dependent 4&(4 particle-hole submatrices. Each
submatrix describes the propagation of a single
spin orientation which cannot change its direction
during the propagation. The susceptibilities of the
real-space variables (5$,51&,5l2) are determined by
the symmetric linear combination of spin directions

I
& & ) +

I
t t ). The static susceptibilities of the

spin-space variables must be taken from the other
4)&4 submatrices that belong to the antisymmetric
linear combination of spins

I
t t ) —

I
t t ). The

2)&2 anomalous part of the symmetric linear com-
bination

I
t t ) +

I
t & ) is coupled to the spin-

symmetric part of the Landau corrections (I'),
whereas

I t t ) —
I

t t ) is coupled to the spin-
antisymmetric Landau corrections (I').

We can establish an integral equation for the
spin-symmetric and spin-antisymmetric part of
W', summing all possible couplings to the normal
channels and redefining the bare anomalous
response function L'~L':

w'=L'(1 riL')— (3.3)

L' is a 2X2 matrix in particle-hole space. (In the
following, we will drop the superfluous index a.)

For the spin-symmetric case, the elements of L
read

L = —G G+ ,FF(q„q» )+2q—»GFI"q—»GF,

(3.4)
L ' = iFFq„q»+2iq„GF—I "q»GF,

L '=iFFq„q» 2iq»GFI q„GF—.
(Performing a rotation in particle-hole space, it can
be shown that only one element of the normal
channels contributes to the anomalous part of W.)

The g-integrated bare response functions read

G G+
I

d
I

FF= a u(0) f dg —g 2„~'+0'+ l~ I'

X&(q, T), (3.6)

GF = —,U» A,(q, T),
~01 d I'

GG+
I

d
I

FF = —a U(0)Y(q, T) .

(3.7)

(3.8)

v(0) is the density of state at the Fermi surface, uF

the Fermi velocity, d; =A,jqj, and
I
6

I
=b,o I

d
I

Y(q, T) is the anisotropic Yoshida function

Y(q, T)= J dg —sech —(g +
I

6
I

)'

(3.9)

and

A, (q, T)=2a U(0)[1—Y(q, T)].
I" is defined by the integral equation

I =I '[1—1'[GG+ , (q„+q )—FF]]

(3.10)

I ~(q.q )~I ~q;q;,

and L P is transformed into

(3.11)

+p dQ ~ ~ ~p ~ QpL,1 ——
4m

q;qjL (q I )IBcs Lj IBcs.

The last part of each element in Eq. (3.4) is due to
the coupling to the normal channels and contains
all Landau corrections, which will be denoted by
L

I t,„d,„, whereas the remainder of L is denot-ap ~ ap ~

ed by L
I Bcs.

In order to get the response function due to the
spin-antisymmetric part, we have to exchange

q„~~, i ~ i, and —r'~I ' in Eqs. (3.4) and

(3.10). In the following, we will restrict ourselves

to the spin-symmetric part (i.e., to the real-space
susceptibilities) and only mention how the spin-

space susceptibilities can be obtained at the end of
this section. Furthermore, in our presentation, we

will drop the Landau corrections altogether and

only deal with the BCS part of Eq. (3.4). The gen-

eralization necessary to include all Landau parame-
ters will be introduced later.

The interaction vertex I ~(q q ) describes the at-
tractive pair interaction. In the case of p-wave

pairing, it can be taken as

2(q k)
~( T) (3.5)

(3.12)

I ~ is now a constant describing the strength of the
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attractive pair interaction. Inserting Eqs. (3.11)
and (3.12) into Eq. (3.3), the system of integral
equations (3.3}has become a system of algebraic
cqllRtlolls. MaklIlg llsc of Eq. (3.1) Rlld taklIlg 111'to

consideration all transformations we have per-
formed in the meantime, %'e ean establish an ex-
pression for the static suseeptibihties of
((A„A„»:

(((A„—A„)(A3j—A,j)» (((A3;—A3;)(A3, +A3j) » 1

(((A3;+A3;)(A33 —A3j)» (((A3 +A3')(A3j+A3j)» (3.13)

The additional term —1/I ~ on the right-hand side
of Eq. (3.13) can be neglected because it does not
contribute to the divergence in k of the hydro-
dynamic order-parameter variables. The fixed spin
index relfects the fact that the spin symmetric
channels are decoupled from the spin-
antisymmetric channels. Apparently, the singular
behavior of some elements of the susceptibility ma-
trix (3.13) must be due to a singularity of
(1—I L, };I

' in the limit k =0.
:-g~ ——(1—I L)J Is R 6X6 matrix, because

each element of the 2&2 particle-hole matrix has
two real-space indices. In the case k =0, :",&~

splits into four independent submatrices:

(A „+A„)—I (A» —A»), (3.16)

which is proportional to the phase 5$ [compare
(2.5b)]. The two other independent submatrices of

(» 33 and ~ 33} are llkewlsc singular lll tllc 111111t

k =0. This can be seen by making use of an alter-

native form of the gap equation (see Appendix A):

one can separate the singular and the regular parts
of the second matrix. It is easy to convince oneself
that the variable that corresponds to the singular
part is simply

21
~21

12
~12
~22

22 k=0

11
~22

21
~12

12
21

~22
~11 k =0

(3.17)

~22
=33

I k =O ~ (3.14)

Making use of the gap equation,

1=—I ~ q„G 6+ d 2'
4n

k =-0

(3.15)

(because of the axial symmetry of the gap, q„can
be replaced by q„), one can show that the first ma-

trix is regular whereas the second is singular. By
means of the orthogonal transformation

The corresponding variables are A 33+A33 and
A 33 A33, which are proportional to 511 and 512.

For k =0, the microscopic susceptibilities,
described by the regular part of:-, and the hydro-

dynamic susceptibilities, described by the singular

part of:-, are completely decoupled. This does not
change for small but finite k, because all coupling
elements between the regular and singular parts are
proportional to k, and hence the regular part con-
tributes only in the order k to the inverse of the
singular part, which is proportional to k . Thus
we may drop the regular part of':- altogether, and
we are left with a 3)&3 submatrix of:",whose in-
verse is the static susceptibihties of 5$, Ml, and

M2. All its dements vanish if k =0 and Eqs.
(3.4) —(3.10) ensure that only terms proportional to
k occur in the lowest nonvanishing order.

Taking into account the correct normalization of
5$, 511, and Ml, the static susceptibilities of the
real-space hydrodynamic order-parameter variables
I CRd



MICHAEL DORFLE

+M, ,~ ~S1,,hp

++,N~ ~N, ,N, +SI, ,N2

+N, ,N, +N, ,N,
l

11 . 21 . 12 22
2 —I ~(L II+iL2l iL—I2+LI2)

—1~«ll —I'Ll2)11 12

—I'~(L 3l iL—I2 )
21 . 22

—I ~(L II+ IL2I )
11 . 21

1 —I &I.33

—I ~L33

I—~(L l3+L 2l )
12 22

—r~L, ,",

l —I ~L33

(3.18)

Equation (3.18) is correct up to the order k . Each
function L,

&
depends only on the wave vector k.

Without loss ofgenerahty, we are free to fix the
plane ln w'hlch k llcs:

k =e3k))+elks .

kll is the projection of k onto the 1 axis ( 1
I Iel).

For simplicity, we have presented here all steps
Icadlllg 'to Eq. (3.18) within tllc BCS appl'oxlIIla-
tlon. Taking I andau corrcctlons into account, ,
I' @0,all steps may be repeated. The result {3.18)
is reobtained, ho~ever, with the replacement

up ap o.P
Lij Lij I Bcs+Lij I Landau ~

LciII J dA J dQ

XL ~(q,q;k) I L,„d,„.
(3.19)

P'si, ,si, {& )l (3.20)

Inserting G 6 and EF we find for the right-hand
side of Eq. (3.20)

This result will be further evaluated in Sec. IV.
Here, we first proceed within the BCS approxima-
tion.

It is straightforward to convince oneself that in
the frame of coordinates chosen above the elements
:-I& and:"&I —=pz of Eq. (3.18) vanish identically.
Thus, the conjecture of Sec. II is confirmed. The
two sets of variables [5$,51& j and [M, J are com-
pletely decoupled. %C may point out that the
comparitively simple structure of the matrix of
static susccptlbllltlcs ls duc to thc proper choice of
the frame of coordinates: Any other choice would
not yield two uncoupled sets of variables. Now we
compare our results with Eqs. (2.7) and {2.8),
which OA'er the most convenient way to identify
'tllc six susccPtlblhtlcs Involved, Q si si ) ls

dctcrmlncd by

(3.21)

The terms proportional to kl and ktl are collected and after some lntegratlon by parts we arrive at

P 21 0 2 1 O 1

P'sl, sl (1)i =,tkl4pl+k~[(2pli+ 3&)j
4m

(3.22)

where Eq. (2.2) and the gap equation are exploited in order to cancel the microscopic prefactors in Eq.
(3.21). The three superfluid densities are defined by

(3.23)

p is the mass density of He and 4(q, T)=[1—F(ql, T]. The calculation of the static susceptibihties of MI
and 5$ follows a similar procedure, and we obtain

+N2, Q +N2, N2

0

&I{—„pz + —,
p~~ )+k

~~
( —,

p~~ + —,r) (3.24)
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Therefore the static susceptibilities, defined in the
phcnomenological theory, are in the BCS approxi-
IQat, Ion

p~!~p=p~! pimp=pi (c!! cj.)—i p= p~~
—

~
s 0' s 0' 0'

(3.25)

which is a well known result.
Unt11 Qow, wc have discussed thc propagation of

spin"symmetric cxcitatIons, whIch dctcrIQIQcs the
susceptibilities of real space. In order to get the
stRt1c susccptIb111tics of tbc hydiodynaIQIc ordcr-
parameter variable in spin space 5n, we have to
cvsluatc thc propagstIons of spin-RntisyIQIQctric cx-
citations. After the transformation indicated above

[cf, Eq. (3.10) and below], all arguments can be re-

peated. There is, however, one remark to add. In
the Introduction, we pointed out that the four ele-

A Af A. At
ments A i~, 313,A2~, and A ~3 of the order-
pafaIQctcr matrix A,

&
do Qot belong to Rny broken

symmetry and do not enter the restricted ensemble.
Thus 811 cqu111briuIQ cxpcctation values cont81ning

any of these elements vanish identically.
5n I and 5n2 are degenerate with respect to rota-

tions around the n axis. Therefore we can restrict
ourselves to the calculation of 5n2. After some

algebra, we find that X~„,~„, is identical to 7@@ if
we replace the Landau parameters F~ by F~'.

VA'thin the BCS approximation, we get

P's. , sn, (k)l '=f&s., sn, (n)l '

=I"(q q ) (41)

where Eq, (3.8) has been inserted and a factor
u U(0) ts included in I a and I'. Y(qj; T) denotes
the anisotropic Yoshids function. I ' is
parametrized in terms of the symmetric Landau
parametcI'8 F~.'

I"(cos8)= QFf Pi(cos8) .

Owing to the axial symmetry of Y(qz) the most
general ansatz of I (q;q ) reads

(4.2)

I "{q;q )= g CiiPi (cos8)PP(cos8')

N snd +N @wc restrict oursclvcs to Ei RQd

E'3. The inclusion of further Landau parameters is
Straightforward, but, thc cxpicss1ons become rather
cluIDsy.

Thc hIgher-ordci Landau corrcctIons Rrc coupled
to the static susceptibilities by two difFerent

mechanisms. The p-wave structure of the order
parameter, as well as the expansion of GE in terms
of k introduce three vectors q under the sohd-angle
intcg181s. They can always bc cxpicsscd 1Q terms
of associated Lcgcndic polynomials Rnd select thc
coII'cspondlng parts of thc interaction vcrtcx I
The anisotropy of the Yoshida function, however,
destroys the spherica1 symmetry of the problem
and provides a coupling to all Landau parameters.

Thc Landau intcisction I 18 dctcrmincd by thc
integral equation (3.8):

dO"
I "(q;q )+ J I"(q q ')Y(qi' ,'T)l' (q ',q )

(P k +P~)k!!) . (3. 6)
4~ 2

In this case, the directions J. and
~ ~

refer to n,
+o

which is, however, parallel to 1 by assumption.
The coefFicients C;k can be obtained from

m s m m (I m)! s&ir+Fi g Yikcki =2
{1+m)!

(4.3)

Pf. LANDAU CORRECTIONS

It is well known, that the BCS model of super-
flUId Hc 18 only of academic 1ntcicst bccsusc of
the importance of the quasiparticle scattering for
ihe pairing interaction. A 6rst step towards a
more realistic description must include the Landau
corrections, which are equivalent to the mean-field
approximation. In the following, we will discuss
their influence on the static susceptibilities, and in
particular, the effects of E'3. A,s far as X~ @ is
concerned 8 sIIBplc cxpI'cssIon 18 plcscntcd that In-

dudes all Landau parameters. In the case of

(4A)

which follows after inserting Eq. (4.3) in (4.1) and

using the addition theorem for spherical harmon-
ics. The factor 2 on the right-hand side of. Eq.
(4A) has to be omitted in the case where m =0.
Thc function X(k 18 defiincd by

Ym (I —m)! d& pmpmY(, T)ik= (I+ )i ~ i k qit.
Apparently, the system (4.4) is decoupled with

respect to even and odd l.
The Landau corrections to the static susceptibili-
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3 f (q.k)4(qj)

X q'. k Aqua I "q;q (4.6)

Xsl &(k) yields

&( f 4(qi )(q' k)I "(q;q ),

and X~&'s, (k) yields

(4.7)

ties are brought in by inserting the complete ex-
pressions of Eq. (3.4) into Eq. (3.18). With the col-
lection of the different I.,J. in Eq. (3.18) and inser-
tion of GF from Eq. (3.7), the additional contribu-
tions from the Landau corrections to the static sus-

ceptibilities take the following form. X~ ~(k) is
supplemented by

integrals. A typical term of I " reads [cf. Eq. (4.3)]

PI (cosO)PI (cosO')(cosmycosmp'+sinmgsinmy') .

However, the left-hand side solid-angle integrals of
either Eq. (4.9) or (4.10) depend azimuthally only
on sing and sin2q, whereas on the right-hand side

1, cosy', and cos2y' dependence occurs. Thus, it is

never possible that both integrals yield nonvanish-

ing values simultaneously, and the decoupling of
the two sets of variables 51& and (512,5$) is en-

sured.
We observe that only odd numbers of q; occur

under each integral in Eqs. (4.6) and (4.7). The in-

tegral equation of I [Eq. (4.1)], on the other
hand, is decoupled with respect to even and odd
l's, and, therefore, only the odd Landau parameters
contribute to the static susceptibilities of the order
parameter.

To begin with, we examine the Landau correc-
tions of the static susceptibility of the phase 5P.
Owing to the axial symmetry expression (4.6) splits
into two independent parts:

(4.8)

3k llr11+3klr11

where

m d~ m-
P& (q!!) cosmyg)(q& )

4m

(4.11}

Replacing q„by q„ in Eq. (4.8), we get the contri-
bution to g~~'@ . Before we can proceed and iden-

tify the Landau corrected parameters according to
Eqs. (3.22) and (3.23), we must convince ourselves

that the decoupling of 5I
&

and (5l2, 5$) occurring
in the BCS approximation is not destroyed by the
Landau corrections; otherwise, it would be impossi-
ble to perform the identification on the level of the
inverted static susceptibilities. The crucial terms
are, for X@, ~,

dQ'
X I'I' q ll

cos~ g'+ qi ~' q;q

(4.12)

It is possible to reformulate Eq. (4.1) in terms of
Eq. (4.12) exploiting the spherical symmetry of I'
and the additional theorem for spherical harmon-

ics:

k —m!
(I II'+ @ll'} Q k

@1k( kl'+ @kI'}k+m!
Fk m

1+1/(2k + 1)Fk

X f (q' k)&I "(q;q } (4.9)
where

{4.13)

and for XM, ,sI
@II = PP (cosO)PI (cosO)4(q~;T) .

4m

{4.14)

(4.10)

1 "provides the coupling between the solid-angle

If m =0, the factors —, in Eq. (4.13) must be omit-

ted. Making use of Kramer's rule, Eq. (4.11), and
the BCS result (3.25), we get from Eq. (4.13) the
longitudinal and transversal superfluid densities pll
and pi.
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0

S

=3(4))+1)))=3(1+ , F—',)
P

—Y0
~lm +Em Ylm

I
~ k+F3 l"~

I

m
m~ (4.15)

where
~ ~

denotes the determinant and l, m & 3,
ik & 1. The indices l, m, i,k run over all odd posi-
tive integers.

p& is obtained by replacing 4» by —,4&~ and Y;k

by Y;k. The result is exact within the mean-field
approximation. We note that

p~~
and pq are inAu-

enced by all Landau parameters. The coupling to
higher Landau parameters l & 3 is due to the aniso-

tropy of the gap. In the case of very high and very
low temperatures, when the Yoshida function or
the gap becomes very small, we get approximately

S

=(1+—,F) )pII (4.16)
p

As far as the other static susceptibilities of the
order-parameter variables are concerned, it is not
possible to obtain a form of comparable simplicity
as in the case of the superfluid densities. The angle
dependence in expressions (4.7) and (4.8) cannot be
expanded in a finite series of polynomials
PP(cosB)cosmqr Thus, . all Landau parameters
contribute, even at T =0, and we are forced to as-
sume that the higher Landau parameters may be
neglected.

If the explicit dependence of the integrand of

(4.7) and (4.8) on qz is disregarded for a moment,
then the remaining q; would introduce only E'j and
F3. These two parameters enter the problem be-
cause of p-wave pairing (the p-wave pairing intro-
duces a factor q;qj into the solid-angle integrals),
whereas the higher-order parameters enter through
the dependence on q~, i.e., by the anisotropy of the
Yoshida function. Hence F

~ and F3 are of equal
significance and must be both taken into account.
The higher-order Landau parameters are neglected
in the following for simplicity.

W'e note that only those solid-angle integrals
which contain an even number of q„q~, and qz do
not vanish. In order to ascertain which parts of
I contribute to the Landau corrections, we

represent the spherical harmonics in terms of unit
vectors q; and note which of them pair with each
unpaired unit vector in Eqs. (4.7) and (4.8). (The
spherical harmonics expressed in terms of q; are
listed in Appendix B.) The condition that on either
side of (4.7) and (4.8) the same number m must ap-
pear [cf. Eq. (4.3)] brings about a further reduction
of possible terms. After a lengthy but simple cal-
culation, the Landau correction to X~~,'~ takes the

form

C))+» pII II pll)pII C3)+C)3)+ g (pII II
—pII)C33

o' o'
&

i o' o' o' & i o' o' o'+ &8 pll )(pz )C&& —
i~ (3pll II

—
pll )pq C3~ —

~z pll (pll q
—pj. )C~3

o o 0' 0' 1+ (4.17)

The different superfluid densities are defined in
Appendix C, whereas C~~ is determined by Eq.
(4.4).

We should point out that Eq. (4.17) determines
only cj —cII [compare Eq. (2.8}j. In order to speci-
fy cz and c

J~
separately, one has to calculate the

static susceptibility g~~ g from which cj can be

obtained. The line of thought is similar to the one
pursued to calculate the order-parameter suscepti-
bilities; thus we refrain from presenting the techni-
cal details. The calculation shows that the Landau
corrections to cz are contained in the last four
terms of expression (4.17)—i.e., cj is corrected by

I

the constants C;~, whereas c~~ is corrected by the
constants C;k. (A small contribution due to the
violation of particle-hole symmetry has been
neglected in calculating 7~~' g . It just cancels in

cII —c~.} Using this result it is now easy to show
that c~~

————,p~~ for arbitrary Landau parameters.
To prove this result it is only necessary to observe
that it holds in the BCS approximation, and that
the parameters C;k which make up the Landau
correction to c~I are all obtained from (4.7) by re-
placing k by kII, which is equal to (4.6) apart from
a factor of —,.

With regard to g~~,'~~, and g~~'@, the Landau



6346 MICHAEL DGRFLE

corrections to E&,E2,E3 read

o 2 2+ —,(pll, i) C33

EC2 ~ E2

(4.18)

+

+—„(pll )'C) )

0 0' 0' 1 1

24PII Pll II Pll)(C„+C„)

(4.20)

o o' o 2 ~ o'+—.C- «II. II
—Pll) +.«II, ) C»

(4.19)

In order to give explicit expressions of the vari-
ous constants, we restrict ourselves to a simplified
model where only E'j and F3 are retained. Then
the static susceptibilities of the order-parameter
variables including the Landau corrections up to
the order /=3 read

=pll 1+ R( + 3Pll, ll, ll)DOPII
—

(Pll, ll pll )(Pll, ll Pll)F~i 3Do

+ —.«II, II
—Pll)' "3('+ 3F~PII )Do (4.21)

S t S 1 (P Os' Oa Olt S S
PJ 1+ 3 Fl ( + 7 F3PII II l)D1pl /g (pll, l PJ. )(Pll, i pl )FIF3DI

+ ~ (pil, ~ pj ) F3{1+3F',P~ )D
Pl

{4.22)

These expressions have been taken from the exact relation (4.15) taking F~ =0 for l & 3. Alternating F&' into

E~ we obtain the corresponding expressions with regard to Mz/p and M~~/p. In order to get

cll, c&,IC~,E2,E3, we solve Eq. (4.4) with F~
—=0 for I )5 and insert the various CT. into Eqs. (4.17)—(4.20).

C~~ /p and ej /p take the form

S (4.23)

and

p m
= 2pll 1+ 3F1(1+7F3pll ill)DIPL —24(3pll II-rhll)(pll |—pl ) F 1F3D]

P

24 Pll j p~)(pli j- p~ F|F3D~+ 8 3pll li pli)(pll. ~ «(Pll) F3{1+3F~P~ )D~

The three Franck constants given by Eqs. (4.19)—(4.21) read

&i m* 1 oPy+
p Pl 4

p$

2~!I ~(—,)'
1+ 7 F3pj) y y

(4.25)

+ Pll + + Pll Il II)Do(

+ ~~ Pll li Pil) 3( +7F»II )Do+ 4

1 $
5 3 i 0* 2

1+—,
'

F3ptl", l, l
(4.26)
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PII+ —,r+ —,Fg(1+ —, F3PII II.~)Dg( zpll «Pll pll II pll PII ~ P~ )F'gF3Dg

+ n 3PII II pll F3 1+ 3 Ffp~ )D) . (4.27)

Do is given by

~PII +7 3PII II II+ zi & 3[PIIPII II II 4 Pll II
(4.28)

D~ can be obtained from Eq. (4.28) replacing one
~ ~

index of each normal fluid density by I.

V. DISCUSSION

In the previous sections we derived the static
susceptibilities from the linear reponse functions of
the order-parameter matrix 3;~. It was shown how
the self-consistent gap equation selects a small
number of slow variables whose static susceptibili-
ties vary as 1/k . With regard to the phenomeno-
logical theory in Ref. 7 the nine independent
parameters defined therein could be identified.

These parameters have been calculated previous-

ly by Ambegaokar, de Gennes, and Rainer, Cross,

I

and Serene and Rainer' within various approxima-
tions. They all have in common that they look for
the gradient part Fs„d of the superfluid free ener-

gy. Ambegaokar, de Gennes, and Rainer restricted
themselves to the Ginzburg-Landau regime and
calculated

This parametrization of Fg„d is valid only near T, .
At lower temperatures one has to consider the gen-
eral expression' '

Fsmd= 2 f d ~ [ &pi(Vp) ——,(pq —PII)(1'Vp) +cq(Vp)(VX1)
m

—(c,—cII)(1.V))(1 VX 1)+—,Ks(V1)'+ —,'Kr(1.VX 1)'

+ gKB[ 1 X(VX 1 )] + —,MII( 1 V)n;( 1 V)n;+., Mz( 1 XV—)kn;(1 XV)kn; ] . (5.2)

Contact with the notation of the previous sections
is made in Eq. (2.5) if we rename Ks —=K&,
Kr =K2, and Ktt =K3. The parametrization (S.1)
predicts Ks ——Kz ——K2 and K~ ——Ki+K2+K3 It
is easy to convince oneself that this holds only in
the order t (t =1 T/T, ). The—Landau correc-
tions, however, belong to the order 0(t ) and may
not be included in (S.l). Serene and Rainer, on the
other hand, calculated the strong-coupling correc-
tions of Eq. (5.1) [corrections of the order
(T, /TF) in the free energy functional 4]. Our
results, as well as those of Cross, consider only the
lowest order of 4 [i.e., (T, /T~) ] but apply to the
whole temperature regime. In the lowest order of t
and T, /T~ our results coincide with those of Am-
begaokar, de Gennes, Rainer and Serene. '

Cross calculated the free energy (5.2) and the
resulting supercurrents, generalizing a procedure of
Werthamer" to the case of triplet pairing. The

central point is to perform a gradient expansion of
the one-particle Green's function and then to calcu-
late the superfluid current. From there, one can
deduce the free energy. The basic assumptions-
i.e., the restriction to the mean-field
approximation —are the same in both his work and
ours. If we neglect the higher-order Landau
parameters (1 & 1), our results coincide with those
of Cross.

Our results for the static susceptibilities of Mq,
MII (the superfluid densities in spin space) and pj,
pII and cII [cf. (4.14)] are exact within the mean-
tield approximation. As long as 4(qz, T) is neither
=1 nor =0, all odd Landau parameters contribute
to pz, p~~, c

~
~, M

~
~, and M&. If we perform an ex-

pansion of 4(qj ) in terms of Aoq j, then the deter-
minants in Eq. (4.16) become tridiagonal, pentadi-

agonal, etc., according to the order of 50 we in-
clude. We will not follow this line of thought be-
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cause such an expansion makes sense only near T,
where the influence of the Landau corrections be-
comes very small. Thus, we are forced to assume
that F~" vanishes for I greater than a fixed number.
For simplicity we take into account finite values of
E&' and E3' but neglect the higher ones.

Figurc I shows thc dcpcndcncc of My and MI~
on E& and F3 for a fixed temperature
(TjT,=0.73). Each point on the Mz-M~~ plane
denotes a special choice of the parameters (Ft,F3).
We have drawn the lines where F~ and F3 are
fixed. The liquid becomes unstable if F t

———3 (it
is the same instability of the Fermi surface we get
in the normal fluid He. ) M~~ is much more influ-

enced by E3 than is Mz, whereas the influence of
F] is approximately the same on either parameter.
The inAuence of F3 is diminished at lower tem-
peratures and vanishes totally at T =0 (i.e., the line

F&
—=0 shortens &f we continue lowering the tem-

perature). Figure 2 shows more closely the influ-

ence of temperature. Here, we plot p~~ against pz
(we remind our readers that the expressions ob-

tained in cases of p~~, p& and M&, MI~ are the same if
we substitute Ft' by Ft'). We have taken a small re-

gton of Ft,F3 E [3,15], and show how tt ls de-

formed when the temperature is lowered. At tem-

peratures close to T, the effect of Landau correc-
tions is small, and we get the BCS approximated
values (as long as strong-coupling corrections are
neglected). At an intermediate stage, the influence
of F3 becomes rather strong although smaller than

that of F&. At T =0 the region is deformed into a
line. We would like to point out that the efkcts of
Landau corrections are very strong because of the
large values of FI'. Thus, at least with respect to
the real-space variables, one may assume that at in-

termediate temperatures the CA'ects of Landau
corrections are a good deal larger than those of
strong-coupling corrections. With regard to Mz,
MI~, pz, and p~~, the effects of even higher-order
Landau parameters are qualitatively the same as
that of F3.

The bending coefHcients of l offer a different
behavior. Ez, ET, and EB contain all Landau
parameters, even at T =0 due to the denominator

qz in the Landau parts of the static susceptibili-
ties. In order to discuss the results we must as-
sume once more that FI' vanishes if l & 5. Cross's
calculations yield the remarkable results that, al-
though E& is included, Ez maintains its weak-

coupling value. We recover this behavior and find
that Es [in the notation of the previous sections
E~, cf. Eq. (4.25)] depends only on F3 and, in prin-
ciple, higher Landau corrections.

In Fig. 3, we have plotted the dependence of Kz
and ET at a fixed temperature (T/T, =0.28) on F[
and E3. The vertical lines of constant F3 display
the fact that E~ does not depend on F&. The
dependence of Eq on F& is much stronger than on
F3 (about a factor of 5). The influence of F3 is ap-
proximately thc same on both Kg and ET. Flgulc
4 illustrates the inAuence of the temperature on the

IN~ M~
BCS

a 8

0 ~ 6

a z

0 ~ 6 0 ~ 8
ll

m

FIG. 1. MI~ vs M&. I'& is fixed an lines parallel to a, I3 fixed on lines of type b. At a and 6 I"
] and I'3 vanish,

respectively. F~ E [—3,0] and F3 E [—7,0]. The distance between two lines is 0.3 and 0.7 for Ff and F3, respectively.
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~J ~J rn
ees

FIG. 2. Dependence of p~ and p~~ on both temperature and Landau parameters. a: F'] —=15. b: F3—= 15. E'i and E3

are taken from the interval [6,15]. The distance between two lines is 3. Temperature t =T/T, is chosen to be for a,
t =0.73; p, r =0 46; y, t.=0 2$; 5, t .=0 19; q, r.=0.1.

Landau correction. Only the border line of the re-

gion in Fig. 3 is drawn. The Landau corrections
vanish in the Ginzburg-Landau region, but at in-

termediate temperatures they already cause sub-

stantial deviations from the BCS value.
We refrain from displaying ct, c~~, and Ert for

they do not ofFer new interesting points. In Cross's

approximation (F~"=0 for I & 1) a relation between

e& and pz can be established:

S
Pj.

cJ. I Bcs pt I Bcs

Relation (5.3) does not remain valid if E3 is includ-

ed, whereas the corresponding relation for all is
valid for arbitrary Landau parameters. It is amus-

ing that the relation pll
=—2ell ~s the only ace~den

tal BCS symmetry in the calculations of Serene and

T T=oge
KT KT

BCS
2'2

F =-0
't

1'2

1 ~ 1 1.4 "s/"sI m

FIG. 3. Dependence of Kq and ET on Fi and E3. On linea, F] is fixed by F]=1S,on b F3=15. Both F] and E3
are taken from [0,15]. The distance between two lines is 1.5.
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(we have already inserted 2c~~ = —
p~~) and if the

uniform 1 texture undergoes a phase transition to
a helical state. Fetter ' examined the dynamical
stability of the helical structure and demonstrated
that there is a temperature regime where Eq. (5.5)
is not satisfied and the helical structure becomes
stable. Making use of Cross's results, he showed
that the Landau correction stabilizes the helical
phase. In contrast to the region of stability, the
apex angle of the helical structure depends sensi-
tively on both Ez. and E~. The textural transition
of He-3 in a thin slab was examined by Hu, '

demonstrating that in this case the texture is non-
planar and Kq, Kz-, and E~ determine the stability
of the helical phase. The role of the bending coef-
ficients become even more intriguing by applying a
strong magnetic field or rotating the container.
Thus, the textural behavior depends critically on
the static susceptibilities we calculated above, and
one can hope that the experimental investigation of

textural phase transition will deliver some esti-
mates of the higher Landau parameters.

However, one must bear in mind that the
strong-coupling correction may lead to a misinter-
pretation of the results. Serene and Rainer' calcu-
lated that the rate of change of the static suscepti-
bilities due to the strong-coupling corrections is
small (less than 10%), and there are arguments
that they may be compensated for by just redefin-

ing the superQuid densities. A further step along
the lines of this work should include the next order
of 4 in terms of T, /TF, which is possible in prin-
ciple, but requires a substantial amount of algebra-
ic work.

ACKNO%'LEDGMENT

I would like to thank Professor Graham for crit-
ical and useful discussions.

APPENDIX A

We prove that

1 —I'~ I q, ( —G G) =0.
4m

(A 1)

An extended version of the gap equation (3.16) reads
r

1=—r4'a'u(0)
~n

(A2)

Expressing the q; in spherical coordinates, the
relevant part of (A2) takes the form

dQ sin 8cos P
4~ co„+g +d sin 8

dQ ~ ~~+0
4]r ' (co„'+g'+ ~h ~')'

which is exactly the expression we desire.

APPENDIX B

(A5)

d8sin8
2 2 z, (A3)

1 sin 8
co„+g +d sin8

where d =—260. By means of integration by parts
1

we arrive at

~

~
~d8sin8cos 82 0 (co„+g +d sin 8)

We list the spherical harmonics with l =3 in
terms of unit vectors:

P] —q3, P] cosP=q], P] sing =q2 ~

P3 ———,q3(5q3 —3),

P3 sin])) = ——,q2(q3 ——, ),
P3 cos0= —

2 ql(q3 —5»

This can be rewritten in terms of q;,

(A4) P', sin2$ =30q,q,q, ,

P3 cos2$=15q3(q] —qz),
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Pz sin2$=15qz(qz —3q&),

P3 cos3$= —1Sqi(q, —3qz) .3

(p 15 dQ ~~
P)~,i= z 4 qj.qz ~(qj. ) ~

4m.

(p 15 dQ ~4
Pl L g ql~(ql)

APPENDIX C

The inclusion of I'3 in the static susceptibilities
introduces a set of new normal and superfluid den-

On ON
sities. pll and pq already appear in the BCS ap-
proximation:

(p dQ ~
p)~ =3 q, F(qz),

4m

They are related to Fg [cf. Eqs. (4.15) and (4.13)]
by

O 1 OJt 1 1 OJI

Y11 3 pII ~ Y11 3 pl

O O I O" O"

OJf ON1'0 = „(p—((—,i pj. )—= —.1'3i ~

Then me define

O~ 3 dO ~
Pz = —,

4m

Besides these expressions, me obtain

o" o
7~II II li= Y»~

ON

—,PII x x
——Y»

o"
7I'll. Il.~ —Y»

O" 3
—,px x ~——Y»

O dO
4m

The corresponding function PII, etc., is obtained re-
placing F(qq, T) by 4(qz, T).
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