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New constructive methods for the ground-state energy of quantum fluids
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A new procedure for describing the ground-state-energy equation of state for quantum
fluids is proposed. It begins with the well-known low-density expansions for the energy of
a many-boson or -fermion system in terms of the two-body parameters. The latter can be

expanded in powers of the two-body-attraction coupling parameter so that one is really
then doing perturbation theory about the hard-sphere fluid. However, the energy as func-

tion of density for the latter system must be known accurately. %e construct what we be-

lieve to be a good representation of this equation of state for bosons and then proceed to
carry out perturbative corrections in the attraction up to fourth order. The case of liquid

He, interacting via a pair hard-core-plus-attractive-square-well potential, is treated as an

example. Saturation is achieved with second order, third and fourth order adding little

binding energy at the saturation density. At the saturation minimum the attractive-
coupling-constant perturbative series is a well-behaved one, as is attested to by the fact
that different Fade approximants to it coincide with the series itself.

I. INTRODUCTION

Among the most important successes of quan-
tam many-body theory in its 50 or so years of ex-
istence is the application of quantum-field-
theoretical techniques to sum partially, to infinite
order, the perturbation series for the ground-state
energy of a many-particle system. ' This procedure,
which applied to both the many-boson as well as
the many-fermion systems, has lead to nonregular
(i.e., nonpower) series for the energy in terms of the
density, about zero density. Unfortunately, only
the very first few terms of these series have been
evaluated. These are at best only asymptotic. That
is, they are of zero radius of convergence in the
limit as the number of particles, Ã~ ~.

On the other hand, the use of constructive
methods like Pade approximants have enjoyed con-
siderable success in several branches of physics
and engineering in predicting the behavior of cer-
tain functions (which are originally only known
very close to the origin) well beyond the range of
validity of their meagerly known power-series ex-
pansions.

Finally, the application of perturbation tech-
niques to the classical theory of fluids, in which the
fluid of repulsive cores is taken as the unperturbed
problem, have recently provided successful
representations of equations of state for these sys-
tems, even when going only up to second order in

the (attractive) perturbation.
We present here a new scheme for predicting

ground-state equations of state for both many-
boson and many-fermion systems ( He, a matter,
neutron and nuclear matter, He, the "spin-
polarized quantum systems, " etc.). It combines the
three elements mentioned above, namely, (i) the
known coefficients of the various low-density ex-
pansions, (ii) constructive methods (now general-
ized for non-power-series expansions), and (iii) per-
turbation theory of the attractive interparticle po-
tential, taken as the perturbation, about the gas of
repulsive particles (which in the quantum case has
at present been carried out to fourth order).

To illustrate the essential ideas we limit our-
selves here to an application to the liquid-helium
( He) many-boson system. For this system, with
identical particles of mass m, particle density
p=X/0, Q, being the volume, and with pair in-
teractions giving rise to an 5-wave scattering
length a, the ground-state energy per particle is
known to be given by

2M2
pa [I+Ct(pa )'~ +C2pa31npa

pa3& &~ m

+C3pa +O((pa )
~ lnpa )],

128 4
C2 =—8( —,~—&3), C3 ——unknown .
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For illustrative purposes we pick the very simple
two-body potential

for x &0, and if we denote the wave function in the
absence of any of the attractive part, V, of the
complete potential as

~

4&) then,
(r (c)

v (r) = —up (c & r && )

0 (r(R),
(2) (7)

as V is a totally negative operator. Also, if P is a
projector on

~

4), then

(3)

(R —c)
c Fi~

Using the values of parameters vo, c, and R ob-
tained by Burkhardt for helium, and by van der

Spuy and Pienaar for alphas, as well as the empir-
ical saturation density p„, for He and a calculated
value for a matter, one has

a =2.264095, A, = 1.719086,

p„,c =0.105 ( He),

a=1.3529412, A, =3.678223 1,

p„,c =0.393 (a matter) .

(4)

Letting x—:(pc )'~, expanding (3) in powers of
A, (valid for A, & —,m =2.467. ..), and substituting

this result into (1) we have the double series, in x
and A, , for the ground-state energy per particle

——=e(x A, ) = g e (x)A,'+ .
=o

' ~ ~ (5)

where the coefficients e;(x) would be known, for
x « 1, up to i =4 if we knew the value of C3 in

(1) which multiplies the a term.
We remark that one can deduce some general

properties of the e;(x) from their explicit represen-
tations. If we write

0 =Hp+ V,

V = g 6(r;~ c)u(rj), —

where H is the Hamiltonian and 6(x) is the unit
step function with 6(x)=1 for x ~ 0 and 6(x)=0

where r is the interparticle distance. (Generaliza-
tion to more realistic potentials will be straightfor-
ward, but requiring numerical expansions. ) An ad-

vantage in this choice (2) is that the scattering
length is then just

a tansy%.—= 1+(z 1 ——
Vg

A, e2(x)= —(@i [(Hp —Ep) ' (I P)Vj—+

)&[(Hp —Ep) '"(I P)V]—
I
4~ (0.

Both these inequalities are independent of statistics.
From uncertainty principle argument, we expect
that eo is monotonically increasing as a function of
x. We also expect e& to be monotonically increas-
ing as well, as with increasing density a greater
amount of the wave function is crowded into the
range of V.

Finally we remark that as no analytic singulari-
ties are expected to occur for small positive or neg-
ative A, we expect the expansion (5) to have a
nonzero radius of convergence, and in fact to be
analytically extendable right up to the phase boun-

dary at the one-phase Quid region.
We shall discuss first the construction of ep(x),

i.e., the energy per particle of the Bose hard-sphere
system, and subsequently handle the e;(x) for
i =1,2, 3,4.

II. BOSE HARD-SPHERE FLUID

This system is described by (1) with a replaced
by c, the hard-sphere diameter. We shall use (a)
the fact that ep(0) =0, (b) the four Green's-function
Monte Carlo (GFMC) energies at x=0.407, 0.447,
0.494, and 0.520 of Ref. 9 for X =256 hard
spheres, and (c) the existence in ep(x) of an uncer-
tainty principle (i.e., second-order) pole for some
x y 0 which can be associated with random-close-
packing of our spheres. For a classical system of
hard spheres the latter occurs' at about p =0.86po,
where pp—=i 2/c is the density at which regular
close-packing occurs in a face-centered-cubic (fcc)
or hexagonal-close-packing (hcp) arrangement. Be-
cause of quantum mechanical diffraction effects the
spheres appear larger, "we might expect a some-
what smaller value for the quantum random-close-
packing density. At any rate, we shall determine
this latter value subsequently, instead of assuming
it to coincide with the classical value.

Using (1) with c replacing a we form the series
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FIG. 1. Straight-line form constructed from the

[1/l](x) generalized Pade approximant of Eqs. (10) and

(11) which, when made to best-fit the Green's-function

Monte Carlo (GFMC) data of Ref. 9 determines the up-
to-now-unknown coefHcient C3 as given in (14) and ori-

ginally defined in (1). Also shown is the intersection
with the infinite-energy curve (16), which gives the value

of xo of Eq. (17) corresponding to quantum random

close packing of hard spheres of diameter c. The
number density is p.
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which we expect to vanish linearly at some xo.
Next, we construct to this the [1/1] (x) generalized
Pade approximant
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FIG. 2. Hard-sphere energy per particle (15) resulting
from the [1/1] (x) generalized Padh approximant (thick
curve), compared with the truncated form (18) (thin
curve, dashed portion of which is negative). Also shown
are the GFMC data points for the "Quid" (dots) as well
as the "solid" (crosses) phases of the 256 hard-sphere
system, as determined in Ref. 9. Indicated on the
x =—(pe')' ' axis are the values at which (a) we deter-
mine random close packing to occur, Eq. (17), (b) liquid
He saturates empirically, (c) a matter saturates accord-

ing to the calculations of Ref. 8, and (d) the 256 hard-
sphere system freezes according to the GFMC calcula-
tions of Ref. 9.

(13)

we can expect a straight line to fit the GFMC data
only if we have a good form. Figure 1 shows that
this is indeed the case. The slope of 1.25 deter-
Inines A =0.223, and from (11) C3 thus turns out
to be

and reduce the GFMC data by computing
1/2

4mx fiF(x)—:~ —,Ctx 1 — —1
2@iC EO

C, =26.16. (14)

Finally, squaring and inverting (10) we have our
hard-sphere energy-per-particle extrapolant

Since

2C2
x

1
J

= —(lnx+A) .
1X 1 —2C)

2C2
1 — x (lnx +A)
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exp —( —,Ctx —1
2C2

C&
(16)

The result is (quantum random-close-packing)

xp ——0.7082 . (17)

We locate its pole at xp by seeking the intersection
of e '"' in Fig. 1 with the ep ——m curve, i.e., with
the curve
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This density gives 55% of fcc-hcp close-packing
density (for which x =2'~ ) and should be com-
pared with the classical value of 1.1026 or 86%.
We mention that in the GFMC method the difkr-
ence in a data value between N=256 and ao parti-
cles is less' than an error bar, which in turn is less
than the data-point circles on Fig. 1.

Figure 2 compares the newly constructed form
(15) with the GFMC fluid points (dots) and with
the truncated form

X'tu (density)(10 3 {1unit=0 022A3

FIG. 3. Energy per particle {divided by 2m) vs density
(times c') {in units of the empirical saturation quantities
for He) for the [1/1] (x) generalized Pade (15) and the
truncated form e(x)+1, Eq. (18). The latter diverges
only at x = oo (as x lnx ) while the former at the value
(17) as a second-order (uncertainty principle) pole.

III. INCLUSION OF ATTRACTIVE FORCES

e(x)—:Ctx+C2x lnx +C3x (18)

We now proceed to calculate the perturbation
coefficients e;(x), i =1,2,3,4, which appear in (5).
For this task we note that

Also indicated are the values of x =(pc')'~ for
which( He saturates, a matter saturates, and the
hard-sphere system freezes and the value xp deter-
mined in (17).

Finally, Fig. 3 shows the energy per particle
versus density (in units of the empirical liquid He
saturation values) of the [1/1] Pade (15) and the
truncated form.

1
e, (x) =-—,e(x, A, }

l . ()g g p

(i =1,2, 3,4), (19)

where e(x, A, ) is given by (1), and a by (3). Using
8/M, =(da/dA, )B/Ba we finally arrive at

2M2
e;(x)=

2 d;(a)x [1+C~;(a)x+C2;(a}x lnx +C3;(a)x +o(x )] (i =1,2, 3,4),

where

d~(a)—:—a/3, d2(a)—:—2a/15, d3(a) = —17a/315, d4(a)—:—62a/2835 (21)

and where

5 5
C), ———,C), C)2 ———„(8—5a}Ct, C2, =4C2~

35
C22 (4 5a}C2 C31 C2+4C3 C32 (3 a}C2+( a}C3

7(25) 2 3(5)(7) 5 4(5)(7) 2 8(21)
6(8)(17) 2(17) 2

' 3(17) 17

5(7)(13) 2 3(7)(14)
3 C

4(5)(7) P 3(7)(8)
3(17) 17 3(17) 17
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5(5)(7) 3 5(7)(9) 2 9(127) 5 C
16(31) 8(31) 2

5(7) 3 4(7)(9) 2 9(254)
2(31) 31 5(31)

(24)

5(7)(25) 3 7(9)(13) 2 7(9)(127) 35 3 4(7)(9) 2 9(254)
8(31) 31 5(62) 62 31 5(31)

We now construct the following approximants, in x, to the expression (i =1,2,3,4)

( 1+C);x +Cz;x lnx +C3,x )

which appears in (20):

(25)

A;x
F (m, n)( )

[1+(8;lnx +D;)x]

n

(m, n =1,2, 3, . . . ), (26)

C); 8.=—
n

C2;
D =-

mC);

C3) (n —1) C);,
mC&; 2nm

H "'(x)=[1—a;x —P;x (lnx +y;)] " (n =1,2, 3, . . . ), (27)

Cig C2u;=, p;=
n n

2
(n +1) C„.

C2; 2n C2;

a;xJ(m, n)( )
[1 b;x(lnx +c;—)]

(m, n =1,2, 3, . . . ),

ay=
Cz

b;=—
n mC~;

C3)
Cg-

C2;

2(n+1) C))
2n C2;

Ci;x+C2;x lnx
K~'"'(x)—:1+

(1+b;x)"
(n =1,2, 3, . . .),

C
b. —=—

nCi;

The coefficients of these approximants are defined

so that the binominal expansion of the correspond-
ing expression reproduces (25) exactly.

For a=2.264095, the range parameter given for
He, we list in Table I the minimum value of ex-

ponents m and/or n required to avoid a pole in the
approximants in the physical region of densities,
i.e., 0 &x &xo =0.7082. We also report the value
of x &xo for which a pole first appears (if it ap-
pears at all for positive x). Note that for the

I

E "'(x) approximant the pole occurs at
x = —1/b;—:nC&;/C3;. Also, for i =3 and 4 this
number is negative, namely, —0.2158 and
—0.0232, respectively.

Having thus a large (in fact, infinite) number of
approximants for the e;(x) coefficients, which
moreover have no poles for 0&x &xo, we turn to
the construction of approximants to the (perturba-
tion) power series in A, (5). We choose the usual
Pade approximants
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TABLE I. Minimum value of the exponents m and/or n required to avoid a pole in the

physical region of densities, that is 0&x &x0 —=0.7082, in the approximants to (26) given by
Eqs. (27) and (30). Also given is the value of x &xn for which a pole first appears, if it ap-
pears at all for x positive.

P [Nl, N}(

11,'"'(x)

g (m, n)( )

(rn, n) =(4,3)
0.7305

(m, n) =(6,13)
0.7186

n =9.6
0.71

(m, n) =(64, 1)
0.7368

(m, n) =(1S,1)
0.7701

n =74.17
0.71

(m, n) =(1,1)
1.6583

(m, n) =(1,1)
1.6S83

290& n &300
0.7162

(m, n) =(1,1)

[N/Mj(A, ) = g p;A, '// g q V .

With these we shall proceed to give the energy per
particle versus density curves for He below.

In units of liquid "He saturation energy per par-
ticle (divided by 2m} and density values, we sum-
marize our results in Figs. 4 and 5. %'e restrict
ourselves only to the lowest III and/or n value(s) in
the approximants for e;(x}given in (26) to (29)

such that no poles appear in the physical region
0&x &0.7082, in accordance with Table I. This
still gives too many possible combinations and we
further focus only on m and/or n values of unity.
Noting that J '"=E'" we —thus have, for et, eq,

e3, and e~ the combsnahons H I, H2, I"
3

'~ (1) (&)

F&'"= HHI'I; HHHF, HHEK, and HHHK. An
additional reason for selecting H;"' for i =1,2 is
that these approximants automatically satisfy ine-
qualities (7) and (g) in the physical region.

Figure 4 shows the typical case HIII'I'. %e see
that no binding is obtained in first-order perturba-
tion theory (curve labeled [1/0]). Binding and sa-
turation occur beginning with second order. Third
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FIG. 4. Energy per particle vs density (same units as
in Fig. 3) in first- [1/0], second- [2/0], third- [3/0], and
fourth- [4/0] order perturbation theory (5) for He, with
the interaction (2) and parameters given in (4) taken
from Ref. 7. The extrapolants, in x, used for e;(x),
~=0,1,2,3,4, are respectively, e Eq. (15), a,"' Eq. (28),
H2 ' Eq. (28), F3'" Eq. (27), and I"4'" Eq. (27).

x„(densI~)) (10 I ( t U[][t =0 Q32$)

FIG. 5. Energy-per-particle vs density (same units as
Fig. 3) given by the [3,1] (A,) and [2/2] Q,) Pade approxi-
mants (27), constructed from the perturbation series (5),
for the He potential parameters (4). The first minimum
coincides (to the scale of this graph) with the saturation
minimum of [4/0] Q,) of Fig. 4.
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and fourth orders add very little binding. Further-
more, our perturbation series (in A,) is a rapidly
convergent one in the neighborhood of the satura-
tion density, as is evident in Fig. 5 by the [3/I] (A, )

and [2/2] (A, ) Pade's coinciding there with the
(truncated) [4/0] (A, ) curve shown in Fig. 4 only.
(These two Fade approximants not only deviate at
higher densities from the [4/0] ()(,) curve but also,
as seen for the [2/2] case, ' ' may develop singu-

larities. ) This rapid convergence is not to be ex-

pected for a matter since the corresponding value
of A, quoted in (4) is greater than (m./2) . Pade
methods may thus be indispensable there.

We note, however, that both the predicted sa-
turation energy per particle and density are one-
tenth the empirical values for He, a result that
could easily be attributable to the very simple two-

body potential (2) chosen to illustrate the present
methods.

It is interesting, however, to ask if the discrepan-

cy with experiment could be reduced by varying
the range parameter a—:(8 —c)/c somewhat, but
correspondingly changing A, in (3) so that the
scattering length a, upon which the energy solely

depends, is kept fixed at the empirical value for
helium. The combinations HHEE and HHHE
containing E gave overbinding by a factor of 2
with respect to the empirical value and at twice the
empirical saturation density, even at the "physical"
value of ct quoted in (4). This exaggerated satura-
tion minimum was identified as a "spurious" one
since it was coming mainly from the E3 extrapo-
lant which eventually developed a singularity as a
was varied, i.e., diverged to minus infinity. Finally
the case HHHF was studied in detail by varying a.
A second minimum shows up at higher density
which predominates over the first one as a is re-
duced to 2. As a was reduced even further to 1.5,
Hq (and thus e3) developed two singularities, and
thus obliged us to discard HHHE. No such
behavior was found for the first combination dis-

cussed here, the HHI'I'. This parameter study does
indicate the expected existence of considerable sen-

sitivity of the energy curve to the shape of the at-
traction and the care which must be taken with the
density extrapolations of the i(, coefficients e;(x).

V. CONCLUS/ON

It is hoped that the use of more realistic (ab ini
tio) two-body interaction potentials, like the ones of
Aziz et al. ,

' for which in addition one possesses
GFMC calculations' which agree remarkably well

with experiment, will prove more accurate in

predicting empirical properties, and such work is

presently under progress.
It seems clear from the present study that an ap-

prnpriate smallness parameter for the microscopic
description of quantum liquids is precisely the at
tractive strength of the turbo body pot-ential, our A. .

This is so not only because of its relative smallness
compared to the central repulsion but mainly due
to the well-known close similarity between the pair
distribution function of the hard-sphere fluid and
the corresponding liquid. This occurs not only in

classical but also quantum systems and makes the
hard-sphere fluid a reasonable starting point on
which to base a perturbative treatment.
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