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Exact equilibrium crystal shapes at nonzero temperature in two dimensions
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We calculate for the two-dimensional Ising model at arbitrary temperature T the
exact equilibrium shape of a large "crystal" of one phase (up) embedded in the other
(down). Low-temperature properties of the interfacial free energy for an interface of arbi-

trary orientation are also discussed.

I. INTRODUCTION

When two phases coexist at temperature T, a
large inclusion of one can exist at equilibrium in
the other. The equilibrium shape of such an in-

clusion is determined by minimizing the total in-
terfacial free energy at fixed included volume. For
isotropic phases (e.g., fluids) this leads to a spheri-
cal equihbriutn shape; however, when (as in crys-
tals) the interfacial free-energy density f;(n, T)
depends on orientation n with respect to a set of
reference directions (local crystal axes), the shape
of the inclusion will adjust to take advantage of
low (free-energy)-cost interfaces and avoid high-
cost interfaces, resulting in a "crystal" shape which
is not spherical and, indeed, changes with tempera-
ture.

If the interfacial free-energy density f;(n, T) is
known for all orientations n, then the Wulff con-
struction' determines the equilibrium shape of a
large crystal. " Previously, equilibrium shapes have
been determined only at T=O, where f; can easily
be determined for arbitrary n (Refs. 2 and 5); how-

ever, interfacial free energies are not generally
available for arbitraryprientgtion at T p 0. It was

pointed out recently that, for the d=2 nearest-
neighbor (NN) Ising model on the square lattice,
f;(n, T) =f;(0,T) is related by duality to the spin-

spin correlations in the high-temperature region.
Since the large-distance behavior of these correla-
tions is known, it is possible to carry out the
Wulff construction at all temperatures.

It is the purpose of this paper to investigate, as a
function of T, the exact equilibrium shapes which
result. Flat faces and sharp corners are present at
T=O. Because the roughening temperature Tz ——0
in two dimensions, we find for all 0 and all T~ 0 a
continuously curved equilibrium shape, with no
flat faces or sharp corners. As T~T, , this shape

becomes spherical. We are aware of no previous
exact calculations of crystal shapes at nonzero tem-
perature. We also discuss analytically the mechan-
ism by which the continuously curved shape
evolves from the faceted shape as T increases from
zero.

II. RESULTS

The interfacial free energy per unit length

f;(0,T) of the d=2 NN Ising model is related to
the two-point correlation function of the dual d=2
Ising model by the following equation:

1
f; (0, T) = —ktt T lim 1n(tr—ooasttt ) . (1)
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For special angles Eq. (2) reduces to the following
well-known expressions' ":

Pf;(0=0, T) =2K+in(tanhK),

Pf; (0=tr/4, T)=~2 ln(sinh2K) .
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as L co. The
high-temperature correlation function (o-ooo~& ) of
Eq. (1), which is known for T* & T, for large M
and X, depends implicitly on the temperature
T & T, via the duality relation e =tanhK',
where E*=J/k&T*, E =J/kz T, and J is the NN
coupling. We find
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The equilibrium shape R (P, T) can be found
parametrically':

R R (x2+y2)1/2

x =(cos8)f; —(sin8)
dl9

(4)

y =(sin8)f;+(cos8)
de

tang =y/x .

Figures I —4 exhibit polar plots of f;(8,T) and
R (P, T) for several reduced temperatures kz T/J.
The Wulff construction, ' leading from f;(8) to
R(P), is illustrated in Fig. 3: Through each poini
on the curve f;(8) draw a line perpendicular to the
radius joining that point to the center. The interi-
or envelope of these lines is R (P). For T=O
(Fig. 1), f;(8) is cusped and the point of each cusp
determines an entire crystal face. Lines through
the remaining points of f;(8) all intersect at the
crystal corner, which is sharp. The cusp is ab-
sent' at T )0 (Figs. 2 —4) because all interfaces
are rough, so the interior envelope becomes con-
tinuously curved. For low enough temperatures
(Figs. 2 and 3), the crystal is only slightly rounded.
As T~T, , f;(8) becomes isotropic and the crys-

FIG. 2. Interfacial free-energy density f;(8,T) (outer
line) and equilibrium crystal shape R (P, T) (inner line)
for kg T/J=0. 1.
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FIG. l. Interfacial free-energy density f;(8,T} (outer
line) and equilibrium crystal shape R (P, T) (inner line}
for k~T/J=O.
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FIG. 3. Interfacial free-energy density f;(O, T) (outer
line) and equilibrium crystal shape R (P, T) (inner line)
for k~T/J=0. 3. The Wulff construction (see text) is in-
dicated at several representative points on f;(8)
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the fact that the d=2 correlations (of the dual

model) are nearly isotropic well above T, .
The expression for f;(O, T), and in turn, proper-

ties of the crystal shape, can be expanded for low

temperatures and/or near special angles. For in-

stance, the expansion of f; when 8 and z=e are
both of order e (e« 1) displays the nonanalyticity
of f; at O=z=0:

Pf =2K .—(8'+4z')'"

+ i
0

i
smh '(
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0

i
l2z)+O(e lne) . (5)

Similarly the crystal shape can be characterized
near $=0 by

x —1 —[Ke 'x+O((e ' )')]y'+O(y ),

FIG. 4. Interfacial free-energy density f;(0,T} (outer

lme} and equilibrium crystal shape It (P, T} (inner line)

ror k, r/s=a. 6.

tal shape is circular. Recall that k~ r, /J
=2/1n(1+&2)-2. 269. It is striking (Fig. 4)

1

tha'. already at a reduced temperature T/T, & —, ,

the crystal shape is almost circular. This reflects

x +y —1 —[E+O(1)](x—y)i

+O ((x —y)') .

For low temperatures we find, from Eq. (2),
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Each term in Eq. (8) can also be independently obtained from a low-temperature expansion as follows: Con-

sider interfaces with one end fixed at the origin and the other end fixed at (M, X). The interfacial energies

associated with the broken bonds of the interfaces are

E„=2J(M+X)+4nJ, n =0, 1,2, . . . .

Construct the partition function
r

pE pE pE P(E, Z,i--Z=g(E )e '+g(E, )e '+ . =e 'g(E ) 1+ e
g«o)

The degeneracies g (E„)can be obtained from simple combinatorial analysis':

M+X ~+&
g(E )—,g(E, )= M 1

(M —1)+ ~ 1
(& —1) ~ ~ ~ ~

(10)

Using Stirling s formula and substituting M =I.
~

cosO
~

and N =I.
~

sinO ~, Eq. (8) is obtained.

Two interesting aspects of this expansion should be noted. First, we are expanding about an infinitely de-

generate ground state. The expansion is easy to perform because the model is two dimensional, so that all

degeneracies are easily calculable. Second, Eq. (8) diverges term by term at 8=0. This is related to the

roughening transition at T=O=O. To obtain Eq. (3a) an appropriate resummation must be performed. For

8+0, the series is well behaved, since at T=O the interface is already rough (i.e., no phase transition takes

place for 0& T & T, ).
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ast, we discuss the solid-on-solid (SOS) model in d=2 and its relationship to the above Ising-model re-
sults. The interfacial free energy per unit length is '

@;"'(g,n=~ Ising l+ 2m+In '""' —cos"'1
I
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For 8=0, it turns out that Eq. (2') reduces to Eq. (3a). The Ising-model crystal shape is similar to the crys-
tal shape derived from Eq. (2') for low temperatures and small angles, as expected; in fact, Eqs. (5) and (6)

apply, to the orders indicated, for the SOS as well as the Ising model. However, the low-temperature expan-
s1on becomes
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and therefore f; does not have fourfold rotational symmetry [f; (8)+f; (8+ ir/2)].

Note added in proof. Avron and co-workers' have recently communicated similar calculations for the
case Jx~s.
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