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Nuclear spin relaxation in a quasi-one-dimensional Hubbard band

S. K. Lyo
Sandia Xational Laboratories, Albuquerque, Pew Mexico 87185

%e have studied the effect of electron-electron and electron-impurity collisions on the
frequency-dependent behavior of the nuclear spin relaxation rate in a one-dimensional

conductor using the Hubbard model. The effect of occasional tunneling of an electron to
adjacent chains is also examined. It is found that electron-electron collisions can seriously

affect the electron spin diffusion in the nuclear spin relaxation even in systems where they
have little effect on dc conduction. The limiting behavior of the present results is com-

pared with the high-temperature and strong-coupling results obtained by previous au-

thors.

I. INTRODUCTION

The frequency-dependent nuclear spin relaxation
is recognized as an important probe of the motion
of spin carriers which interact with nuclear mo-
ments in solids. For example, the technique pro-
vides information about the dimensionality and de-

gree of coherence of the motion of the carriers.
Recent experimental results show evidence of one-
dimensional diffusive motion of the mobile spins
with a characteristic inverse square-root frequency
dependence of the relaxation rate in organic con-
ductors such as X-methyl-phenazinium (NMP)—
tetracyanoquinodimethane (TCNQ) (Ref. 1),
quinolinium-(TCNQ)2 (Ref. 1), and tetrathiaful-
valane (TTF)-TCNQ (Refs. 2 and 3) in the metallic
regime, and in some excitonic systems as well as
in organic polymers such as undoped and heavily
doped (i.e., metallic) polyacetylene (CH)„(Ref. 5)
and metallic polyphenylene.

As is well known, the nuclear spin relaxation in
an ordinary metal is given by the Korringa rate.
The diffusive behavior in the 'metallic conductor
cited above is a consequence of a short mean free
path of the conduction electrons characteristic of
low-dimensional metals. The purpose of this paper
is to study the effect of electron-electron interac-
tion, which is generally an important feature of the
low-dimensional metals, ' ' on the frequency-
dependent behavior of the nuclear spin relaxation
rate. The effect of impurity scattering will also be
considered.

The nuclear spin relaxation rate is given by'

T, '= [6d 4*(toN)+(7d +5a )4+(co, )],
Sfi

where d and a are the dipolar and isotropic
electron-proton hyperfine coupling constants, ~z,
and co, are the nuclear and electronic Larrnor fre-

quencies, and'

00

4+(to) =2% Re f (s;+(t)s; (0))e'"'dt

00

4'(co) =2' Re f (s,'(t)s,'(0) )e'"'dt

(1.2a)

(1.2b)

Here Re and angular brackets denote the real part
and thermodynamic average. The quantities s,',
s;+, and s; represent, respectively, the z corn-

ponent, the raising, and the lowering operators of
the electronic spin at site i. In the present isotro-
pic system one has

4&+(co)=24'(to) . (1.3)

The nuclear and electronic Zeeman energies are
much smaller than the thermal energy k&T and the
Fermi energy.

The efFect of isotropic impurity scattering has
been considered by Fulde and Luther. " They
found that the co component of the spin correlation
function exhibits a difFusive behavior when the
electron relaxation rate (r ') becomes much larger
than co. A generalized impurity scattering will be
considered in this paper. Although the lifetime
equals the transport relaxation time for isotropic
scattering, it is expected that the time ~ corre-
sponds to the latter, a time scale beyond which the
electron executes a random walk. For electron-
electron scattering the situation is not as simple
owing to the spin degree of freedom. %e find that
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for scattering between parallel spins ~ ' corre-
sponds to the transport relaxation rate arising from
U processes. For antiparallel spins ~ ' is basically
the decay rate of states at the Fermi level and ar-
ises from both N and U processes. This is due to
the spin distinguishability of the particles involved
in the collision. This fact has the following in-

teresting consequence in a one-dimensional system.
In such a metal even a large Coulomb interaction
usually gives a vanishing contribution to dc resis-
tivity because the resistive U process is allowed
only for a half-filled band. On the other hand, it
gives an important effect on the electron spin dif-
fusion in the nuclear spin relaxation problem.

The effect of Coulomb scattering on the nuclear
spin relaxation rate has been studied in a Hubbard
chain by Devreux' in the high-temperature strong-
coupling limit k~ T &&4t„U) t, by using a short
time approximation for the correlation function,
and by Villain' in the U = oo limit in terms of a
spinless fermion model. Here t, and U are the
nearest-neighbor tunneling integral and on-site
Coulomb repulsion, respectively. Although limit-
ing behaviors of a system are of interest, the above
assumptions are made for mathematical tractability
of the problem rather than for practical reasons.

In this paper we study the spin correlation func-
tion using the Boltzmann equation derived by a
microscopic theory. ' The present treatment in-
cludes both weak- and strong-coupling situations,
except that for the latter a low density is assumed.
This method allows for a general treatment of the
effect of Coulomb scattering. A specific form of
the model is used later to obtain an explicit result.
For this purpose we use the Hubbard chain model.
In the strong-coupling limit, our result agrees with
that of Ref. 12 but disagrees with that of Ref. 1, as
will be discussed in Sec. IV. The effect of inter-
chain hopping as well as the combined effect of
general static and Coulomb collisions is examined.
The present result is not valid in the insulator re-
gime where the band is half-filled and U is larger
than the bandwidth. This case is equivalent to the
Heisenberg model and has been treated earlier. ' '

In the next section the formalism is given and
the model is defined. In Sec. III the basic trans-
port equation is established for the spin correlation
function. The frequency-dependent behavior of the
nuclear spin relaxation rate is examined in detail
for the impure Hubbard chain model. The effect of
interchain tunneling is studied. The results are
summarized in Sec. IV and discussions are given.

II. FORMALISM

The system is described by the Hamiltenian

H= gek a], ak

kyar

exp [i (k' —k) RJ]I-„;„a-„.a-„
j k k'cr

k & klol
~

I
~

kcr k]&])a],~a], ak ~ ak~k )cr)
(2.1)

ek —— g 2t (1 —cosk a )
a=x,y, z

(2.2)

where 6'k Rj Q k and ak are, respectively, the
Bloch energy of an electron of wave vector k and
spin cr, the impurity position, and the creation and
annihilation operators. The second term in (2.1)
describes impurity scattering and the third term
the electron-electron interaction. The Hubbard
model corresponds to

posite spins. The quantities t, a, and 6 are the
nearest-neighbor tunneling integral, lattice con-
stant, and Kronecker's delta, respectively. The
symbol 6 signifies conservation of wave vectors.
The normalization constants for wave-vector sums
will be omitted.

In order to evaluate the spin correlation function
microscopically, it is convenient to rewrite (1.2) as

and

(k'o', k]o]
~

V~ ko.,k]o])

F (ficu+iO) F-(i 0)—
4'(co) =2 Q Im (2.4)

=Uk(k+k], k'+k])6, . (2.3)

Namely, contact interaction is allowed only for op-

where Im denotes imaginary part and F-(fico+i 0)
q

is the analytic continuation to slightly above the
real axis of the dimensionless quantity,
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FIG. 1. Integral equation for the vertex part.

P
F-(@co„)=A p ' I (Ts'-(u)s'-(0))e " du,

(2 &)

defined on the imaginary axis Ace„=2mkz Tri.
Here r is an integer, P '=ksT, and s~(u) is in the
imaginary time Heisenberg representation. The
quantity T is a "time"-ordering operator and

z 1s-=A' —(a- - a- —a- - a- ) .q 2 k+q) kf k+q, J, k J,

k (2.6)

The basic equation for the spin-density fiuctua-
tion function 4'(co) is the Boltzmann equation
given in (3.2). Although this form of transport
equation is expected from the Fermi-liquid theory,
we derive it here microscopically to include
strong-coupling and nondegenerate situations. The
transport equation is obtained by evaluating the
spin correlation function in (2.5) in terms of Feyn-
man diagrams. Its structure is similar to that of
the velocity correlation function responsible for the
conductivity tensor recently studied for the same
system. ' Therefore analogous details of the calcu-
lation will be referred to this work, Only basic ap-
proximations and results will be given here.

The correlation function F-(fico, ) is obtained by

joining the two horizontal full-electron propagators
(solid lines) entering and exiting from the vertex

part (shaded triangle) on the left-hand side of the

~~X ~
/ y +

FIG. 2. Electronic self-energy part.

vertex equation shown in Fig. 1 into a loop. The
first term on the right-hand side of the vertex

equation describes an unperturbed system. The
second term represents the single impurity scatter-

ing (dashed line) and the last three terms the
dressed electron-electron scattering (curvy lines) for
which a T-matrix approximation is used. For a
weak interaction the latter reduces to the Born ap-
proximation. For a strong interaction it describes

multiple scattering at a low electron concentration.

Only scattering between antiparallel spins will be

considered. The effect of scattering between paral-
lel spins will be discussed later qualitatively. The

wiggly external incoming lines for the vertex part
denote input of momentum Aq and energy Ace„.

The electron self-energy part is given in Fig. 2,
and the T matrix is defined in Fig. 3 in terms of
bare scattering (dotted lines), introduced in (2.3).
The present approximation is valid in the regime
where the mean free path is larger than the de Bro-
glie wavelength. ' The perturbation to the elec-
tronic spectrum is assumed to be small. The
evaluation of the integral equations in Figs. 1 and
3 has essentially been worked out in Ref. 15. In
the next section the final results will be given in
terms of a transport equation. The nuclear spin re-

laxation will be evaluated by solving the transport
equation

III. NUCLEAR SPIN RELAXATION RATE

The basic results of the evaluation of the spin correlation function and the vertex equation introduced in
Fig. 1 are summarized by the following equations':

and

X X(—A'~)R&k
q k

(3.1)

—i(co co--)P-=co—
q
- N, g ~Ik k ~ (Pq $-)5(e- e-)—2~, 2

k, q
k'

k' 1&
1+p(fi )

' g lb'+( —4k, )—4k —( —0-„)]~pk, ',
kl k

k', k), k i

where cok - fi (ez+- —ez), N——
~ is the total number of impurities, f k the Fermi function, and f'k itsk, q

derivative with respect to ez. The distribution function Pk corresponds to the vertex part in Fig. 1. The
scattering-in terms in (3.2) arise from the vertex correction represented by the last four diagrams in Fig. 1,
while the scattering-out terms come from the electronic self-energy part in Fig. 2. The quantities Pk in (3.2)
are independent of spin and dependent on q and co. The first, second, and third terms on the right-hand
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side of (3.2) describe driving term, impurity, and Coulomb collisions, respectively. Without the last two
terms, (3.2) describes a noninteracting system, yidding the Korringa rate for the nuclear spin relaxation.

The quantity P—' describes the multiple scattering rate of two particles of opposite spina from an "ini-
+

tial state of wave vectors k and k~ into a Anal state k' and k~, respectively;

I'»» '= -- ~K(&, &t,'&', k))
~ f»f» (1 f». )(1—f„,—) 5(e»+»» e—„e.—-„,)b(k+k), k'+k'1) .

1

(3.3)

For the on-site contact interaction in (2.3) the T matrix (cf. Fig. 3) reads'

K(lt, ki', k', ki)= (3.4)

f~ ~ f~k —q k)+q
4

E +6' —6 ~—6 —I 0
q k k) k —q k)+q

(3.5)

The inversion of signs for the quantites {(t» and P, in the Coulomb scattering term of (3.2) is due to the
kI

fact that for antiparallel spins the product ( t )
cr'

~
t ){t

~

o'
(
t ) in the spin correlation function of (2.5) be-

comes negative. On the other hand, for collision between parallel spins the signs of the quantities Pz and
1

P-, in (3.2) should be reversed as in the regular Boltzmann equation.
k)

A. Hubbard chain

1. Transport equation

k+k~ . k —k' .
5(E»+6» E» 6—i )'=—5 4t cos

1 k) 2
sin s1n

2

In a one-dimensional system the energy delta function in (3.3) has a simple form:

k) —k

2
(3 6)

The directional indices are dropped and the lattice constant is assUIned to be umty. The resonances at
k +k~ ——+rr (corresponding to U and N processes) of the delta function in (3.6) are unimportant because the
T matrix vanishes there. The resonance at kt ——k' corresponds to exchange of momenta (i.e., k'=k, and
k'~ ——k), yielding,

1
@~» +~» —e» —~» )=

r
(

sin k —sin k'
)

The transport equation in (3.2) is then rewritten as

~», q )P» ~», q (2+i» ) (0» 0 »)—g ~K(k, k';k', k) j ( f»)—
where the impurity-scattering transport relaxation rate

(3.7)

&» = p«»W' II-», »I. (3.8)

arises from transitions across the Fermi sea, and p(e») is the density of states per spin. Note that the factor
P» —P» —P» +P», in (3.2) does not vanish for the momentum-exchange X processes owing to the sign re-
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(3.9)

versal of the pk and pk, terms for antiparallel spins. For parallel spins this factor will be of the form pk
1

1

+ p» —pk —p, and nonvanishing only for U processes just as in the dc transport phenomenon. The T
k

f

matrix in (3.7) is given in the low-density limit by

U2
iK(k, k', k', k)

i 1+,
4t ( sink —sink )

2. I.om-temperature behavior

At low temperatures (ks T ((eF, eF is the Fermi energy) one has fk, =—5(ek —eF) and (3.7) reduces to

—
& ( —k )pk = tok (2~ k)—(0»'0—k )

pF ~
K(k, kF', k~, k

~
~K(k, —kF, —kF, k

~

A'Pt
(

sink —sinkF
~

(4k 6)+— . . (0k —0 k )
~

sink+ sinkF
~

F (3.10)

l —f(~—~k, , )+(2r*) 'l6
—(2&*) '0-k, =~k, ,q . (3.11a)

The k summation in the first term in the large
parentheses on the right-hand side of (3.10) is can-
celled out. Note also from (3.9) that K(k, k;k, k)
=0. Similarly, it follows for k = —kF that

—(2r*) 'pk +[ i(to co k ~—)—

where pF
——p(eF) and kF is the Fermi wave number.

One now multiplies (3.10) by fk and sum—s over
k in the vicinity of k =k~, obtaining

I

The T matrix is given by

i
K(kt;, kF, —kp—,kF)

i

U2

QU2

eF(4t —eF)
(3.14)

In the limit us* gg 1, important contributions
to 4'(~) come from q ((1 ' where 1 =uFr~ is the
mean fr ee path. Approximating

(3.15)

where uk =(I/A') (dek /dk), one finds from (3.11)

+(2r*) '8'-k, =~-k, ,q

iDq +i/qm0+k„=
Dq —E 0)

(3.16)

In (3.11) r; =st» and

—1 —1—'Tj + 'TU

~
K(k~, kF, —kp, kj;)

~

2p—F

fiPt sin kF

(3.11b)

(3.13)

Here D =~*uz is the difRsion constant. Inserting
(3.16) in (3.1), one finds

kg Tpp4'(co) = (3.17
2v 2Dco

Contributions from q» /
' -including q =+2kF are

smaller than that in (3.17) by a factor (2tor*)'~ .
In the limit ~~~ »» 1, the vertex correction is

not necessary. Setting r~ '=0 in (3.11), one finds

Note that while ~; is the transport relaxation time
due to impurity scattering, &U is basically the life-
time due to electron-electron scattering. The phys-
ical meaning of the latter was discussed earlier.

N —69+k &+I 0

The poles q =+~/UF and q =+2k+ of 4+k con-

tribute equally to 4', yielding the Korringa result
0
0
0

s
0

+ 0 0 0 kg TpF 24 (co)= =A'm'ksTpp .
Up

(3.19)

FIG. 3. T matrix approximations. This expression is independent of the frequency ~.
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3. Approximate general behavior

At low temperatures the dominant contribution
to the Coulomb scattering in (3.7)' is shown to arise
from "horizontal" transitions across the Fermi sea.
The "vertical" transition in the neighborhood of
k'=k is less important even at higher temperatures
due to the cancellation of the factor 4k —4k in
the k' summation as well as due to the vanishing
of the T matrix at k'=k. Noting that the sum-
mand in (3.7) is a smoothly behaving function of
k', we approximate [cf. (3.9)]

4=g( fi—)6
k

one rewrites (3.21) as

[ t(~—~k, , )+ «» —+&v )litik

1 e —1
~k,q+ 2 haik 0 k+r—v

and similarly,

k'

(3.23)

(3.24a)

(3.20)

The magnitude of A, becomes A, =2 sink+ at low
temperatures and roughly A, -2 at high tempera-
tures (i.e., kiq T ~~ 4t). Although crude, this ap-
proximation makes the transport equation (3.7)
soluble without distorting the underlying physics.

The transport equation (3.7) is then simplified as

~k q )@k ~k q (2rik ) (0k 0—k )

2U,g
k' k k'

fif3t

(3.21)

('

=~—k,q+ 2 haik 0k++v
k'

(3.24b)

J —J ilc —J
+k +ik ++U (3.25)

In the limit cork && 1, (3.24) reduces to the Kor-
ringa result (3.18). In the opposite limit cock && 1

important contributions arise from q &~ lk where
lk =Uk'Tk. In this limit one finds from (3.24), using
(3.15) and the self-consistency condition (3.23),

2U, it
&U =

~ g( —fi)
A t

(3.22)
(3.26)

where

g=rv 'g( fj)—e —1—lQ)+Vk

co + Uktf —t~(rk +rv )+rv (3.27)

The summand in (3.27) is expanded in terms of
co~* and qlk, yielding

D=&r»U»&—= g( fi )rkUk/g( —fk) . —
k k

(3.30)

Finally, one finds from (3.1) and (3.29)

(3.29)
4 (co)=

ktiTQ( fj)—
k

2t 2DN
(3.31)

This expression reduces to (3.17) at low tempera-
tures.
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B. Interchain Diffusion

The linear chain model considered in Sec. III A
is highly idealized. In an actual system the elec-
tron can eventually tunnel to a neighboring chain,
given enough time (namely, for a smal] Larmor fre-

quency). In the following we study the effect of a
small (i.e., t„«kil T,t, ) interchain tunneling. For

example, the ratio of the interchain to interchain
tunneling integrals for TTF-TCNQ is of order
t /t, —10 . For simplicity we ignore the impuri-
ty scattering (i.e., r;k = oc) and consider the low-
temperature (kil T« eF) diffusion limit (cps* « 1).

The intrachain Coulomb scattering is still
described in the manner given in Sec. III A 1. In
analogy with (3.7), one has (tF

——0)

( fk )[Pk—(t'C ) 2Ctk'+4k],
1

i
K(k, k';k', k)

i

A' t k, sink —sink' (3.32)

where U k
——2t~a A

' sin k a~, k:—k„and

4k = g 4k(k. ) .
k„

(3.33)

(vk q)"
Pn =~ . o(k) —l (CO —V k

'q )+7 k

(n =0, 1) (3.3&)

one finds from (3.32) and (3.33)

[po(kF)+ro ']4k 2' '0 k— —

=po(kF )p] (kF ) ', (3.36a)

and similarly

—2' 0k+[po( kF)+ro 10 k, —

=po( —kF)pi( —kF) ', (3.36b)

The T matrix is independent of the transverse wave

vectors k„.
Defining the lifetime of the state k by

1 iK(k, k', k', k)
i (, )+k

fipt k,
~

sin k —sin k'
~

(3.34)

and

g D~qc& —l CO

(3.39)

In (3.39) the intrachain diffusion constant is given

by D, =~*UF and

D =rpg(uP ) =rp((uP ) ) (ccQz) . (3.40)
k

The quantity in (3.40) describes the interchain dif-

fusion constant of an electron which is in a band
motion along the chain and occasionally tunnels to
the adjacent chain. The expression in (3.40) agrees
with that derived earlier. ' Note that the inter-
chain diAusion constant is proportional to the life
time ~0 while D, is proportional to ~ . This is due
to the fact that the duration time for interchain
tunneling is limited by the lifetime of the state in
the chain. This is more clearly seen by rewriting
(3.40) as'

D = g(rpuP ) /ro.
k

po(+kF)=rp '[1 leap(co—+uFq&)+1pD&q&] &
(3.38)

one finds

I
~ ~Daqa+ 4 ~+WUpq,

where

~

K(kF, kF& kF&kF—) ~—
(3.34')

The numerator represents the transition probability
during time ~0 and summand the transition rate
from each mode.

Finally, inserting (3.39) in (3.1), one obtains

QD, q'
The coupled equations (3.36) are solved. Expand-
ing

P 1 ( +kF ) — l vpDx qx +uF qz so l UF qg %0 &

(3.37)

C&'(CP)=)33 'PF g
gD q' +co'

(3.41)
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a well-known form in the diffusion problem. The
detailed frequency-dependent behavior of 4'(e) can
be obtained by a numerical integration. In the lim-
it co, » co» co„,co~ where co~=D~a~, the expres-
sion in (3.41) reduces to the one-dimensional result
(3.17). A two-dimensional behavior 4'(co)a into is
obtained for co„,to, » to » to~, while three-di-
mensional behavior 4'(w)ace'~ is expected for
CO»N&, Nz ))N.

IV. SUMMARY AND DISCUSSIONS

The frequency-dependent behavior of the nuclear
spin relaxation rate is studied in a quasi-one-
dimensional Hubbard band. An explicit expression
is obtained for the spin correlation function both in
the diffusion limit (d'or~ && 1) and Korringa regime
(toe*» 1). The combined effect of impurity
scattering and electron-electron interaction is ex-
amined. The effect of interchain tunneling is inves-

tigated. The present result is valid outside the in-

sulating regime where the Coulomb correlation is
strong and the band is nearly half-filled.

In the following we study various limiting be-

haviors of the present results in the diffusion limit
(row* « 1) and compare them with the high-
temperature (kz T» 4t) strong-coupling (U » 4t)
results obtained previously" for a Hubbard chain.
Defining n as the number of electrons per site, we
find from (3.22), (3.30), and (3.31),'

~( )
n(1 n/2)—

4+2Dco

2t a
7

(4.1)

(4.2)

n(l —n/2) . (4.3a)

The above result is valid at low concentration
(n « 1). If one sets A,=2, the expression in (4.1)

agrees with that of Villain' to within a factor-of-
order unity. However, it disagrees with that of De-
vreux' who found D ~n ' . Such a concentration
dependence is diAicult to understand because, as
noted in the present work, the diffusion constant is
linear in the scattering time ~* which is expected
to be inversely proportional to the number of
scatterers (i.e., n). In quinolinium-(TCNQ)z, for
example, one has' t=0.04—0.05 eV, U=0. 15
—0. 18 eV, and n =0.5, and the diffusive behavior
is obtained for co &r* '=2.4&10' sec

In the high-temperature weak-coupling limit

(U «4t) the results in (4.1) and (4.2) are valid for
all concentrations, and the collision rate is given by

yielding

UA,
n (1 n—/2),

fit
(4.3b)

U fg
4"(~o)=-

St mta A,

1/2

[n(1 n/—2)] i . (4.4)

Note that all the quantities in (4.1)—(4.4) are in-

dependent of the temperature.
At low temperatures the quantity 4'(co) is found

from (3.12), (3.13), and (3.17):

A =2m ~z(kF, k„kF—,kF) ~—'pF2. (4.6)

In (4.5) the temperature dependence is shown expli-
citly and the contribution ~; from impurity
scattering is included. In a one-dimensional metal
electron-electron collisions are nonresistive for dc
transport because the momentum-dissipating U
processes are not allowed, in general, except for a
half-filled band. In the present problem, however,
due to the distinguishability of spins involved in
the collision between antiparallel spins, even the N
processes dissipate the momentum of a given spin;
from the point of view of an up spin, a down spin
represents a moving impurity which provides an
inelastic scattering potential. Therefore, the dif-
fusion constant obtained from a nuclear spin relax-
ation measurement does not necessarily determine
the dc electron mean free path when electron-
electron collisions are involved. This effect should
be important in one-dimensional organic conduc-
tors' and metallic polymers' and reveals itself
through the characteristic temperature dependence
in (4.5).'

The second term in the parentheses of (4.5)
represents the Coulomb scattering rate wU defined
in (3.13) and equals

2

rU —3.4X10"T —
2

(sec '),
4t sin kF

where T is in units of K. For a filling of 0.6 elec-
tron per site of the conducting TCNQ chain and
for K/4t-1/2, one has

rU
'—1.3T X 10" (sec ')

kg Tp~4'(co)= (r; '+A% 'k&T)'i, (4.5)
2UF 2'

where A is a dimensionless constant
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This value is comparable to the transport relaxa-

tion rate (expressed in sec ') in TTF-TCNQ de-

duced from the dc metallic resistivity data'
'(80—300 K):

rt, '-1.76T&(lo" (s« ') .
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