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M. Kaveh
Cavendish Laboratory, Cambridge, C83 OHE, England~

(Received 14 January 1981)

The commensurability dependence of conduction in one-dimensional systems has been
studied. A new umklapp scattering mechanism is proposed in the commensurate phase
which causes a quenching of the 2k+ phonon flow. It is shown that this quenching
mechanism accounts quantitatively for the following observed features: (i) the difference
Ao between the conductivity of tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ)
in the commensurate and incommensurate phase, (ii) the temperature dependence of Ao;
(iii) the pressure dependence of Ao; which explains why the observed Ao for tetraselenoful-
valene (TSF)-TCNQ is small, (iv) the commensurability width, and (v) the difference in the
effect of commensurability on the conductivity perpendicular to the chains and along the
chains. Comparison is made between the present theory and the sliding charge-density-
wave contribution to the conductivity.

I. INTRODUCTION

Transport phenomena in quasi-one-dimensional
conductors have recently attracted a great deal of
interest. The origin of conduction in the metallic
phase in these materials above the Peierls transition
was one of the main interests in this field. Immedi-

ately after the detection of the high conductivity of
'I I'F-TCNQ (tetrathiafulvalene tetracyano-
quinodimethane —the prototype of one-dimensional
organic conductors) by the Penn Group, ' many
theories were initially suggested to explain the
features of this high conductivity. Bardeen and in-

dependently Lee et al. suggested that the high con-
ductivity is due to sliding charge-density waves

(SCDW), a mechanism originally proposed by
Forhlich to explain superconductivity.

Motivated by this interpretation Salamon et al.
measured the thermal conductivity. According to
the Bardeen theory, the %iedermann-Franze ratio
L/Lo should be about 10 . However, the experi-
ment did not support this prediction. The measured
ratio L /L o was about 1, ruling out the SCDW
mechanism as the dominant conduction mechanism.
On the other hand, this experiment seemed to indi-
cate that conduction takes place by single-particle
mechanisms. Accordingly, many single-particle
theories have been proposed. ' On the other
hand, it was found that the conductivity depends
strongly on the frequency of the applied G.eld
(Heeger, ' Jacobsen' ). In addition, it was found' '
that the conductivity decreases under irradiation by

deuterons or by x ray. Neither of these two experi-
ments can be explained by a single-particle mechan-
ism (see a discussion by Heeger' ).

An important development for the understanding
of the origin of conductivity of one-dimensional sys-
tems was recently made by the Orsay group.
They measured the conductivity as a function of
charge transfer Z by applying pressure on TTF-
TCNQ at a fixed temperature. They thereby ob-
tained the conductivity for both the incommensurate
phase and the commensurate phase.

In this paper we present an explanation for the
difFerence in conduction between the two phases. In
particular, we explain the following experimental
facts (Andrieux et al. , Jerome ').

(i) The conductivity in the commensurate phase
2

(Z = —,) is lower by a factor of 2 than the conduc-

tivity in the incommensurate phase near the Peierls
transition temperature.

(ii) The conductivity perpendicular to the chains o
does not change on going from the incommensurate
phase.

(iii) The drop in conductivity as a function of
pressure ranges over about 5 kbar. It does not oc-
cur abruptly at the pressure of 19 kbar, which pro-
duces the commensurate charge transfer Z =

3 .
(iv) The commensurability dependence occurs

only at low temperatures (T & 150 K), disappearing
completely by room temperature.

The Orsay group and later other authors attri-
buted all these results to SCDW, which we denote
by acDw. The idea that an incommensurate CD%
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is weakly coupled to its underlying lattice was treat-
ed by many authors. A discussion for the possible
sliding of a COW in a incommensurate phase was
given by Sacco et al. ' The behavior of o.cDw
near the Peierls transition was already calculated by
Patton and Sham. ' They show also that the
enhanced conductivity is suppressed in the dirty
limit. The enhancement applies only to the incom-
mensurate limit. Both of these results are in accord
with the Orsay experiment. However, the tern-

perature dependence of the enhanced conductivi-

ty ' Acr is (T —T~)
'~ and is not in agreement

with the observed temperature dependence 6o-~ T
(roughly).

In this paper we take a different path and present
a single -particle theory. The conductivity is calcu-
lated directly from the Boltzmann equation. The
enhancement of the usual single particle conductivi-

ty is given through the effect of phonon drag. '

We solve the coupled Boltzmann equations for
electrons, phonons and librons and calculate expli-
citly two additional conductivities. The first o.

21,F
due tp the effect of phpnon drag' ' and oL due
to libron drag. In the commensurate phase we
show that the phonon system must remain in ther-
mal equilibrium yielding the usual single-particle
conductivity with no phonon drag effects. This is
achieved due to a new umklapp scattering mechan-
ism which is operative only in the commensurate
phase. We also calculate the temperature

(ozk —T ) and pressure dependence of o2k andF F
find excellent agreement with the observed 6o.. %e
account quantitatively for the difference in 6o.
between 'I l'F-TCNQ and tetraselenofulvalene
(TSF)-TCNQ. In addition, our calculated OI offers
a solution to the apparent contradiction between the
observed collective phenomena' ' and the lack of
commensurability dependence at room tempera-
ture. We show that o.

L does not depend on corn-
mensurability and remains the same as in the in-

commensurate phase. However, oL ~0 in the "dir-

ty limit" or for high electric field frequencies. Thus,
the high-temperature "collective" phenomena are
accounted for in our single-particle approach. It
should be noted that our results are unrelated to the
existence of a many-body sliding charge density
wave. We argue that o.

21, dominates over ocDw.F
At temperatures T & 150 K the dominant
enhanced conductivity is ol .

The paper is structured as follows. In Sec. II, a
phenomena classification is presented; in Sec. III the
commensurability dependence of the 2k+ phonon

drag is discussed. The effect of commensurability
dependence of the conductivity perpendicular to the
chains is discussed in Sec. IV and its effect on libron
drag in Sec. V. A quantitative account for the ex-
perirnents is given in Secs. VI and VIII and the
Summary follows in Sec. IX.

II. PHENOMENA CLASSIFICATION

%e can summarize the theoretical situation by
writing the conductivity as a sum of two contribu-
tions, a single-particle contribution o;„and a collec-
tive contribution o.„ll,

O = Osp. + Ocoll

Here, we concentrate on o„ll. We may have a con-
tribution to o.„ll from sliding charge-density waves
(SCDW) proposed by Frohlich and reproposed 2 to
account for the experiment. It is denoted here by
o.cDw. However, we must have the experimental
constraint that ocDw ~ o,p since the Wiedemann-

Franz law is obeyed. This is in contrast to the first
suggestion that almost all the conduction is due to
SCDW. In addition to ocDw, it was suggested
that two mechanisms can explain the irradiation'
and ac experiments. ' The first mechanism is the
2kF phonon drag, which contributes an extra con-
ductivity o.2k . The second mechanism is caused byF
the unique role of the strong second-order electron-
phonon interaction. This interaction is

strpng ' ~' 7' because pf the cpupljng of electrons
to the rotational modes of the molecules in the one-
dimensional organic charge transfer conductors. It
was shown that the excess of absorbed momentum
in the librational modes causes an increase in the
conductivity even at room temperature. This idea is
called "libron drag" and we denote its contribution
to the conductivity by oL. It should be noted that
o p o2$ and o& are conductivities caused by theF
single-particle Bloch electron states. o.2I, and oLF
are extra conductivities caused by the 2k+ phonons
or by the librational modes which drag the Bloch
electrons and cause an additional current. By con-
trast, ocDw is caused by electron states not included
in the electron Bloch states.

Thus, we may write o.„ll as a sum of three contri-
butions:

co11 ~CDW + o2k+ + OL

The existence of a nonzero o.„ll is supported by
three experiments: (i) the irradiation' dependence
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of o; (ii) the frequency"' dependence of o; and (iii)

the commensurability dependence of o.. These ex-
periments can be classified as temperature-
dependent and temperature-independent phenome-
na. The commensurability dependence of o disap-
pears above 150 K in TTF-TCNQ and may be clas-
sified as a low temperature phenomena. On the
other hand, the irradiation dependence' and the fre-

quency dependence' of o do not depend much on
temperature. This classification suggests that there
are two different mechanisms responsible for the
two classes of phenomena. We show in the next
two sections that among the four sources contribut-
ing to o. in Eqs. (1) and (2) only oak and ocDw

depend on commensurability, o;p and oL do not.
Also, we show that o.

2I, is large only below 150 K
in agreement with experiment. The fact that o.

L

does not depend on commensurability is consistent
with the above classification. It was shown that

ol is a high -temperature phenomenon being about
the same as o;~ even at room temperature. More-
over, it was recently shown that aL vanishes for
co ) 10 sec ' in accord with recent experiments. '

Thus, it is satisfactory to see that the sE'mI'lar de-

crease in o under irradiation or by increasing the

frequency is accounted for by the same quantity oL.
Moreover, since both of these effects occur at room
temperature, they cannot be attributed to ocD~,
which is a low-temperature phenomenon. The fact
that we find o.I to be independent of commensura-
bility completes the physical picture. Thus, ocDw
and o.2k account for the commensurability experi-

F
ment whereas oL accounts for the room-20

temperature collective phenomena. ' ' We concen-
trate here on o.2k and o.l. The properties of ocD~
can be found in the papers of Heeger, ' Andrieux
et al. , and Bishop.

III. COMMENSURABILITY DEPENDENCE
OF o2kF

It was shown ' that the first order electron-
phonon interaction in one-dimensional systems is

not resistive. This is due to one-dimensional pho-
non drag. In the presence of an electric field, the
steady state requires a 2kF phonon flow in addition
to the charge current along the chains. In this view,
the extra conductivity o.2k is achieved by draggingF
the kF electrons via 2kF phonon flow. The kF elec-
trons and the 2kF phonons form a closed system
and the electrons cannot lose their extra momentum
(gained by the electric field) via an electron-phonon

interaction. The main idea is that in a one-
dimensional system the 2kF phonons can interact
with all the electrons on the nested Fermi surface.
This gives an effective channel for momentum
transfer from the 2kF phonon system back to the

kF electrons. This explains the absence of a linear
term in the temperature dependence of the conduc-
tivity for pure organic systems and its reappearance
under irradiation.

We argue here that the 2kF phonon drag picture
is possible only in the incommensurate phase. In
the commensurate phase this picture breaks down.
Thus, the lower conductivity in the commensurate
phase arises because the 2kF electron-phonon in-

teraction becomes resistive.

The quenching mechanism for phonon drag in

the commensurate phase can be understood in the
following way. Diffuse x-ray scattering shows an
enhanced intensity for a momentumwhange of
2kF. ' This ' 2kF" satellite reflection is appreci-
ably only below 150 K for TTF-TCNQ. Near the
Peierls transition temperature, Tp ——53 K, there are
large dynamical fluctuations to a distorted lattice
with periodicity in momentum space, g = 2k~.
The 2kF x-ray intensity increases sharply as the
temperature approaches Tp. Thus, there is a ten-

dency to form a super-lattice in addition to the
underlying lattice. This tendency to a new order
must influence not only the structural properties,
measured by external scattering but also the internal
scattering, i.e., the single particle scattering of elec-
trons within the material.

We now show here that there exists a new possi-
bility for umklapp scattering which is possible. only
via the superlattice. This mechanism is effective,
therefore, only below the mean-field temperature

TMF. In a one-dimensional system with charge
transfer Z & 1 the usual electron-phonon umklapp
scattering process 2kF ——q + G is impossible (where

q is the phonon wave vector and 6 the reciprocal
lattice vector). Only a normal electron-phonon
scattering process 2kF ——q is possible. However, in

the commensurate phase, a superlattice with

g = 2kF is "in phase" with the underlying lattice.
Thus, in the commensurate phase there exists the
following umklapp scattering process

2kF -q+ 6',
where G ' = G —g is a new reciprocal-lattice vec-

tor. Therefore, there are two different scattering
processes each corresponding to a different phonon,

by which an electron in state —kF can give up its
momentum by being scattered to a + kF state
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qN ——2kF normal scattering

qU = 2kF —G ' umklapp scattering.

2
For charge transfer Z = —,, for which G = 4k+/Z
= 6kF, we get

tively, the net momenta for the 2kF phonons, the kF
electrons, and the —kF electrons. In the commens-
urate phase, a 2kF phonon can be excited by a kF
electron and a —kF electron. Therefore, in the
steady state, we get

9U qN
Ppi,(2kF )

T~

P, (kp) P, ( —kF)
+

+N

q = ( —2k'. ) + G' = 2k~

This implies that there should not be any drag ef-

fect, since the 2kF phonons do not absorb any net
momentum from the electron system. This idea is
illustrated in Fig. 1(b) and can be derived from the
following phenomenological equation of motion for
the 2kF phonons in the commensurate phase

dPpi, (2k' )

dt

dP, (kF) dP, ( —k~)
+

where Ppi, (zkF), P, (kF), and P, ( —kp) are, respec-

~N

A~ 8
C~ 'D

9„
kF

(a)

This situation is illustrated in Fig. 1(a). A normal

process corresponds to scattering from 3 to 8 via

qN. An umklapp process corresponds to scattering
from C to D via the lattice vectors G, —g, and q„.
The above results lead to the complete quenching of
o.2~ in the commensurate phase. In the incom-

F
mensurate phase a phonon q = 2kF may be excited
only by a 2kF change in electron momentum.
However, in the commensurate phase the 2kF pho-
non may also be excited by a —2kF change of elec-
tron momentum via umklapp scattering. Thus, in

the commensurate phase, we have two possibilities,

q = 2kF

where 7&„~N, and ~„are, respectively, the phonon-
electron scattering relaxation time, the normal
electron-phonon scattering relaxation time
(2kF ——q), and the umklapp electron-phonon
scattering relaxation time (2kF ——q + G ).

In the incommensurate phase, the umklapp term
[second term of (8)] does not exist, leading to a
nonzero Ppi, (2k~) which cancels the first-order
electron-phonon scattering from the resistivity (see
Kaveh and Weger ). However, in the commensu-
rate phase the umklapp term is nonzero and exactly
cancels out the normal term. Therefore,

Ppi, (2kF) = 0 in the commensurate phase because
~z is equal to ~N in a one-dimensional system.
and r~ involve the following ingredients: (i) matrix
elements between initial state lk i ) and final state

lk2), (ii) N(co~), the number of phonons of wave
vector q participating in the scattering event
described by Eq. (4), and (iii) the phase space in-
volved in the scattering. In a three-dimensional sys-
tem, all three of these factors are different for nor-
mal and for umklapp scattering. However, in a
one-dimensional system, there is only one scattering
event for normal scattering or for umklapp scatter-
ing [see»g 1(a)l Thus lki) =

l

—k~)
l
k2) =

l
kF ) for both normal and umklapp

scattering. This yields the same matrix element
(which is a function of k2 —ki ——2k~). Moreover,
since lq l

is the same in both scattering events,
there are the same number of phonons N (to~ ) avail-
able. Finally, the phase space is obviously the same
for both scattering events. Thus, it follows that

P, ( kF) P, (kF)—
&U

k p FLFCTQON5 &kg &HONON S -lt. ELECT/ON S

{b)

FIG. 1. (a) Normal and umklapp electron-phonon
scatterings. The definitions of qz, qU, Q, and 6 are
given in the text. (b) Momentum transfer for 2kF pho-
nons in the commensurate phase from kF and —kF elec-
trons via relaxation times ~~ and ~U.

where we make use of the relation P, ( —kF) =
—P, (kF). This yields, from (8), the expected result
that Ppi, (2kF) = 0. Hence, in the commensurate

phase, first-order electron-phonon scattering does
contribute to the resistivity and the conductivity is

accordingly lower.
%e now show that this quenching mechanism is

in fact a low-temperature phenomenon in agreement
with experiment. The mechanism for quenching
o.

2~ is ultimately based on (3), which is exact only
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if the 2kF superlattice is static. The dynamical
character of the superlattice "smears out" the
momentum conservation law (3), because of a finite
coherence length. Thus, we must replace the
momentum delta function for the electron phonon
scattering by a Lorentzian function.

5(2kF —(q + G —g))

(2/n)g

1/g + [2kF —(q + G —g)
(10)

where g is the coherence length for the fluctuations

to the superlattice structure. We see from (10) that

(3) is valid only for large g. The magnitude of g
may be deduced from the half-width of the intensity

peak of the 2kF x-ray scattering. In this way, the

experimental g(T) as a function of temperature was

obtained. ' ' It was found that g(T) increases

sharply below 150 K. For TTF-TCNQ, g(150) =
2b (b is the lattice spacing) whereas g(58) = 50b.
Inserting these values for g(T) into (10) shows that

only below 150 K is the momentum law in (3)
valid, whereas above 1SO K, it is smeared out. In
other words, the quenching mechanism for o.

21,

proposed here is effective only when the coherence

length is large. Therefore, the difference between

the conductivities in the incommensurate and corn-

mensurate phase vanishes above 150 K. This is in

agreement with experiment. We see that o.2k

possesses the same properties as oco. Namely, it

is nonzero only in the incommensurate phase. In
addition, both conductivites almost disappear for ir-

radiated (or impure) samples.

IV. EFFECT OF COMMENSURABILITY
ON oi

The conduction perpendicular to the chains is re-

lated to the single-particle conductivity along the
chains. ' Therefore, the proposal that commen-
surability affects only o.zk is consistent ' with theF
experimental fact that oz does not depend on com-
mensurability. The 2kF electron-phonon scattering
is not resistive in the incommensurate phase because
of phonon drag. However, this scattering does des-

troy the phase correlations between the chains and
therefore does contribute to oz even in the incom-
mensurate phase. Thus, the commensurate phase
affects only the conductivity along the chains by
suppressing phonon drag. This idea receives further
support' ' from the recent experiments on the ef-

fect of irradiation on o&. The experiments clearly
indicate that the effect of irradiation on o& is an or-

der of magnitude less than the effect on the conduc-
tivity along the chains. This fact is consistent with
the present idea that phonon drag is a one-
dimensionsl effect. Irradiation quenches phonon
drag and so the conductivity along the chains de-
creases without an accompanying effect on o~. This
is very similar to the effect of commensurability for
which we propose a similar explanation. Note that
quenching of phonon drag by irradiation is already
achieved by relatively small doses of irradiation. '

The behavior of the conductivity for higher doses of
irradiation was recently extensively studied by the
Fontenay-aux-Roses group.

Turning now to o.,p, the experimental fact that o&

is independent of commensurability is strong evi-

dence ' that o;~ is also commensurability indepen-
dent, since o& ~ o;p.

V. EFFECT OF COMMENSURABILITY ON oL

qz = 2kF —q~ .

q2
———(2k' —q)) + g + G

(12)

This leads to q2 ———,(+ —g + G). For TTF-
TCNQ, this gives,

q 2 = +2kF and q 2 = +kF (13)

Therefore, only four events for 0 & q2 & G/2 are
possible (and in both phases). We see that since a
second-order electron-phonon interaction involves a
general phonon wave vector q + 2k+, commensura-
bility does not affect oL, .

The origin of o.
L is related to the effectiveness of

the second-order electron-phonon (or libron) interac-
tion, which conserves momentum. It was shown
that processes for which

2kF = qi+ q2

are not resistive. We see that unlike first-order
scattering we now have two phonon wave vectors.

The libron drag mechanism is caused by excess of
net momentum for every phonon state. Thus, the
momentum absorbed by the q2 phonon is 2kF —q &.

The following question arises: Is it possible to find
another process in which the q2 phonon may absorb
momentum of —(2kF —q ~)? In that case there
would not be any excess momentum for the state

q2. We now show that such a possibility exists only
for a few qz states. These are
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g ale

VI. QUANTITATIVE STUDY OF

COMMENSURABILITY

We have so far established that among the four
contributions to the conductivity, ocDw (as given

quantitatively by Bishop and references therein)

and cr2k depend on commensurability, whereas 0;„F
and oL do not depend on commensurability. It has

already been pointed out by Heeger et al. ' that it
is difficult to distinguish between cr2k and O.cD~ in

the temperature dependence of cr in the incommens-

urate phase. The new common property, commen-
surability dependence, makes it even more difficult.
The properties of ocD~ were already studied. We
here calculate o.2k and its commensurability depen-

F
dence.

We introduce the notation 60. to denote the
difference between the conductivity in the incom-
mensurate phase 0.

&c and the conductivity in the
commensurate phase oc, Thus,

~0 = &ic —Oc

where both 0.
&c and O.c refer to the conductivity

measured at a pressure of 19 kbar. Pressures
P & 19 kbar correspond to a charge transfer of
Z & —, for 'IT'F-TCNQ (see also Conwell ). This

means that extrapolating the measured conductivity
from below 19 kbar to P = 19 kbar yields crIc, the

conductivity in the incommensurate phase at
I' = 19 kbar (see Fig. 2). The measured conductivi-

ty minimum gives o.c, the conductivity at 19 kbar in

the commensurate phase (see Fig. 2). In Fig. 3, we

plot the temperature dependence of 60. by drawing
a smooth curve through the seven experimental
points. We see that 60. decreases very rapidly as a
function of temperature. For 80 & T & 150 K,
ho. —T (roughly) with b,o decreasing even faster
above 150 K.

In the phonon-drag picture, the conductivity in

the commensurate phase is lower than the conduc-
tivity in the incommensurate phase because of an
additional resistive mechanism. (This is in contrast
to the SCOW mechanism which freezes out a con-
ductivity in the commensurate phase. ) Thus, one

may express 02k asF

1

~2' =
Pic

1

P& + Pic
(16)

where p& and p&c are, respectively, the resistivity due
to the first order electron-phonon interaction and
the resistivity in the incommensurate phase.

We now calculate 02I, by using ' the Hopfield

expression for p~ and taking p&z from experi-
ment. This leads to o.zk ~ T in accord with

the data for ho below 150 K. The more rapid de-

crease of 60. above 150 K is due to two reasons.
First, (16) is not valid above 150 K because the

quenching mechanism for oak in the commensurate
F

phase breaks down, as already explained, leading to
40 & Oqk . Second, ozI, is quenched above 150 K
even in the incommensurate phase, because in this

temperature range the damping of a phonon via in-

teraction with another phonon is-comparable to the

damping constant via phonon-electron interaction.

l. 5—

l.O

E
O

Cy

0
b

l.o—E

O

b 05
CI

IO I8
P (kbar)

30
0.0

IOO l 50 200 250

FIG. 2. Pressure dependence of otic and o.c at 85 K.
The vertical lines define the range of "pressure commen-
surability" due to thermal smearing.

FIG. 3. Temperature dependence of 4o. at I' = 19
kbar.
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In summary, we have a complete explanation for
the temperature dependence of Ao..

VII. COMMENSURABILITY WIDTH

Thus, we may satisfy the quenching condition,

qU = —q~, even for

kp(Z = —, ) + 5kF

We may approximate 5kF from the thermal ener-

gy to get

AT
5kF —— kF

26'F

which gives 5kF —0.03kF. Using the relation
between pressure and charge transfer (see also

Conwell ) leads to

(18)

5kF 5P —, —O.S90

. kF P
(19)

For P = 18 kbar (commensurability pressure at 85
K) we get a commensurability width 5P 5 kbar
in agreement with experiment.

In Fig. 2 we plot the measured conductivity as a
function of pressure at T = 85 K. One sees that
the "commensurability width" (the range of pres-
sures for which the conductivity is decreased) is

about 5 kbar. This is a large width in view of the
fact that a pressure of 19 kbar is required to change
Z from 0.590 (at P = 0) to Z = —, . It will be

demonstrated that this width can be accounted for
within the framework of the present theory.

The quenching mechanism we have proposed is

closely connected with the commensurate value of
1

+kF, namely +kF ——+ —,G. We now argue that the

commensurate width is a manifestation of the fact
that the metallic phase in TTF-TCNQ occurs at re-

latively high temperatures. Since the degeneracy en-

ergy ez for TTF-TCNQ is low, about 0.1 eV, the
electron thermal energy smears out" the sharpness
of the commensurability decrease of o.. Therefore,
we attribute to kF a thermal width 5kF in the
momentum conservation argument of Sec. III for
quenching o.

2~ in the commensurate phase. This
F

modifies (4) into the following equations,

q~ ——2kF + 25kF
(17)

q~ = 4kF —G + 45kF

In view of the above discussion, our interpretation
of Fig. 2 is as follows. There are two conductivities
as a function of pressure, u&c and o.c. Values for
o.qc at P ~ 10 kbar may be obtained by extrapolat-
ing the results from P & 10 kbar. This gives the
straight line denoted as o&c in Fig. 2. In the next
section o.c at P = 0 will be shown to be smaller
than 0;c(P = 0) by a factor of 1.4. At the
minimum, at P = 18 kbar, the measured conduc-
tivity is associated with o.c. Therefore, we may use
the straight line passing through crc(0) and oc(18) to
estimate the pressure dependence of o.c.

The two parallel lines in Fig. 2 correspond,
roughly, to the thermal smearing width discussed
above. Our interpretation is that the measured
conductivity as a function of pressure undergoes a
transition from oic(P) to oc(P) over the region of
thermal smearing.

VIII. DIFFERENCE BETWEEN TTF-TCNQ

AND TSF-TCNQ

It was found ' that the change in conductivity for
TSF-TCNQ in the commensurate phase is much
smaller than for TTF-TCNQ. This is somewhat

surprising since both compounds become 3
com-

mensurate under pressure. Moreover, the transport
and structural properties of these compounds are
essentially the same. Although no "4k+" reflection
has been observed in TSF-TCNQ, we may assume
that "4kF" reflections are absent in both compounds
at commensurability, since the 4kF reflection is be-
lieved to disappear under pressure in TTF-TCNQ.

We now attempt to account for the difference
between these compounds within the framework of
the present theory. Since the quenching mechan-

isms proposed here should apply equally for both

compounds, we believe that the experimental differ-

ence is a quantitative effect and not a qualitative

one. For TSF-TCNQ, the linear electron-phonon
term p&, which contributes only in the commensu-

rate phase, is small compared to the quadratic term.
An important difference between TTF-TCNQ and

TSF-TCNQ is the pressure at which commensura-

bility is achieved. For TTF-TCNQ a pressure of 19
kbar is needed, whereas for TSF-TCNQ, only a few

kbars are needed for commensurability since Z is al-

ready close to commensurate. The fractional
change in the resisitivity p&/p&c increases with pres-
sure. From irradition experiments, ' Kaveh et al.
obtained (pi/pic~, 0.3 for TTF-TCNQ. This

estimate was consistent with the value derived
from the Hopfield expression for p, (P = 0), using
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A, = 0.2 for the electron-phonon coupling constant
deduced from Tp.

We obtain the pressure dependence of p& from es-

timates of the pressure dependence of the pho-
non frequency co, using p& ~ co . This yields

(pit pic)p=19/ (pl/ pIc)p=o = 2. Therefore, .

pl(P = 19)=p,c(P = 19), in agreement with, the
experiment which indicates that pc is higher than

p&c by a factor of 2. Therefore, the pressure at
which commensurability is achieved is important.
The fact that Ao. is larger when the commensurate
pressure is larger is thus seen to account for the
difference in behavior between TTF-TCNQ and
TSF-TCNQ. We take this as a support for the
dominance of 0.

21, over crcDw in explaining the

difference in conduction between the commensurate
and incommensurate phase.

dence of Ao; which leads to a difference in the ef-
fect for TSF-TCNQ relative to 'I t'F-TCNQ, (iv) the
commensurability width, and (v) the difference in
the effect of commensurability on the conductivity
perpendicular to the chains and along the chains.
Thus, we have demonstrated that cr2k may by itself
account for all the experimental observation. The

I

correlation between +2k and o.cDw was discussed.F
In particular, we have shown that the various con-
tributions to o. can be classified as either low-
temperature contributions or as high-temperature
contributions. Both ozI, and O.cDw are shown to beF
low-temperature contributions. The irradiation
dependence and frequency dependence of 0. at room
temperature are accounted for by O.L, which contri-
butes even at high temperatures. Finally, we have
shown that OL does not depend on commensurabili-
ty.

IX. SUMMARY

An analysis has been presented of the affect of
commensurability on the various contributions to
the conductivity. It is shown that 2kF phonon drag
accounts for the following commensurability
features: (i) the difference b, o between the conduc-
tivities in the incommensurate phase, (ii) the tem-
perature dependence of b,cr, (iii) the pressure depen-
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