Commensurate-incommensurate conduction in quasi-one-dimensional organic systems

M. Kaveh

Cavendish Laboratory, Cambridge, CB3 OHE, England* (Received 14 January 1981)

The commensurability dependence of conduction in one-dimensional systems has been studied. A new umklapp scattering mechanism is proposed in the commensurate phase which causes a quenching of the $2k_F$ phonon flow. It is shown that this quenching mechanism accounts quantitatively for the following observed features: (i) the difference $\Delta\sigma$ between the conductivity of tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) in the commensurate and incommensurate phase, (ii) the temperature dependence of $\Delta\sigma$, (iii) the pressure dependence of $\Delta\sigma$, which explains why the observed $\Delta\sigma$ for tetraselenofulvalene (TSF)-TCNQ is small, (iv) the commensurability width, and (v) the difference in the effect of commensurability on the conductivity perpendicular to the chains and along the chains. Comparison is made between the present theory and the sliding charge-densitywave contribution to the conductivity.

I. INTRODUCTION

Transport phenomena in quasi-one-dimensional conductors have recently attracted a great deal of interest. The origin of conduction in the metallic phase in these materials above the Peierls transition was one of the main interests in this field. Immediately after the detection of the high conductivity of TTF-TCNQ (tetrathiafulvalene tetracyano-quinodimethane—the prototype of one-dimensional organic conductors) by the Penn Group,¹ many theories were initially suggested²⁻⁶ to explain the features of this high conductivity. Bardeen² and independently Lee *et al.*⁴ suggested that the high conductivity is due to sliding charge-density waves (SCDW), a mechanism originally proposed by Forhlich⁷ to explain superconductivity.

Motivated by this interpretation Salamon *et al*.⁸ measured the thermal conductivity. According to the Bardeen theory,² the Wiedermann-Franze ratio L/L_0 should be about 10^{-4} . However, the experiment did not support this prediction. The measured ratio L/L_0 was about 1, ruling out the SCDW mechanism as the dominant conduction mechanism. On the other hand, this experiment seemed to indicate that conduction takes place by single-particle theories have been proposed.⁹⁻¹⁴ On the other hand, it was found that the conductivity depends strongly on the frequency of the applied field (Heeger,¹⁵ Jacobsen¹⁶). In addition, it was found^{17,18} that the conductivity decreases under irradiation by

deuterons or by x ray. Neither of these two experiments can be explained by a single-particle mechanism (see a discussion by Heeger^{19}).

An important development for the understanding of the origin of conductivity of one-dimensional systems was recently made by the Orsay group.²⁰ They measured the conductivity as a function of charge transfer Z by applying pressure on TTF-TCNQ at a fixed temperature. They thereby obtained the conductivity for both the incommensurate phase and the commensurate phase.

In this paper we present an explanation for the difference in conduction between the two phases. In particular, we explain the following experimental facts (Andrieux *et al.*,²⁰ Jerome²¹).

(i) The conductivity in the commensurate phase $(Z = \frac{2}{3})$ is lower by a factor of 2 than the conductivity in the incommensurate phase near the Peierls transition temperature.

(ii) The conductivity perpendicular to the chains σ does *not* change on going from the incommensurate phase.

(iii) The drop in conductivity as a function of pressure ranges over about 5 kbar. It does not occur abruptly at the pressure of 19 kbar, which produces the commensurate charge transfer $Z = \frac{2}{3}$.

(iv) The commensurability dependence occurs only at *low* temperatures (T < 150 K), disappearing completely by room temperature.

The Orsay group²⁰ and later other authors²² attributed all these results to SCDW, which we denote by σ_{CDW} . The idea that an incommensurate CDW

619

 $\odot 1981$ The American Physical Society

is weakly coupled to its underlying lattice was treated by many authors. A discussion for the possible sliding of a CDW in a incommensurate phase was given by Sacco *et al*.^{23,24} The behavior of $\sigma_{\rm CDW}$ near the Peierls transition was already calculated by Patton and Sham.^{25,26} They show also that the enhanced conductivity is suppressed in the dirty limit. The enhancement applies only to the incommensurate limit. Both of these results are in accord with the Orsay experiment.²⁰ However, the temperature dependence of the enhanced conductivity^{25,26} $\delta\sigma$ is $(T - T_p)^{-1/2}$ and is not in agreement with the observed temperature dependence $\delta\sigma \propto T^{-3}$ (roughly).

In this paper we take a different path and present a single -particle theory. The conductivity is calculated directly from the Boltzmann equation.²⁷ The enhancement of the usual single particle conductivity is given through the effect of phonon drag.^{14,27-29} We solve the coupled Boltzmann equations²⁷ for electrons, phonons and librons and calculate explicitly *two* additional conductivities. The first σ_{2k_F} due to the effect of phonon drag^{14,27-29} and σ_L due to libron drag.²⁷ In the commensurate phase we show that the phonon system must remain in thermal equilibrium yielding the usual single-particle conductivity with no phonon drag effects. This is achieved due to a new umklapp scattering mechanism which is operative only in the commensurate phase. We also calculate the temperature $(\sigma_{2k_F} \sim T^{-3})$ and pressure dependence of σ_{2k_F} and find excellent agreement with the observed $\delta\sigma$. We account quantitatively for the difference in $\delta\sigma$ between TTF-TCNQ and tetraselenofulvalene (TSF)-TCNQ. In addition, our calculated σ_L offers a solution to the apparent contradiction between the observed collective phenomena $^{16-18}$ and the lack of commensurability dependence²⁰ at room temperature. We show that σ_L does *not* depend on commensurability and remains the same as in the incommensurate phase. However, $\sigma_I \rightarrow 0$ in the "dirty limit" or for high electric field frequencies. Thus, the high-temperature "collective" phenomena are accounted for in our single-particle approach. It should be noted that our results are unrelated to the existence of a many-body sliding charge density wave. We argue that σ_{2k_F} dominates over σ_{CDW} . At temperatures $T \ge 150$ K the dominant enhanced conductivity is σ_L .

The paper is structured as follows. In Sec. II, a phenomena classification is presented; in Sec. III the commensurability dependence of the $2k_F$ phonon

drag is discussed. The effect of commensurability dependence of the conductivity perpendicular to the chains is discussed in Sec. IV and its effect on libron drag in Sec. V. A quantitative account for the experiments is given in Secs. VI and VIII and the Summary follows in Sec. IX.

II. PHENOMENA CLASSIFICATION

We can summarize the theoretical situation by writing the conductivity as a sum of two contributions, a single-particle contribution σ_{sp} and a collective contribution σ_{coll} ,

$$\sigma = \sigma_{\rm sp} + \sigma_{\rm coll} \quad . \tag{1}$$

Here, we concentrate on σ_{coll} . We may have a contribution to σ_{coll} from sliding charge-density waves (SCDW) proposed by Frohlich⁷ and reproposed²² to account for the experiment.²⁰ It is denoted here by $\sigma_{\rm CDW}$. However, we must have the experimental constraint that $\sigma_{CDW} < \sigma_{sp}$ since the Wiedemann-Franz law is obeyed.⁸ This is in contrast to the first suggestion that almost all the conduction is due to SCDW. In addition to σ_{CDW} , it was suggested^{27–29} that two mechanisms can explain the irradiation¹⁷ and ac experiments.¹⁶ The first mechanism is the $2k_F$ phonon drag, which contributes an extra conductivity $\sigma_{2k_{F}}$. The second mechanism is caused by the unique role of the strong second-order electronphonon interaction. This interaction is strong^{12,14,27,29} because of the coupling of electrons to the rotational modes of the molecules in the onedimensional organic charge transfer conductors. It was shown²⁸ that the excess of absorbed momentum in the librational modes causes an increase in the conductivity even at room temperature. This idea is called "libron drag" and we denote its contribution to the conductivity by σ_L . It should be noted that $\sigma_{\rm sp}$, σ_{2k_F} , and σ_L are conductivities caused by the single -particle Bloch electron states. σ_{2k_F} and σ_L are extra conductivities caused by the $2k_F$ phonons or by the librational modes which drag the Bloch electrons and cause an additional current. By contrast, σ_{CDW} is caused by electron states not included in the electron Bloch states.

Thus, we may write σ_{coll} as a sum of three contributions:

$$\sigma_{\rm coll} = \sigma_{\rm CDW} + \sigma_{2k_F} + \sigma_L \quad . \tag{2}$$

The existence of a nonzero σ_{coll} is supported by three experiments: (i) the irradiation¹⁷ dependence

of σ , (ii) the frequency^{15,16} dependence of σ , and (iii) the commensurability²⁰ dependence of σ . These experiments can be classified as temperaturedependent and temperature-independent phenomena. The commensurability dependence of σ disappears above 150 K in TTF-TCNQ and may be classified as a low temperature phenomena. On the other hand, the irradiation dependence¹⁷ and the frequency dependence¹⁶ of σ do not depend much on temperature. This classification suggests that there are two different mechanisms responsible for the two classes of phenomena. We show in the next two sections that among the four sources contributing to σ in Eqs. (1) and (2) only σ_{2k_F} and σ_{CDW} depend on commensurability, σ_{sp} and σ_L do not. Also, we show that σ_{2k_F} is large only below 150 K in agreement with experiment. The fact that σ_L does not depend on commensurability is consistent with the above classification. It was shown²⁸ that σ_L is a high-temperature phenomenon being about the same as $\sigma_{\rm sp}$ even at room temperature. Moreover, it was recently shown²⁷ that σ_L vanishes for $\omega \ge 10^{12} \text{ sec}^{-1}$ in accord with recent experiments.¹⁶ Thus, it is satisfactory to see that the similar decrease in σ under irradiation or by increasing the frequency is accounted for by the same quantity σ_L . Moreover, since both of these effects occur at room temperature, they *cannot* be attributed to σ_{CDW} , which is a low-temperature phenomenon. The fact that we find σ_L to be independent of commensurability completes the physical picture. Thus, $\sigma_{\rm CDW}$ and σ_{2k_F} account for the commensurability experiment²⁰ whereas σ_L accounts for the roomtemperature collective phenomena.^{16,17} We concentrate here on $\sigma_{2k_{E}}$ and σ_{L} . The properties of σ_{CDW}

III. COMMENSURABILITY DEPENDENCE OF σ_{2k_r}

can be found in the papers of Heeger,¹⁵ Andrieux

et al.²⁰, and Bishop.²²

It was shown^{27,28} that the first order electronphonon interaction in one-dimensional systems is not resistive. This is due to one-dimensional phonon drag. In the presence of an electric field, the steady state requires a $2k_F$ phonon flow in addition to the charge current along the chains. In this view, the extra conductivity σ_{2k_F} is achieved by dragging the k_F electrons via $2k_F$ phonon flow. The k_F electrons and the $2k_F$ phonons form a closed system and the electrons cannot lose their extra momentum (gained by the electric field) via an electron-phonon interaction. The main idea is that in a onedimensional system the $2k_F$ phonons can interact with *all* the electrons on the *nested* Fermi surface. This gives an effective channel for momentum transfer from the $2k_F$ phonon system *back* to the k_F electrons. This explains the absence of a linear term in the temperature dependence of the conductivity for pure organic systems and its reappearance under irradiation.^{27,28}

We argue here that the $2k_F$ phonon drag picture is possible only in the incommensurate phase. In the commensurate phase this picture breaks down. Thus, the lower conductivity in the commensurate phase arises because the $2k_F$ electron-phonon interaction becomes *resistive*.

The quenching mechanism for phonon drag in the commensurate phase can be understood in the following way. Diffuse x-ray scattering shows an enhanced intensity for a momentum change of $2k_F$.^{30,31} This " $2k_F$ " satellite reflection is appreciably only below 150 K for TTF-TCNQ. Near the Peierls transition temperature, $T_P = 53$ K, there are large dynamical fluctuations to a distorted lattice with periodicity in momentum space, $Q = 2k_F$. The $2k_F$ x-ray intensity increases sharply as the temperature approaches T_P . Thus, there is a tendency to form a super-lattice in addition to the underlying lattice. This tendency to a new order must influence not only the structural properties, measured by external scattering but also the internal scattering, i.e., the single particle scattering of electrons within the material.

We now show here that there exists a new possibility for umklapp scattering which is possible only via the superlattice. This mechanism is effective, therefore, only below the mean-field temperature $T_{\rm MF}$. In a one-dimensional system with charge transfer Z < 1 the usual electron-phonon umklapp scattering process $2k_F = q + G$ is impossible (where q is the phonon wave vector and G the reciprocal lattice vector). Only a normal electron-phonon scattering process $2k_F = q$ is possible. However, in the commensurate phase, a superlattice with $Q = 2k_F$ is "in phase" with the underlying lattice. Thus, in the commensurate phase there exists the following umklapp scattering process

$$2k_F = q + G' \quad , \tag{3}$$

where G' = G - Q is a new reciprocal-lattice vector. Therefore, there are *two* different scattering processes each corresponding to a different phonon, by which an electron in state $-k_F$ can give up its momentum by being scattered to $a + k_F$ state

(4)

 $q_N = 2k_F$ normal scattering

$$q_U = 2k_F - G'$$
 umklapp scattering.

For charge transfer $Z = \frac{2}{3}$, for which $G = 4k_F/Z$ = $6k_F$, we get

$$q_U = -q_N \quad . \tag{5}$$

This situation is illustrated in Fig. 1(a). A normal process corresponds to scattering from A to B via q_N . An umklapp process corresponds to scattering from C to D via the lattice vectors G, -Q, and q_u . The above results lead to the complete quenching of σ_{2k_F} in the commensurate phase. In the incommensurate phase a phonon $q = 2k_F$ may be excited only by a $2k_F$ change in electron momentum. However, in the commensurate phase the $2k_F$ phonon may also be excited by a $-2k_F$ change of electron momentum via umklapp scattering. Thus, in the commensurate phase, we have two possibilities,

$$q = 2k_F$$
 ,
 $q = (-2k_F) + G' = 2k_F$.
(6)

This implies that there should not be any drag effect, since the $2k_F$ phonons do not absorb any *net* momentum from the electron system. This idea is illustrated in Fig. 1(b) and can be derived from the following phenomenological equation of motion for the $2k_F$ phonons in the commensurate phase

$$\frac{dP_{\rm ph}(2k_F)}{dt} = \frac{dP_e(k_F)}{dt} + \frac{dP_e(-k_F)}{dt} , \quad (7)$$

where $P_{ph}(2k_F)$, $P_e(k_F)$, and $P_e(-k_F)$ are, respec-

FIG. 1. (a) Normal and umklapp electron-phonon scatterings. The definitions of q_N , q_U , Q, and G are given in the text. (b) Momentum transfer for $2k_F$ phonons in the commensurate phase from k_F and $-k_F$ electrons via relaxation times τ_N and τ_U .

urate phase, a $2k_F$ phonon can be excited by a k_F electron and a $-k_F$ electron. Therefore, in the steady state, we get

$$\frac{P_{\rm ph}(2k_F)}{\tau_{pe}} = \frac{P_e(k_F)}{\tau_N} + \frac{P_e(-k_F)}{\tau_U} , \qquad (8)$$

where τ_{pe} , τ_N , and τ_u are, respectively, the phononelectron scattering relaxation time, the normal electron-phonon scattering relaxation time $(2k_F = q)$, and the umklapp electron-phonon scattering relaxation time $(2k_F = q + G')$.

In the incommensurate phase, the umklapp term [second term of (8)] does not exist, leading to a nonzero $P_{\rm ph}(2k_F)$ which cancels the first-order electron-phonon scattering from the resistivity (see Kaveh and Weger²⁷). However, in the commensurate phase the umklapp term is nonzero and exactly cancels out the normal term. Therefore, $P_{\rm ph}(2k_F) = 0$ in the commensurate phase because τ_U is equal to τ_N in a one-dimensional system. τ_U and τ_N involve the following ingredients: (i) matrix elements between initial state $|k_1\rangle$ and final state $|k_2\rangle$, (ii) $N(\omega_a)$, the number of phonons of wave vector q participating in the scattering event described by Eq. (4), and (iii) the phase space involved in the scattering. In a three-dimensional system, all three of these factors are different for normal and for umklapp scattering. However, in a one-dimensional system, there is only one scattering event for normal scattering or for umklapp scattering [see Fig. 1(a)]. Thus $|k_1\rangle = |-k_F\rangle$ and $|k_2\rangle = |k_F\rangle$ for both normal and umklapp scattering. This yields the same matrix element (which is a function of $k_2 - k_1 = 2k_F$). Moreover, since |q| is the same in both scattering events, there are the same number of phonons $N(\omega_q)$ available. Finally, the phase space is obviously the same for both scattering events. Thus, it follows that

$$\frac{P_e(-k_F)}{\tau_U} = \frac{P_e(k_F)}{\tau_N} \quad , \tag{9}$$

where we make use of the relation $P_e(-k_F) = -P_e(k_F)$. This yields, from (8), the expected result that $P_{\rm ph}(2k_F) = 0$. Hence, in the commensurate phase, first-order electron-phonon scattering *does* contribute to the resistivity and the conductivity is accordingly lower.

We now show that this quenching mechanism is in fact a low-temperature phenomenon in agreement with experiment.²⁰ The mechanism for quenching $\sigma_{2k_{E}}$ is ultimately based on (3), which is exact only if the $2k_F$ superlattice is static. The dynamical character of the superlattice "smears out" the momentum conservation law (3), because of a *finite* coherence length. Thus, we must replace the momentum delta function for the electron phonon scattering by a Lorentzian function.

$$\delta(2k_F - (q + G - Q)) \rightarrow \frac{(2/\pi)\xi}{1/\xi^2 + [2k_F - (q + G - Q)^2]} , \quad (10)$$

where ξ is the coherence length for the fluctuations to the superlattice structure. We see from (10) that (3) is valid only for large ξ . The magnitude of ξ may be deduced from the half-width of the intensity peak of the $2k_F$ x-ray scattering. In this way, the experimental $\xi(T)$ as a function of temperature was obtained.^{19,31} It was found that $\xi(T)$ increases sharply below 150 K. For TTF-TCNQ, $\xi(150) =$ 2b (b is the lattice spacing) whereas $\xi(58) = 50b$. Inserting these values for $\xi(T)$ into (10) shows that only below 150 K is the momentum law in (3) valid, whereas above 150 K, it is smeared out. In other words, the quenching mechanism for $\sigma_{2k_{F}}$ proposed here is effective only when the coherence length is large. Therefore, the difference between the conductivities in the incommensurate and commensurate phase vanishes above 150 K. This is in agreement with experiment.²⁰ We see that σ_{2k_F} possesses the same properties as σ_{CDW} . Namely, it is nonzero only in the incommensurate phase. In addition, both conductivites almost disappear for irradiated (or impure) samples.^{20,28}

IV. EFFECT OF COMMENSURABILITY ON σ_{\perp}

The conduction perpendicular to the chains is related to the single-particle conductivity along the chains.^{32,33} Therefore, the proposal that commensurability affects only σ_{2k_F} is consistent²¹ with the experimental fact that σ_{\perp} does not depend on commensurability. The $2k_F$ electron-phonon scattering is not resistive in the incommensurate phase because of phonon drag. However, this scattering does destroy the phase correlations between the chains and therefore *does* contribute to σ_1 even in the incommensurate phase.³³ Thus, the commensurate phase affects only the conductivity along the chains by suppressing phonon drag. This idea receives further support^{18,34} from the recent experiments on the effect of irradiation on σ_1 . The experiments clearly indicate that the effect of irradiation on σ_1 is an order of magnitude less than the effect on the conductivity along the chains. This fact is consistent with the present idea that phonon drag is a onedimensional effect. Irradiation quenches phonon drag²⁸ and so the conductivity along the chains decreases *without* an accompanying effect on σ_1 . This is very similar to the effect of commensurability for which we propose a similar explanation. Note that quenching of phonon drag by irradiation is already achieved by relatively *small* doses of irradiation.¹⁸ The behavior of the conductivity for higher doses of irradiation was recently extensively studied by the Fontenay-aux-Roses group.³⁵

Turning now to σ_{sp} , the experimental fact that σ_{\perp} is independent of commensurability is strong evidence²¹ that σ_{sp} is also commensurability independent,³³ since $\sigma_{\perp} \propto \sigma_{sp}$.

V. EFFECT OF COMMENSURABILITY ON σ_L

The origin²⁸ of σ_L is related to the effectiveness of the *second*-order electron-phonon (or libron) interaction, which conserves momentum. It was shown²⁸ that processes for which

$$2k_F = q_1 + q_2 \quad , \tag{11}$$

are not resistive. We see that unlike first-order scattering we now have *two* phonon wave vectors.

The libron drag mechanism is caused by excess of net momentum for *every* phonon state. Thus, the momentum absorbed by the q_2 phonon is $2k_F - q_1$. The following question arises: Is it possible to find *another* process in which the q_2 phonon may absorb momentum of $-(2k_F - q_1)$? In that case there would *not* be any excess momentum for the state q_2 . We now show that such a possibility exists only for a *few* q_2 states. These are

$$q_2 = 2k_F - q_1$$
,
 $q_2 = -(2k_F - q_1) \pm Q + G$. (12)

This leads to $q_2 = \frac{1}{2}(+-Q \pm G)$. For TTF-TCNQ, this gives,

$$q_2 = \pm 2k_F$$
 and $q_2 = \pm k_F$. (13)

Therefore, only four events for $0 < q_2 < G/2$ are possible (and in *both* phases). We see that since a second-order electron-phonon interaction involves a general phonon wave vector $q \neq 2k_F$, commensurability does not affect σ_L . We have so far established that among the four contributions to the conductivity, σ_{CDW} (as given quantitatively by Bishop²² and references therein) and σ_{2k_F} depend on commensurability, whereas σ_{sp} and σ_L do not depend on commensurability. It has already been pointed out by Heeger *et al*.¹⁹ that it is difficult to distinguish between σ_{2k_F} and σ_{CDW} in the temperature dependence of σ in the incommensurate phase. The new common property, commensurability dependence, makes it even more difficult. The properties of σ_{CDW} were already studied.²² We here calculate σ_{2k_F} and its commensurability dependence.

We introduce the notation $\Delta\sigma$ to denote the difference between the conductivity in the incommensurate phase σ_{IC} and the conductivity in the commensurate phase σ_{C} . Thus,

$$\Delta \sigma = \sigma_{\rm IC} - \sigma_{\rm C} \quad , \tag{14}$$

where both $\sigma_{\rm IC}$ and $\sigma_{\rm C}$ refer to the conductivity measured at a pressure of 19 kbar. Pressures P < 19 kbar correspond to a charge transfer²⁰ of $Z < \frac{2}{3}$ for TTF-TCNQ (see also Conwell³⁶). This means that extrapolating the measured conductivity from below 19 kbar to P = 19 kbar yields $\sigma_{\rm IC}$, the conductivity in the *in*commensurate phase at P = 19 kbar (see Fig. 2). The measured conductivity minimum gives $\sigma_{\rm C}$, the conductivity at 19 kbar in

FIG. 2. Pressure dependence of σ_{IC} and σ_{C} at 85 K. The vertical lines define the range of "pressure commensurability" due to thermal smearing.

the commensurate phase (see Fig. 2). In Fig. 3, we plot the temperature dependence of $\Delta\sigma$ by drawing a smooth curve through the seven experimental points. We see that $\Delta\sigma$ decreases very rapidly as a function of temperature. For 80 < T < 150 K, $\Delta\sigma \sim T^{-3}$ (roughly) with $\Delta\sigma$ decreasing even faster above 150 K.

In the phonon-drag picture, the conductivity in the commensurate phase is lower than the conductivity in the incommensurate phase because of an additional *resistive* mechanism. (This is in contrast to the SCDW mechanism which freezes out a *conductivity* in the commensurate phase.) Thus, one may express σ_{2k_F} as

$$\sigma_{2k_F} = \frac{1}{\rho_{\rm IC}} - \frac{1}{\rho_1 + \rho_{\rm IC}} , \qquad (16)$$

where ρ_1 and ρ_{IC} are, respectively, the resistivity due to the first order electron-phonon interaction and the resistivity in the incommensurate phase.

We now calculate σ_{2k_F} by $using^{28,33}$ the Hopfield expression³⁷ for ρ_1 and taking ρ_{IC} from experiment.²⁰ This leads to $\sigma_{2k_F} \propto T^{-3.2}$ in accord with the data for $\Delta \sigma$ below 150 K. The more rapid decrease of $\Delta \sigma$ above 150 K is due to two reasons. First, (16) is not valid above 150 K because the quenching mechanism for σ_{2k_F} in the commensurate phase breaks down, as already explained, leading to $\Delta \sigma < \sigma_{2k_F}$. Second, σ_{2k_F} is quenched above 150 K even in the *in*commensurate phase,²⁸ because in this temperature range the damping of a phonon via interaction with another phonon is comparable to the damping constant via phonon-electron interaction.

FIG. 3. Temperature dependence of $\Delta \sigma$ at P = 19 kbar.

In summary, we have a complete explanation for the temperature dependence of $\Delta\sigma$.

VII. COMMENSURABILITY WIDTH

In Fig. 2 we plot the measured conductivity as a function of pressure at T = 85 K. One sees that the "commensurability width" (the range of pressures for which the conductivity is decreased) is about 5 kbar. This is a large width in view of the fact that a pressure of 19 kbar is required to change Z from 0.590 (at P = 0) to $Z = \frac{2}{3}$. It will be demonstrated that this width can be accounted for within the framework of the present theory.

The quenching mechanism we have proposed is closely connected with the *commensurate* value of $\pm k_F$, namely $\pm k_F = \pm \frac{1}{6}G$. We now argue that the commensurate width is a manifestation of the fact that the metallic phase in TTF-TCNQ occurs at relatively high temperatures. Since the degeneracy energy ϵ_F for TTF-TCNQ is low, about 0.1 eV, the electron thermal energy "smears out" the sharpness of the commensurability decrease of σ . Therefore, we attribute to k_F a thermal width δk_F in the momentum conservation argument of Sec. III for quenching σ_{2k_F} in the commensurate phase. This modifies (4) into the following equations,

$$q_N = 2k_F \pm 2\delta k_F$$
 ,
 $q_U = 4k_F - G \pm 4\delta k_F$. (17)

Thus, we may satisfy the quenching condition, $q_U = -q_N$, even for

$$k_F(Z=\frac{2}{3})\pm\delta k_F$$
.

We may approximate δk_F from the thermal energy to get

$$\delta k_F = \frac{k_B T}{2\epsilon_F} k_F \tag{18}$$

which gives $\delta k_F \simeq 0.03 k_F$. Using the relation between pressure and charge transfer (see also

Conwell³⁶) leads to

$$\frac{\delta k_F}{k_F} \simeq \frac{\delta P}{P} \frac{\frac{2}{3} - 0.590}{\frac{2}{3}} . \tag{19}$$

For P = 18 kbar (commensurability pressure at 85 K) we get a commensurability width $\delta P \simeq 5$ kbar in agreement with experiment.

In view of the above discussion, our interpretation of Fig. 2 is as follows. There are *two* conductivities as a function of pressure, σ_{IC} and σ_{C} . Values for σ_{IC} at P > 10 kbar may be obtained by extrapolating the results from P < 10 kbar. This gives the straight line denoted as σ_{IC} in Fig. 2. In the next section σ_{C} at P = 0 will be shown to be smaller than $\sigma_{IC}(P = 0)$ by a factor of 1.4. At the minimum, at P = 18 kbar, the measured conductivity is associated with σ_{C} . Therefore, we may use the straight line passing through $\sigma_{C}(0)$ and $\sigma_{C}(18)$ to estimate the pressure dependence of σ_{C} .

The two parallel lines in Fig. 2 correspond, roughly, to the thermal smearing width discussed above. Our interpretation is that the measured²⁰ conductivity as a function of pressure undergoes a transition from $\sigma_{\rm IC}(P)$ to $\sigma_{\rm C}(P)$ over the region of thermal smearing.

VIII. DIFFERENCE BETWEEN TTF-TCNQ AND TSF-TCNQ

It was found²¹ that the change in conductivity for TSF-TCNQ in the commensurate phase is much smaller than for TTF-TCNQ. This is somewhat surprising since both compounds become $\frac{2}{3}$ commensurate under pressure. Moreover, the transport and structural properties of these compounds are essentially the same. Although no " $4k_F$ " reflection has been observed in TSF-TCNQ, we may assume that " $4k_F$ " reflections are absent in both compounds at commensurability, since the $4k_F$ reflection is believed³⁸ to disappear under pressure in TTF-TCNQ.

We now attempt to account for the difference between these compounds within the framework of the present theory. Since the quenching mechanisms proposed here should apply equally for both compounds, we believe that the experimental difference is a quantitative effect and not a qualitative one. For TSF-TCNQ, the linear electron-phonon term ρ_1 , which contributes only in the commensurate phase, is small compared to the quadratic term. An important difference between TTF-TCNQ and TSF-TCNQ is the pressure at which commensurability is achieved. For TTF-TCNQ a pressure of 19 kbar is needed, whereas for TSF-TCNQ, only a few kbars are needed for commensurability since Z is already close to commensurate. The fractional change in the resisitivity ρ_1/ρ_{IC} increases with pressure. From irradition experiments,¹⁷ Kaveh et al.²⁸ obtained $(\rho_1 / \rho_{\rm IC})_{P=0} \simeq 0.3$ for TTF-TCNQ. This estimate was consistent with the value derived^{28,33} from the Hopfield³⁷ expression for ρ_1 (P = 0), using $\lambda = 0.2$ for the electron-phonon coupling constant deduced from T_P .

We obtain the pressure dependence of ρ_1 from estimates³⁹⁻⁴² of the pressure dependence of the phonon frequency ω , using $\rho_1 \propto \omega^{-2}$. This yields $(\rho_1/\rho_{IC})_{P=19}/(\rho_1/\rho_{IC})_{P=0} \simeq 2$. Therefore, $\rho_1(P = 19) \simeq \rho_{IC}(P = 19)$, in agreement with the experiment²⁰ which indicates that ρ_C is higher than ρ_{IC} by a factor of 2. Therefore, the pressure at which commensurability is achieved is important. The fact that $\Delta \sigma$ is larger when the commensurate pressure is larger is thus seen to account for the difference in behavior between TTF-TCNQ and TSF-TCNQ. We take this as a support for the dominance of σ_{2k_F} over σ_{CDW} in explaining the difference in conduction between the commensurate and incommensurate phase.

IX. SUMMARY

An analysis has been presented of the affect of commensurability on the various contributions to the conductivity. It is shown that $2k_F$ phonon drag accounts for the following commensurability features: (i) the difference $\Delta \sigma$ between the conductivities in the incommensurate phase, (ii) the temperature dependence of $\Delta \sigma$, (iii) the pressure depen-

- *Permanent address: Department of Physics, Bar-Ilan University, Ramat-Gan, Israel.
- ¹L. B. Coleman, M. J. Chen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heeger, Solid State Commun. <u>12</u>, 1125 (1973).
- ²J. Bardeen, Solid State Commun. <u>13</u>, 357 (1973). See however, his recent review in *Highly Conducting One-Dimensional Solids*, edited by J. T. Devreese, R. P. Evard, and V. E. van Doren (Plenum, New York, 1979), pp. 374-407.
- ³P. W. Anderson, P. A. Lee, and M. Saitch, Solid State Commun. <u>13</u>, 595 (1973).
- ⁴L. P. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. <u>31</u>, 462 (1973).
- ⁵S. Strassler and G. A. Toombs, Phys. Lett. A <u>46</u>, 321 (1974).
- ⁶D. Allender, J. W. Bray, and J. Bardeen, Phys. Rev. B <u>39</u>, 119 (1974).
- ⁷H. Frohlich, Proc. R. Soc. London Ser. A <u>233</u>, 296 (1954).
- ⁸M. B. Salamon, J. W. Bray, G. de Pasquali, P. A. Craven, and A. Schutz, Phys. Rev. B 11, 619 (1975).
- ⁹D. E. Schafer. G. A. Thomas, and F. Wudl, Phys. Rev. B 12, 5532 (1975).

dence of $\Delta \sigma$, which leads to a difference in the effect for TSF-TCNQ relative to TTF-TCNQ, (iv) the commensurability width, and (v) the difference in the effect of commensurability on the conductivity perpendicular to the chains and along the chains. Thus, we have demonstrated that σ_{2k_F} may by *itself* account for all the experimental observation. The correlation between σ_{2k_F} and σ_{CDW} was discussed. In particular, we have shown that the various contributions to σ can be classified as either lowtemperature contributions or as high-temperature contributions. Both σ_{2k_F} and σ_{CDW} are shown to be low-temperature contributions. The irradiation dependence and frequency dependence of σ at room temperature are accounted for by σ_I , which contributes even at high temperatures. Finally, we have shown that σ_L does not depend on commensurability.

ACKNOWLEDGMENTS

I am grateful to Professor Sir Nevill Mott and Professor V. Heine and to Dr. R. Friend and Dr. A. D. Yoffe for fruitful discussions. I am grateful to Professor M. Weger and Professor N. Wiser for helpful correspondence. I acknowledge with thanks the Lord Marks Foundation for a senior fellowship.

- ¹⁰P. E. Seiden and D. Cabib, Phys. Rev. B<u>3</u>, 1846 (1976).
- ¹¹E. M. Conwell, Phys. Rev. Lett. 39, 777 (1977).
- ¹²H. Gutfreund and M. Weger, Phys. Rev. B <u>16</u>, 1753 (1977).
- ¹³D. Jerome, J. Phys. (Paris) Lett. 38, L489 (1977).
- ¹⁴M. Weger and H. Gutfreund, Comments Solid State Phys. <u>8</u>, 135 (1978).
- ¹⁵A. J. Heeger, Chemistry and Physics of One-Dimensional Metals, edited by H. J. Keller (Plenum, New York, (1977).
- ¹⁶C. S. Jacobsen, Proceedings of Dubrovnik Conference on Quasi-One-Dimensional Conductors, edited by S. Barisic, A. Bjelis, J. R. Cooper, and B. Leontic (Springer, New York, 1978) pp. 223-229.
- ¹⁷C. K. Chiang, M. J. Cohen, P. R. Newman, and A. J. Heeger, Phys. Rev. B 16, 5163 (1977).
- ¹⁸Y. Yeshurun and M. Weger, Phys. Rev. B <u>21</u>, 5646 (1980).
- ¹⁹A. J. Heeger Highly Conducting One-Dimensional Metals, edited by H. J. Keller (Plenum, New York, 1977); A. J. Heeger, M. Weger, and M. Kaveh Proceedings of Dubrovnik Conference on Quasi-One-Dimensional Con-

ductors, edited by S. Barisic, A. Bielis, J. R. Cooper, and B. Leontic (Springer, New York, 1978).

- ²⁰A. Andrieux, H. J. Schultz, D. Jerome, and K.
- Bechgard, J. Phys. (Paris) Lett. 40, L385 (1979).
- ²¹D. Jerome, Proceedings of the Tomar Conference, *The Physics and Chemistry of Low Dimensional Solids*, edited by L. Alcacer (Reidel, Dordrecht, 1980).
- ²²A. R. Bishop, Phys. Lett. A <u>75</u>, 107 (1979); H. J. Schultz (unpublished).
- ²³J. E. Sacco and J. B. Sokoloff, Phys. Rev. B <u>18</u>, 6549 (1978).
- ²⁴J. E. Sacco, J. B. Sokoloff, and A. Widom, Phys. Rev. B 20, 571 (1979).
- ²⁵B. R. Patton and L. J. Sham, Phys. Rev. Lett. <u>33</u>, 638 (1979).
- ²⁶B. R. Patton and L. J. Sham, Phys. Rev. Lett. <u>31</u>, 631 (1975).
- ²⁷M. Kaveh and M. Weger, Phys. Rev. B <u>20</u>, 2264 (1979).
- ²⁸M. Kaveh, H. Gutfreund and M. Weger, Phys. Rev. B 18, 7171 (1978).
- ²⁹H. Gutfreund, M. Kaveh, and M. Weger, in *Proceed-of Dubrovnik Conference on Quasi-One-Dimensional Conductors*, edited by S. Barisic, A. Bjelis, J. R. Cooper, and B. Leontic (Springer, New York, 1978), pp. 105-128.

- ³⁰J. P. Pouget, S. K. Khanna, F. Denoyer, R. Comes, A. F. Garito, and A. J. Heeger, Phys. Rev. Lett. <u>37</u>, 437 (1976).
- ³¹S. K. Khana, J. P. Pouget, R. Comes, A. F. Garito, and A. J. Heeger, Phys. Rev. B <u>16</u>, 1468 (1977).
- ³²G. Soda, D. Jerome, M. Weger, J. Alinzon, J. Gallice, H. Pobet, J. M. Favre, and L. Giral, J. Phys. (Paris) 38, 931 (1977).
- ³³M. Weger, Proceedings of the Tomar Conference, *The Physics and Chemistry of Low Dimensional Solids*, edited by L. Alcacer (Reidel, Dordrecht, 1980).
- ³⁴Y. Yeshurun, J. Phys. Paris Lett. D 12, L135 (1979).
- ³⁵L. Zuppiroli, S. Bouffard, K. Bechgaard, B. Hilti, and C. W. Mayer, Phys. Rev. B 23, 5030 (1981).
- ³⁶E. M. Conwell, Solid State Commun. <u>33</u>, 17 (1980).
- ³⁷J. J. Hopfield, Comments Solid State Phys., <u>3</u>, 48 (1970).
- ³⁸S. Megtert, R. Comes, C. Vettier, R. Pynn, and A. F. Garito, Solid State Commun. 31, 977 (1979).
- ³⁹H. Gutfreund, M. Weger, and M. Kaveh, Solid State Commun. <u>27</u>, 53 (1978).
- 40 M. Weger and H. Gutfreund, Solid State Commun. <u>32</u>, 323 (1979).
- ⁴¹M. Weger, M. Kaveh, and H. Gutfreund, J. Chem. Phys. <u>71</u>, 3916 (1979).
- ⁴²M. Kaveh and M. Weger, Synth. Met. 1, 385 (1979).