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It is now well established from an experimental point of view that, concerning the ul-

trasonic attenuation, molecular crystals exhibit a specific behavior among dielectric crys-
tals. This fact suggests the presence of a relaxation process. Liebermann, who has intro-
duced this field, has proposed a way to analyze this problem and in particular has given

an expression for the ultrasonic absorption coefficient in terms of a relaxation time and
some thermodynamic quantities. In contrast to Liebermann's approach, a solid-state

viewpoint is presented here, and it is shown that this ultrasonic relaxation can be taken
into account in the framework of Akhieser's theory. A general expression of the ultrason-

ic absorption coeAicient is calculated in terms of the phonon collision operator using the
Boltzmann-equation approach of Woodruff and Ehrenreich. The collision-time approxi-
mation widely used in dielectric crystals fails in molecular crystals for which the presence
of slow relaxation times in the collision operator prevents the thermalization of the whole

set of phonons and gives rise to an ultrasonic relaxation. Thus a more suitable approxi-
mation is suggested here, which leads to a new expression of the ultrasonic attenuation

valid in molecular crystals. Different forms of this expression are discussed, and compar-
ison with Liebermann's expression used in most of the previous papers shows that the

present treatment takes better account of the anisotropy of the solid state. The fit of ex-

perimental results obtained for some ionic-molecular crystals also shows that the expres-

sion derived here gives better agreement than does Liebermann s. Finally, it is shown

that in the framework of the present treatment and under rather general conditions, the

anisotropy affects primarily the magnitude of the ultrasonic absorption due to the molecu-

lar relaxation, but it does not aA'ect its frequency dependence.

I. INTRODUCTION

Although molecular crystals belong to the family
of dielectric crystals, they exhibit special behavior
with regard to ultrasonic absorption. The first
mention of this was a theory by Liebermann' in

1959, who proposed the extension to the solid state
of a well-known phenomenon which arises in
molecular gases and liquids: A relaxation may oc-
cur in these compounds due to a slow transfer of
energy between internal and external degrees of
freedom of molecules which belong to a population
perturbed by an ultrasonic wave. This extension
raises two distinct problems.

The first is the derivation of a relation between
the ultrasonic absorption coefFicient a and the time
~ characterizing the relaxation. Concerning this
problem, Liebermann does not adopt a solid-state
viewpoint and is content with using a relation

derived by Richards considering specific properties
of the equations of state of gases and liquids:

1 CI —Cv CI n'~a=-
2s Cp Cp —CI 1+Q~r

Here 0 and s are, respectively, the angular frequen-

cy and the velocity of the ultrasonic wave, Cz and

Cv are the specific heats per unit volume at con-
stant pressure and constant volume, respectively,
and Cl is the specific heat associated with the
internal degrees of freedom. As the solid state
possesses properties rather diA'erent from those of
the gas or liquid phases concerning the propaga-
tion of ultrasonic waves the use of the relation (1)
in molecular crystals seems questionable.

The second problem is the derivation of an ex-

pression of w in terms of characteristic parameters
of the crystal. For this purpose Liebermann pro-
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poses a model built on many approximations, so
that it may lead to large discrepancies with experi-
mental determinations of ~. However, we will not
speak about this problem in our paper.

After Liebermann's paper, some works [mostly
experimental (Refs. 3—18)] have appeared on this
subject from which we can deduce the following
points.

a in molecular compounds which have been in-

vestigated is abnormally large for dielectric crys-
tals;

The dependence of u on frequency and tempera-
ture is unusual and suggests the presence of a re-
laxation process;

At room temperature the observed relaxation
times are roughly about one nanosecond.

From a theoretical point of view Danielmeyer
and later Victor and Beyer' try to take into ac-
count the actual nature of the solid phase, but they
use a very phenomenological approach to derive
the relation between a and ~. Moreover, in all the
papers on this subject the anomalous behavior of
ultrasonic attenuation in molecular crystals has
been considered as resulting from a new phe-
nomenon compared with the different mechanisms
of ultrasonic absorption which have been previous-

ly identified in dielectric crystals.
In this paper, after a short comment about the

classical theories of ultrasonic attenuation in dielec-

tric crystals, we briefly sketch the different steps of
the derivation of Akhieser's theory' and obtain a
general expression of a in the hydrodynamical re-

gime of propagation of sound. We show that the
collision-time approximation, which is generally
used with dielectric crystals, fails with molecular
crystals. We devise a more sophisticated approxi-
mation appropriate to these crystals. Through this
method we get a new expression for a in molecular
crystals and compare it with that of Liebermann.
Finally, in the last section of this paper we try to
draw some conclusions about the influence of an-

isotropy on this phenomenon of relaxation.

II. A FEW WORDS ABOUT CLASSICAL
THEORIES
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In the high-frequency range (Q8 » 1) the suit-

able approach was first suggested by Landau and
Rumer, who consider the ultrasonic wave as an
excess of phonons in the mode (K, e) (K is the unit
wave vector of sound, e is the polarization). In
this theory ultrasonic attenuation is seen as result-

ing from a direct interaction between thermal pho-
nons and phonons in the mode (K, e).

In the low-frequency range (Q8 « 1), it is more
convenient to follow the method introduced by
Akhieser, ' who considers the ultrasonic wave as
an external field which modulates in space and
time the population of thermal phonons. In this
approach the relaxation of phonons in finite times
(generally about 8) towards new equilibrium distri-
butions gives rise to ultrasonic attenuation.

These two approaches give a good basis for the
analysis of sound absorption in dielectric crystals
over the whole range of temperature and frequency.
Nevertheless, we have already noticed that some of
the major predictions obtained from these two ap-
proaches are violated in molecular crystals. An ex-

ample of this violation is represented in Fig. 1,
where the temperature dependence of a is given in
what we can call (following Victor et al. '

) a
"hard" dielectric crystal and in a molecular crystal.
As the respective orders of magnitude of e and T

are very different, this anomaly is entirely located
in the hydrodynamical region, so that it can be ex-
plained only by theories adapted to the low-

frequency range. Consequently, we will now follow
a method parallel to that pioneered by Akhieser
and improved upon by Woodruff and Ehrenreich. '

In this way we will show that the specific proper-
ties of molecular crystals can be taken into account
by using a single formalism valid for any dielectric
crystal.

There are schematically two classical descrip-
tions of the ultrasonic absorption in dielectric crys-
tals. These models roughly correspond to two fre-

quency ranges separated by 1/e, where 8 is the
mean lifetime of thermal phonons (at room temp-
erature 8 is typically a few picoseconds).

0 temperature ( K)
0

(a) (b)

FIG. 1. Trends of the temperature dependence of the
ultrasonic attenuation in (a) a "hard" dielectric crystal
and in (b) a molecular crystal.
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III. GENERAL EXPRESSION OF THE
ULTRASONIC ABSORPTION COEFFICIENT

We must localize phonons inside a volume V,
which characterizes the local scale of our problem.
Whatever the state of deformation of the lattice, we
decide that a phonon with wave vector k, polariza-
tion o, and frequency coi,(x, t) corresponds to a set
of constant integers in the reference frame of the
reciprocal lattice, and we index it by the Greek
letter A,.

Without any deformation of the lattice the
equilibrium distribution n~ of phonons A, is uni-

form, and we have

1

Phm
e —1

with P= 1

kgT

The local deformation rl(x, t) due to the propaga-
tion of an ultrasonic wave defined by its amplitude
u( x, t) induces a local shift of the frequency co~ of
phonons, so that

re( x q r ) &A [1 —yx, tJ l ij ( x, t ) j

where yi tj is a component (i,j) of the Griineisen
tensor linked to a phonon A,. With such a defor-
mation the equilibrium distribution of phonons
would be

1
n (x,t)= (4)

with

P(x, t) = 1 1
(5)

k/t T(x, r) k~f T+KT(x, r)]

However, due to finite relaxation times, the dis-
tribution nx(x, t) cannot be reached and the actual
distribution is Nx(x, t). If we set

Although the first steps of Akhieser's approach
are now well known, we will recall them in the
next section to introduce a vector notation that en-
ables us to get a general expression of a in terms of
the phonon collision operator without any approxi-
mation of this operator.

AT(x, t)ANi„—b,Nx = — yi„,jg,/(x, t)+

With these notations it can be shown that the
attenuation e is related to AN~ through the equa-
tion

fi
, gy, co,Re

2p Vs

where p is the density and where we have set

(10)

To describe the evolution of phonons and deter-
mine AN~, we use a Boltzmann equation

BNg
(12)

Bt

where the left- and right-hand sides describe,
respectively, the dynamics of a phonon A, and its
interactions with the other phonons. It can be
shown that the Hamiltonian of a single phonon A,

is

Hi (x, t) =)rico'(x, t) .

To first order in strain (which is typically about
10 —10 in standard experiments) Eq. (12) be-
comes

=Mi,i„bNi„, (14)

%cog
X ni(ni+1) .

B

For any quantity f ( x, t) we look for solutions in
the form of plane waves (K, Q') and we set

f (~x &) fein'[t —( K.x )/sl (8

where Re(Q') =0, and Im(Q') gives rise to the at-
tenuation a. Thus we have

ein'[t —( K ~ x )/s]

Nx(x, t) =nx(x, t)+.ENi (x, t)

then to the first order in strain we find

(6)
where M~~ is a component of the phonon collision
operator M which contains all the information
about the relaxation of phonons and v~ is the
group velocity of phonons A, .
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It seems to us that the Boltzmann equation is
rigorous only in its linearized form (14) because of
complications when we go beyond the first order in
strain. For example, we have to choose between
Eulerian and Lagrangian coordinates, not only for
the direct lattice but also for the reciprocal lattice.
A consequence of these difficulties has been the er-
roneous introduction of the rotation of the medium

in Eq. (3) by Akhieser' and then by Woodruff and
Ehrenreich, ' which would lead to a loss of sym-
metries of the macroscopic viscosity tensor. Thus,
the problem of the evolution equation for higher
orders probably cannot be solved by a straightfor-
ward Taylor expansion of Eq. (12).

To go further without any approximation we fol-

low Maris by introducing a vector notation and

using general properties of collision operator. We
define a vector space I' of M dimensions (where M
is the number of modes) so that any quantity

L~ . . . ~ can be considered such as a component of
1 p

a pth rank tensor L on E.
It can be seen that the operator M defined by

1/2
ni (ni +1)Mu= Mu, (15)
ni„(ni„+ 1)

is symmetric. Moreover, this operator obeys a con-
servation law for the total energy of the phonon
system valid to the first order in strain (this prop-
erty can be directly viewed as a consequence of the
fact that the deformation energy is quadratic in
strain). Thus we have

BNg

coll i,i,'

(16)

Then

In the quasiharmonic approximation Cq, the
specific heat at constant volume, is equal to C/V.
With the help of these different properties we ob-

Using the symmetry of M we deduce from (17)
that the normalized vector X&, whose components
are ficoi„[ni„(nl, +1)p/TC]'~, is a zero eigenvalue
eigenvector of M. We have set

P(faui )C= g nx(ni+1) .
A, EF

where

ENi = [ni (ni, +1)] '~26Ni,

(19)

(20)

and

(21)

I is the unit operator, and the operator g is given

by

v~K
s

(22)

Thus we get the expression of AN in vector nota-
tion

with

hN = — (I +iM)(y)
s

(23)

M =Q[M —i Q(I —g)] (24)

(For any operator L, L ' is the inverse operator. )

Finally, we deduce a general expression for a,

a = — —Re[(y.M(y) )p],0 1

2pVs P

where ( )~ means the scalar product on Ii.

(25)

IV. THE COLLISION- TIME APPROXIMATION

Now we introduce the following simplification to
get an easier derivation: We will no longer take
into account the term i Qg In the A. ppendix we
discuss a derivation of the results obtained in this
paper without this simplification but only in the
hydrodynamical region (Qe « 1). We show that
accounting for the group velocities of phonons
leads to the introduction in the expression of a of
an additive term which may be identified with the
classical thermoelastic loss. The same result has
been previously derived under the collision-time ap-
proximation.

With this simplification M and M have the same
eigensubspaces. Let —1/r; (i & 1) be the nonzero
eigenvalues of M (since M is a symmetric operator,
these eigenvalues are real) and X; the correspond-
ing normalized eigenvectors. The eigenvalues of M

tain a compact form for the Boltzmann equation,
T

0M AN+i y =iQ(I —g)(QN)+ g(y)s s
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1
Mu. = ——&u-8 (27)

This is slightly incorrect because we know that 0 is

an eigenvalue of M; moreover, this formulation en-

tails the determination of AT(x, t). In fact, in this

approximation we have two eigenvalues: 0 and

1/e. The eigensubspace G associated with —1/e
has a degeneracy equal to M—1. Thus a is given

by

a=
3
—[Q 8[y—(yX))FX)]1 1 2

2p Vs

are Q—r; /(1+i Qr; ), so that a is given by

Q
~ (y X;)F

2pVs 0;)) 1+Q ~;

(We must keep in mind that Q8 « 1, where 8 is

of the order of magnitude of the faster relaxation

times r;.)
In the collision-time approximation we usually

assume that M has the simple form

spaces F- and I in B. Now we assume that inside
each group of modes we have strong interactions
defined by fast relaxation times (-8) but that
these two groups are only weakly linked with slow
relaxation times (-r). By this way an ultrasonic
experiment can be described such as in Fig. 2.

This model is consistent with the addition of a
third eigenvalue —1/~ to the collision operator.
Now we have to determine in a unique way the
subspace associated with —1/~. The following
conditions lead to the determination of a single
eigenvector X3.

(i) We consider that within the scale of 8 times
we have conservation of the total energies UE and

Uz of, respectively, external and internal phonon
systems (in other words, we work under the as-

sumption 8/r « 1). Thus (17) is valid for the re-
strictions of M in the two subspaces E and I.

(ii) Since M is a symmetric operator, this sub-

space is orthogonal to Xi.
(iii) We normalize the vectors of this subspace.

So, X3 is given by

and

(y)= y (%co )' x(n +1)y
TC ~eF

[For any vector g of E, g means (g.g)F.]
We make the two following definitions:

(2g)

(29)
with

PCg Cr

TC

1/2

fuox[ng(nx+1)]'

(32)

External phonons Internal phonons

(y"') = y (m, )'n, ( n+1)yx,
TC xcF

which lead to the we11-known expression of a:

, ((y'") —(y)')Q'8 .
2ps

(30)

(31)

L/ I
12 98- lp s T-10 s

—12e - lo

Uniform temperature

V. SPECIFICITY OF MOLECULAR CRYSTALS

The collision-time approximation, which is wide-

ly used in dielectric crystals, fails in the case of
molecular crystals in which there could coexist two

very different orders of magnitude among relaxa-

tion times. Thus, to support the proposition, of
Liebermann with a solid-state point of view we

suggest the following description of the behavior of
phonons in molecular crystals. In these crystals

there are two groups of modes, external and inter-

nal modes, corresponding, respectively, to the

external and internal degrees of freedom of
molecules (and defining, respectively, the two sub-

t=O
Deformation

of the
crystal

Non equilibrium state
The local temperature
is no longer definable

I Thermalization of each
T = 6 T+AT group of phonons at T+~T

E Idifferent temperatures

Thermalization of the
T+ ~T whole gas of phonons T++T

FIG. 2. Illustration of the behavior of phonons in a
molecular crystal during the application of an elastic de-

formation.
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1

CE
, A, eE

(33}

a UE

Bt CE

Ur

..u
UE

CE Cr
(34)

, AeI.

Here CE and Cr are the specific heats per unit
volume associated with, respectively, the external
and internal modes, so that Cv ——CE+Cr.

We may use the expression (32) of Xi to derive
the relation

Physically this means that there is a slow transfer
(with time r) of energy between internal and exter-
nal modes.

Now the degeneracy of the eigensubspace G as-
sociated with —1/8 is M—2. Then, with the
help of relations (26) and (32) we get the following
expression for a:

Cyr (2) 2 CrCE CyT CgCr
a — &Y ) &Y) (&Y)E &Y)I) Q 8+ (&Y)E &Y)1) aA+aR

2ps~ Cv 1+Q r

(35)

We have set

and

&y)E = X (~k)'nk(nk+1)yk
E AeE

(36)

We can express the generalized Gruneisen tensor
& y;I ) in terms of the specific heat at constant
volume, the elastic constants C,Jki of the harmonic
theory, and the thermal expansion tensor pki using
the following relation, valid in the quasiharmonic
approximation:

1
&y) =&y;, )e;KJ = Cljk!pkle~Kj .

Cv

Thus we have

(39}

In this expression for a we have superposition of
two terms where the first (aA) is close to the classi-
cal term of Akhieser and the second (aa) is a re-

laxation term we can now compare with Lieber-
m ann's.

T CI (cJk!PkleiKJ } Q 7
. 2

2ps Cv —CI Cv 1+Q r
(40)

A further approximation is necessary to make
this comparison: We must neglect & y)I with re-

gard to &y)E. The existent experimental data on
Gruneisen parameters in molecular crystals
bear out this approximation, which is in fact a
direct consequence of the weakness of interactions
between internal phonons and long-wavelength
acoustic phonons. With such conditions, Eq. (35)
becomes

and

2ps' Cg

CvT CI 2 Q~
2ps CE 1+Q 2

(37)

(38)

VI. COMPARISON WITH PREVIOUS RELATIONS Using some thermodynamic relations, we can get
other expressions of aE from Eq. (40). For exam-

ple, in isotropic and cubic symmetries, we have

1

Pkl =
3 Pf}kl ~

CI, —Cv TP'&s

Cy Cp

&s= 3 (Cii+2ci2) .

(41)

Here P is the cubic thermal expansion coefficient,
8~ is the adiabatic bulk modulus, C» and Ci2 are
the adiabatic second-order elastic constants in
Voigt notation. Within our approximation the har-
monic values of the elastic constants in Eq. (40)
can be replaced by their isothermal values so that,
in isotropic and cubic symmetries, Eq. (40) be-
comes
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S T T T T
Cijkl Cijkl g CijmnCklrsPmnPa ~

V mnrs

(43)

which leads to our final expression for e valid for

any symmetry,

S T
1 CI ~ij kl ~ijkl 0 T

2 ei~k+j+I 2 '
2s CE ps 1+Q ~
0 CI S —S 07
s CE S 1+0 r

(44)

Here we have again replaced the harmonic values

C,jkI of the elastic constants by their isothermal
values CjkI. This attenuation is related to a disper-

sion of the ultrasonic velocity given by

s —$0 CI s —s Qt
CE s 1+0'r (45)

It can be noted that Eqs. (38), (40), or (44) lead to
a new qualitative fact which cannot be predicted by
Eq. (1): Transverse waves which propagate in low

symmetry crystals along what Borgnis has
termed "specific directions" can give rise to a
molecular relaxation.

In the experimental field, the analysis of the
curves giving c/0 in terms of 0 brings two in-

dependent pieces of information about the relaxa-
tion: The magnitude of the maximum of these
curves is linked with the coefficient of the term
0 r/(1+0 r ) in Eqs. (1), (40), or (42), while its
abscissa allows the determination of ~. To see

1 C~ —Cv

2$ CP Cv CI

Cii+2Ci2 - n'~S SX, (e K)
3ps 1+0 r

If we compare Eq. (42) with formula (1) used by
Liebermann and in most of the other papers in this
field (whatever the symmetry of investigated crys-
tals), we see that there is a slight difference due to
the existence in relation (42) of the structure factor
(Cii+2Ci2)/3ps which results from the actual
nature of the solid state. It can be shown that,
with some approximations, this relation is very

close to that used by Danielmeyer for the isotropic
symmetry, but the extension by Victor and Beyer'
of Danielmeyer's approach for lower symmetries is

questionable. Moreover, it is impossible for sym-

metries lower than cubic to introduce in a natural

way the quantity (CI —Cy)/Cp in the expression
of a. However, instead of the relations (41) we

may use the thermodynamic relation

whether the expression of a derived in this paper
brings an improvement compared with those used
previously, we have fitted recent experimental re-
sults' ' obtained along the fourfold and twofold
axes of the isomorphous cubic crystals of stronti-
um, barium, and lead nitrates, with the help of re-
lations (1) and (42) to get "experimental" values of
CI, the heat capacity per mole associated with
internal modes. As the internal vibrations of the
ionic molecule (NO3)2 are quite unaffected by
lattice effects we must get the same values of CI
not only for the two axes investigated in a same
compound, but also for the entire set of experi-
ments. The results listed in Table I show that for-
mula (1) used by Liebermann leads to a large
scatter of the values of CI of about 15%, which is
reduced to less than 1% with relation (42), while
the average value of CI increases from 17 to 20
J/molK. This value may be compared with a
theoretical evaluation of CI equal to 22 J/mol K
deduced from infrared and Raman scattering data.
Thus on this set of experimental results the relation
between a and ~ derived in this paper provides a
better fit for the coefficient of the relaxation term
02'/(1+0 r ) than those used previously.

VII. INFLUENCE OF ANISOTROPY

An important aspect of the analysis is that both
relations (1) and (42) assume that the relaxation
spectrum is reduced to a single relaxation time,
which thus must be the same whatever the direc-
tion of propagation of the ultrasonic wave. Now in

two papers an anisotropy of ~ has been report-
ed, ' ' and we will examine this occurrence in

Substance Anisotropy

gl a

(J/mol K)

c'bI
(J/mol K)

Sr(NO3)2

Ba(NO3)p

Pb(NO3)2

[100]
[110]
[100]
[110]
[100]
[110]

19.9
19.8
20.6
19.7
19.8
19.9

17.2
14.6
19.9
16.9
18.3
15.8

'Experimental value of the heat capacity per mole de-

duced from the theory derived in this paper [Eq. (42)].
Experimental value of Cq deduced from Liebermann's

theory [Eq. (1)].

TABLE I. Comparison of fits of experimental results

(Ref. 18) realized by the means of our theory and that of
Liebermann's.
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X, x p; Picots
——ng(ng+ 1) (46)

where p; are normalizing factors which depend on
intrinsic properties of the collision operator and
thus are independent of the direction of propaga-
tion of the ultrasonic wave. So for i & 2, we have

(X; Y}F=(X;y}E= g X,xi=I (R'C}'"&y&.
A, 6E

this section.
To explain this anisotropy Victor and Beyer'

have suggested the existence of multiple relaxation
times r; (i = 3, . . . ,p}. However, relation (26)
shows that these times are linked with the eigen-
values —1/~; of the collision operator, which are
intrinsic properties of the crystal, so that the relax-
ation spectrum cannot be affected by anisotropy.
Now the shift of the maxima of the curves giving
a/Q vs Q due to the changes of the direction of
propagation can only be explained by a strong in-
fluence of anisotropy on the respective magnitudes
of the different relaxations v;. Nevertheless, we
will show that under approximations weaker than
those leading to Eq. (40) these magnitudes must
stay proportional to one another for any measure-
ments in the same compound.

We always distinguish two groups of phonons:
(i) On the one hand, there are phonons which

participate in establishing a local equilibrium in a
fast time e. For this group of phonons (we again
write A, EE) there is always conservation of the en-

ergy within the assumption 0/~; && 1.
(ii) On the other hand, there are phonons (A, CI)

which are not thermalized with times -e. These
phonons clearly have only weak interactions with
acoustic phonons, and we assume that their
Gruneisen parameters are negligible.

Under these conditions we have for i & 2 and
A, eE

1/2

but only on its coefficient through the term

(y& /s (within the approximation (y&1 « (y&E).
Moreover, this property has been shown even
though we no longer have assumed the thermaliza-
tion of "internal" phonons and thus we may expect
that it remains valid for a large range of behavior
of the "internal" phonons.

VIII. CONCLUSION

The consequences of the approach developed in
this paper are the following.

The possibility of discussing the ultrasonic at-
tenuation for the whole family of dielectric crystals
within a single scheme whether these crystals are
"hard" or molecular.

The formulation of the actual approximations (at
a microscopic level) which support Liebermann's
proposition.

The derivation of an expression of the ultrasonic
absorption coefficient in molecular crystals which
is different from that used in the previous works of
this field and which leads to a closer fit in the
analysis of some experimental results.

The discussion of the influence of anisotropy on
the molecular relaxation where we have shown that
under rather general conditions, anisotropy mainly
acts on the magnitude of the ultrasonic absorption
but not on its frequency dependence.

It would now be very interesting to go back to
Liebermann's approach about relaxation times with
the support of modern analysis of the anharmonici-
ty in molecular crystals, which might lead to good
predictions about the order of magnitude of these
times and their dependence on parameters such as
temperature, pressure, etc.

Thus Eq. (26} gives

a=a& +a+
with
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CV~ P
2 Q ti

, &y& Xu2pg; 3 1+Q ~;
(48) APPENDIX

In the expression above we see that anisotropy can-
not act on the term

In this appendix we outline a derivation of the
expression of a under the assumptions made in
Sec. V but when the group velocity of phonons is
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taken into account. Now X1, L3, and G are no
longer the eigensubspaces of M when the term in(
is kept in definition (24) of M and thus the expres-
sion of n cannot be obtained by a mere expansion
of Eq. (25).

X2 being a normalized vector of G parallel to the
projection of y on G, we make the following defini-
tions:

a;=(X A '(X;))F a,——j,
1

bkj n ( 1 Bvk )i/jk +~jk

Here m;k, aj;-, and bkj may be considered as ele-

ments of three matrices (3)& 3) denoted m, a, and b

Then we have from (A7)

3

Z;=M(X/)= Y;+ g m/kxk,
k=1

m =ab-' . (A9)

Y EG, Vi=1,3.

With these notations we have

The next step of this derivation is to obtain an

explicit expression of the elements a;J. With the
help of the definition (A5) we can write

0
i
—Re y (X; y)/;(Xk . y}/ m;k

2p Vs

(A2)

net„.
1+inc(1 —gkk)

(A 10)

and now we must determine the term m;k. Using
definition (24) of M we may obtain from (Al) the
relation

X, =M '(Z;) = — [1+inB(I —g)](Z;)ne

If we assume that we are in the hydrodynamical
region (ne « 1 ) we can make an expansion of
A~~ in terms of Qe, and we find

a~j ——(X/.A '(Xj ) )/;

where

+g ~ikXk ~

k=1
(A3} =- —ne[a, j(1—ne —n'e')

—n'e'@+ o(n'e')], (Al 1)

1 1
%1=0, V2=, V3=8 '

If we let

[1+inc(I—g)],1

ne

(A4)

(A5)

where

A. CF

2

(A12)

then (A3) may be written in the form

&2—&k
'(X, )=Z;+ g m;kA '(Xk) .

k=1

(A6)

If we multiply both sides of Eq. (A6) by Xj, we

find

The operator g does not give a first-order term in
Qe in the expansion of a;~/Qe because the group
velocities v~ and v ~ cancel out while the com-
ponents X; ~ and X; ~ are equal.

Now with the help of Eqs. (A2), (A7), (A9), and

(Al 1), and after some tedious but straightforward
calculations it can be shown that a may be written

in the form

1
aj; = g m;k (1 Bvk)ajk+5jk-

k=i CX =CZAR +EX' +CXT, (A 13)

where

3

mik bkj
k=1

(A7) where az and a~ have already been defined by Eq.
(35), and aT is the attenuation due to thermal con-
duction between the compressed and rarefied re-

gions and is given by
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ar ——
s

Q'e &y&'&g'&+ ', '
&y&(&y&, —&y&l)(&g'&~ —&g'&, ) 2——

r 1+Qr

s I
& & & &

2 i
&~2& &&~2& Qr(1 —Qr )

(2 y E y I C fE +C sI (1+Q2+)2

We have set

(A14)

X (~~.)'nx(ni, +luau,
A, EF

(A15)

ar —— &y& &g &Q 8 1+ 2——CvT . . . CI e Q'r'

2ps Cz r 1+Q r
(A16)

and &$2&z and &gi&1 are defined in the same way. Since the internal modes are quite unaffected by lattice
effects we may neglect & y&i and & g &I in Eq. (A14) to obtain a slightly simplified expression of ar.

Qr(1 —Qv )

Cs (1+Q r )
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