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A phenomenological model based on staging periodicity and in-plane superlattice sym-

metry is developed for the phonon dispersion relations of graphite intercalation corn-

pounds, analogous to the formalism developed for the electronic dispersion relations. The
formalism, based on the zone folding of the graphite dynamical matrix required by sym-

metry, gives with a minimum number of parameters the only available calculation for the

phonon dispersion relations for high-stage compounds. Specific application of the model

to a C2„X structure yields results in good agreement with the stage dependence of the lat-

tice mode spectra, indicating that the staging periodicity is the dominant effect in these

compounds. Implications on the velocity of sound, second-order Raman spectrum, and

specific-heat measurements are discussed.

I. INTRODUCTION

Graphite intercalation compounds are formed by
insertion of foreign species, the intercalant, in be-
tween layers of carbon atoms, whereby an ordered
structure (both c axis and possibly in plane) is
formed. Over the last few years, a great many ex-
perimental results concerning the lattice dynamics
of these compounds have been accumulated. There
is, however, no general theoretical model for the
lattice dynamics of compounds of arbitrary stage.
In this paper, we apply a phenomenological model
based on the symmetry imposed by the intercala-
tion process to calculate the phonon dispersion re-
lations. The same conceptual approach and basic
formalism was previously used to calculate the
electronic despersion relations. '

The following important results relevant to lat-
tice dynamics have emerged from Raman and in-
frared measurements on graphite intercalation
compounds and our model for the phonon disper-
sion relations must account for these observations.

(1) Only a small number of lattice modes are ob-
served by Raman and infrared spectroscopy. (2) Of
the modes that are observed, almost all are very
similar to those for graphite. (3) A frequency split-
ting of the high frequency E2g and E» lattice

modes (=1600 cm ') into graphite bounding and
interior layer modes is found. (4) For the
Raman-active Ezg mode, this splitting in the limit

of infinite stage is larger for the donor compounds
(- 35 cm ') than for the acceptor compounds
(-20 cm ').' (5) The E2s mode frequency is

stage dependent, and is upshifted for acceptors and
downshifted for donor compounds as a function of
increasing intercalant concentration. (6) For
stage-1 graphite intercalation compounds, no
infrared-active modes have been observed, and like-
wise for stage-2 alkali metal compounds with the
intercalants K, Rb, and Cs. (7) For the stage-1
alkali-metal compounds with K, Rb, and Cs, an
anomalous behavior is found in the Raman spectra.
Instead of a sharp graphitic mode near 1600 cm
two anomalous features are observed, ' '" consist-
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ing of a broad Breit-%igner line peaking near 1500
cm ', and a sharp phonon mode structure near
—570 cm '. (8) The broad feature near 1500 cm
has been explained by Eklund and Subbaswammy'
in terms of a coupling of the discrete E2g graphi-

tic mode to a frequency-dependent phonon contin-

uum, while Miyazaki et al. ' have interpreted this
structure as due to a coupling between three
discrete phonon modes and a continuum of elec-
tronic states. (9) The sharp structure in the stage-1
Raman spectra for CsK, CsRb, and CsCs near
-570 cm ' has been identified' '" as due to an
M-point graphite phonon mode, folded into the I
point of the Brillouin zone for a (2X 2) superlat-
tice, though others' have attributed the observed
structure to peaks in the phonon density of states.
(10) No measurable leakage due to intercalation is
observed between the Raman and infrared spectra,
implying the preservation of the parity selection
rules for graphite intercalation compounds, though
inversion symmetry is not formally a symmetry
element of the space group. (11) The only internal
mode specific to the intercalant that has been stu-
died in detail is that for the graphite-Br2 system, '

by exploiting the resonant enhancement process to
make the signals observable.

Other experimental investigations relevant to the
lattice dynamics of intercalated graphite include
inelastic neutron scattering experiments' ' and
heat capacity measurements. In the case of
the inelastic neutron scattering experiments, the
published data are scanty, with no information yet
available on the stage dependence of the acoustic
branches for any intercalant. From the specific-
heat data, Debye temperatures have been de-

duced and for the case of CqCs and C8Rb,
specific-heat anomalies have been identified with
an Einstein temperature.

Full lattice dynamical calculations for the pho-
non spectrum of graphite intercalation compounds
have been sparse, and limited to the first-stage
graphite alkali-metal compounds. This calcula-
tion was based on a previous calculation by Maeda
et al. on pristine graphite, with eight force con-
stants, and the extension of the Maeda model to
CSK and CSRb by Horie et al. employed ten force
constants. The Horie calculations show a large
number of phonon modes (54 I point normal
modes) mainly due to zone folding of the in-plane
2)&2 superlattice. These modes, however, have not
yet been observed experimentally, perhaps because
of a lack of sufficient crystal perfection in these
stage-1 compounds. Horie et a/. have also com-

pared their first-principles calculation to a simple
in-plane zone folding of the graphite phonon
dispersion relations, showing that the major
features of the phonon dispersion curves arise from
zone folding of the graphite dispersion curves,
rather than from perturbations associated with in-
tercalation.

To account for the experimental observations
relevant to the lattice dynamics for graphite inter-
calation compounds, a zone-folding model for the
phonon dispersion relations is here developed
which is valid for any intercalant and any stage. A
preliminary and brief account of this model which
takes the symmetry of graphite as the approximate
symmetry of the intercalation compound has been
previously presented. ' The model is based on
k, -axis zone folding of the graphite dynamical ma-
trix, consistent with the observed c-axis symmetry,
in a manner analogous to that used to obtain the
electron dispersion relations. ' In Sec. II the lat-
tice dynamics of graphite relevant to the model is
presented. In Sec. III we extend the calculation to
graphite intercalation compounds using a k, -axis
zone-folding model and giving sufficient details so
that the calculation can be applied to the analysis
of experimental data. In Sec. IV results of the cal-
culation are discussed, and in Sec. V, further work
and extensions to treat specific compounds are in-
dicated.

II. LATTICE DYNAMICS OF GRAPHITE

Graphite crystallizes into a structure with D6I,
symmetry with 4 atoms per unit cell (see Fig. 1),
which gives rise to 12 branches of the phonon
modes which have I point symmetries 232„
+2E ] +2E2g +28 &g These frequencies are
identified by infrared spectroscopy, first-order
Raman spectroscopy, ' ' and inelastic neutron
diffraction measurements. '

FIG. 1. Structure of hexagonal graphite showing the
A, B, A ', and B' atoms, and their positions with respect
to the Cartesian coordinates x,y,z.
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A number of models, all based on the Born —von
Karman formalism, have been reported. "' Of
the various models, the one which provides a
reasonable fit to presently available experimental
data is that due to Maeda et al. and for this
reason, our calculations for intercalated graphite
are based on the Maeda model for pristine
graphite. It should, however, be noted that the
Maeda model does not fit the second-order Ra-
man data in detail, so that further refinements to
the Maeda model for graphite will be necessary.

In the Maeda model, interactions up to second-

nearest-neighbor in plane and first-neighbor out of
plane are considered. The anisotropic properties of
graphite are taken into account by two tangential
force constants: one responsible for changing the
bond angle within a layer and the other responsible
for displacements perpendicular to the layer. The
off-diagonal shear components of the force-constant
matrix are assumed to be zero even though these
components are allowed by symmetry. The eight
force constants used in this model are listed in

Table I.

III. FORM OF THE DYNAMICAL MATRIX
FOR GRAPHITE INTERCALATION COMPOUNDS

According to the theory of lattice dynamics in the harmonic approximation, the dynamical matrix
D p(KK'

~
k) is defined in terms of the matrix elements p p(lK;1'K') of the force-constant matrix p(lK;1 K')

by

D~p{KK'
~
k) ={M„M„) ' g p~p(lK;I'K'')exp( —ik [r{IK)—r{l'K')]I,

where lK denotes the Kth atom in the 1th unit cell,
and aP denotes the Cartesian components. The
summation in Eq. (1) is over neighbor distances
which are conveniently found by calculating
r (lK}—r (1'K'). The relation between the force-
constant matrix elements p p(lK;1 K') of Eq. (1) and
the force constants of Maeda er al. (Table I) is
given in Appendix A. Imposing the symmetry
conditions and infinitesimal translational and rota-
tional invariance, the following conditions between

TABLE I. Force constants' of hexagonal graphite.

yI"= 0.0579
y"'= o oo71S

'The values of the force constants in units of (10
dyn/cm) are from Maeda et al. (Ref. 24). The subscript
r denotes a radial force constant and t a tangential force
collstallt, with pg, SIld fg; associated, rcspcctlvclp, with a
change in bond angle and a c-axis displacement. The

~{n')
out-of-plane force constants P are distinguished from
the in-plane force constants P'"', where n refers to the
nth neighbor in-plane distance and n

' to the n 'th neigh-
bor out-of-plane distance. %'e note that Maeda et aI.
{Rcf.24} used the superscript notation P'"' to denote the
w{])

terms given in the above table.

the force-constant matrices must be satisfied:

P~p(lK;1'K'') =Pp (1'K';1K)

g P p(lK;1'K')=0,

where Eq. (2) follows from the mathematical defin-
ition of the force constants, and Eq. (3) preserves
the center of mass. The use of crystal symmetry
results in the transformation of the force-constant
matrices

p~p{ l"K",1"'K"')= g S~gSp,gg, (lK-, 1'K'),
g, v

where Sp„are the matrix representations of the
symmetry operations of the space group. If the
symmetry operations either leave the sites fixed
(1 K ) =(IK) alld (1 K }={1K ), or llltcl'cllallgc
them {1"K")=(1'K') and (1"'K"')=(lK), then the
above conditions Eqs. (2)—(4) give the indepen-
dent, nonzero elements of the force-constant ma-
trices, which are tabulated explicitly in Ref. 46.

The dynamical matrix written in Eq. (1) is in the
most general form. Applying the symmetry con-
straints of Eqs. (2}—(4) results in the formation of
linear combinations of the exponential factors
which transform as irreducible representations of
the space group. These linear combinations of
plane waves define the symmetrized Fourier func-

-+
tions I' '( 1,() and the corresponding combination
of force constants defines the Fourier coefHcients or
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TABLE II. Symmetrized Fourier functions for hex-
agonal graphite. '

Representation: I';
—+

Fourier functionb:F '( l, g)

A)g

A2g

8)g
8'

A2N

&)I
82„

[C,(l„l3) + C {1»1()]cos(nl3$3)
[C (l„l3) C(l —31))]cos( sl3(3)

[S {1„13)—S (13,1))]sin(ml3$3)

[S (1»13) + S (13,13)]stn(3rl3(3)
~

~

[S'(l&,13) + QS'(13,1~)]sin(3rl3$3)
i [S'(l)&13)—QS'(l„l))]stn(3rl3(3)

[C'(l„l3) + QC'(l»l))]cos(el3$3)
i [C'(l„l3) '(l —3I))]c o(se13$3)

i [C (1„13)—C (13,1))]sin(nl3$3)
i [C (l),13) + C (13,13)]sin(n 13')
i [S (l),13) + S (!3,1))]cos{ml3(3)
i [S (lt, l3) —S (13,1~)]cos(3rl3$3)

[S'(1„13)+ QS '(13,1,)]cos(3r13f3)

i [S'(1„13)—QS'(13,13)]cos(3rl3$3)
[C'(l»l, ) + QC'(l»l, )]stn(3rl3(3)

i [C'(l),13)—QC'(13,1))]sin(3rl3(3)

'The dimensionless reciprocal-lattice vectors g~, g3 g3
are given by g~ k~ap/21Tq k=k3——ao/23r, and g3
—k3co/2m; where k), k&, and k3 are given in Eq. (A3)
in Appendix A.
'The linear combinations of exponentials using in-plane
vectors are given by

C~(1&,13)=(cos[2n(l~g&+13/3)/3]

+Qjcos[2e'[ —l,g, +(1,—13)g,]/3}

+Q icos{2'[(13 l~ )g~ —1'~(3]/—3})/6,

SJ(13,13)=(sin[2n (1,g, +13/3)/3]

+Qjsin [2e [—13(3+ (1) —4)(2]/3 }

+Q3jsin[23r[(13 —l))g) —13(3]/3})/6,

in which A=exp(2mi/3). The partners of the two
functions for each of the 2-dimensional representations
are the complex conjugates of the listed functions.

Fourier parameters. The relations of the Fourier
r,. - -'

functions F '( 1,g) to the plane waves are listed in

Table II. Listed in Table III are the relations of
the in-plane Fourier parameters a ~gs {hkO,v) to a
linear combination of the in-plane and out-of-plane
Maeda force constants P" and P"' for graphite (see

Table I).
The dynamical matrix in the site representation

for graphite with four distinct atoms per unit cell

A, B, A', and B' is a 12' 12 matrix of the form

D~B D~~ D~B

D~B
Dg ——

D~B

DBB DB~

DB~

DBB' DA 'B'

DBB'

D~B

where the D p are 3&3 matrices coupling atoms a
and P, and are subject to the symmetry-imposed
constraints given above and resulting in the follow-

ing relations between matrix elements. Firstly we
have

{Dg b ={D g-)'J (6)

for a,p=A, B,A', 8' and ij =x +iy, x iy,—z Ad.di-
tional constraints on the off-diagonal terms of the
dynamical matrix are the following:

(D ~),q (Dgg),q——
for i' and, either a =A', l3l=A, or a=8', P=B,
or a =8, P=A.

—+

Using the Fourier functions F '( 1,g) and Fourier
rI

parameters a ~g( l,v) listed in Tables II and III, the
independent matrix elements of the dynamical ma-
trix are obtained and are tabulated in Appendix B.
With the matrix elements given in Appendix 8, the
phonon dispersion relations for graphite, given by
Maeda et al. , are reproduced.

To take into account the c-axis periodicity im-

posed by the staging superlattice, the dynamical
matrix for graphite is zone folded along k, to gen-
erate the dynamical matrix of the intercalation
compound. For the graphite intercalation com-
pounds, the c-axis superlattice which results from
staging is well documented. On the other hand,
experimental results on the lattice mode spectra for
these compounds show, except for stage 1, no ob-
servable dependence on in-plane structure. More-
over, most intercalation compounds do not have
in-plane intercalate layer ordering that is com-
mensurate with the graphite host, so that few inter-
calation compounds exhibit an in-plane superlat-
tice. Hence, we start our modeling of the lattice
dynamics of graphite intercalation compounds by
the introduction of k, -axis zone folding.

For our model calculations, we distinguish be-
tween odd and even stage compounds because the
crystallographic inequivalence of the A, B layers in
pristine graphite gives a one and two intercalate
layer c-axis periodicity for odd and even stages,
respectively. The Brillouin zone is tht:n respective-
ly (n + I)/2 and (n + I) times smaller than graphite
for odd and even stages in the intercalation com-
pounds. The inverse scaling relation likewise ap-
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TABLE III. Relation of Fourier parameters to force constants for graphite.

Symmetrized parameters' Maeda parameters

a~"(000, 1)

a AA8 (000,4)
a AA8 (300, 1)
a AA8(300~ 3)
a A„"(300,4)

aug (000, 1)
A)

a pe(000, 4)

a,~"(300,1)

a,~"(300,3)
a„"(300,4)

aAAf (001&1)

a AA'(001 4)

aAq8(120, 1)

aA~8(120, 3)

aAg (120,4)

[(—,)lP„'"+tII,';")+2(P„"'+P,';") + 2P, ]/mc

—3[/,';"—P,"']/m
—6y» /mc(2)

[(—,)((()„"'+Pg;") + 2($,"'+P,';")]/mc

—3[4"'—4,"']/mc
—6P» /mc(2)

~(])—2P, /mc
w ([)—2P, /mc

—[(—,)(p„"'+p,';")]/,
[—3((('"—(("")1/
—3P» /mc(1)

'In addition to the listed parameters, we have the identities:

Ai -+ Ai
a~&( i,v)=a~&( l,v),

A) ~ A)asI( l,v)=ass ( l,v),
A) ~ A) -+

a„I( l,v)=a„s ( —l, v) .

Parameters not listed are taken to be zero in the Maeda model.

plies to the k, -axis reciprocal-lattice vectors.
The definition of the phonon dispersion curve

co(k) in the reduced zone gives rise to the relation

co(k) =co(k+G),

where 0 is a reciprocal-lattice vector in the new

superlattice. Considering k, -axis zone folding, we
have for the smallest reciprocal-lattice vector
Goo& ——~z/(Ico), where I =(n + 1)/2 for odd stages
and I =(n+1) for even stages. Thus Eq. (8) under

k, -axis zone folding yields

co(k) =co k+
Ico

27rz=N k+
Ico

r

(I —1)mz
co k+

Icp
(9)

Therefore the k, -axis zone-folded dynamical matrix
takes the form

Dg k+
Ico

DzF(k) = D k
27Tz

Ic,

0 Dg k+ (I —1)mz

Ico
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in which each Ds(k) block is a 12X 12 graphite dynamical matrix as given by Eq. (5), and blocks of zeros
are placed in the ofF-diagonal positions.

To consider the effect of the intercalant explicitly, the dynamical matrix is conveniently handled in the
layer representation, where one can identify each layer of the compound with a specific row and/or column
of the dynamical matrix. In the layer representation we can then replace a graphite layer by an intercalant
layer, thereby explicitly incorporating the effect of the intercalant. The transformation to the layer represen-
tation DL is carried out via the unitary transformation U given in Appendix C and yielding

DL(k) = UDzF(k) U

The dynamical matrix in the layer representation DI (k) is then written as

DI (k)=

DA,B,

AoBo

DBoBo

DB

DB,A,

D
(12)

D

in which the matrix blocks, such as DA A and
0 0

Dz,s, , etc , are (.3r X3r) matrices, where r is the

number of carbon atoms per unit cell, and the sub-

scripts denote the layer indices.
Using Dl (k) as the basic zone-folded graphite

dynamical matrix, we can examine the eA'ect of in-
tercalation on the dynamical matrix DL (k) and on
the phonon dispersion relations for three different
cases to which our model applies: (a) zone-folded

graphite, where the intercalate layer is assumed to
be identical to a graphite layer, (b) the "empty in-

tercalate layer" approximation, where the inter-
calate layer is replaced by an empty later (i.e., vac-
uum), and (c) the occupied intercalate layer ap-
proximation, where the intercalant can be a "modi-
fied graphite layer" or a specific ionic or molecular
configuration which interacts with the graphite
bounding layers. The dynamical matrix appropri-
ate to the replacement of every (n +1)st graphite
layer by an intercalate layer is written in the most
general form (for odd stages) as

DGlc =

Dxx

DXB,

DxB

DBoBo

DB,A,

DBoA
~

DA)A)

DxB(

(13)

D

D

D

DA(B(

B(B(

and for even stages as
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DXX

DXBO

DXB

BOBO

DB

DB

DAlA(

DGIC
tP

DA X

+A X

&XX

DXA

DXA

DXB
I

I I

D
DAI BI

DBIBI

(14)

Dxx Dgogo+(o' —vl) ——g D~OG(k =0),
G

D~ D~+(f g) QD——q,g(k =0), —
g

(15)

in which g =Bo, A~, B~, . . ., BI, and D ~ is the
pristine graphite matrix of Eq. (5), with 5 control-
ling the intercalant-graphite interactions, cr govern-
ing the intercalant-intercalant interaction, f= 1 for

1

stage 1,f= —, for other stages, and 6 denoting the

graphite bounding layers. The k =0 terms in Eq.
(15) are required to conserve the center of mass
and to obtain the acoustic branches at k =0

To obtain zone-folded graphite, we write X =AD in

Eqs. (13) and (14) and recover the DL(k) matrix of
Eq. (12). For the empty intercalate layer approxi-
mation, we set all blocks with subscript X equal to
zero: Dx+=. . .D~~ =DE =D~ x=Dm ——0.

0 I p,

In the present work, we are especially interested
in an occupied intercalate layer for a generalized
intercalation compound, and we consider two lim-

iting cases explicitly: (1) The intercalate layer is a
modified graphite layer where the intralayer sym-
metry and atomic positions are those of pristine
graphite but the in-plane and out-of-plane force
constants are modified, as is the atomic mass, or
(2) the intercalate layer forms a commensurate

C2„X structure for a stage n compound, with an in-

tercalant over the center of every graphite hexagon,
where again the mass and the in-plane and out-of-
plane force constants are modified.

Taking the intercalant as a modified graphite
layer we obtain

0Dm =nD~, G

correctly. It should be noted that in the layer
representation one can also modify the force con-
stants within the bounding graphite layer or the in-
teractions between graphite bounding and interior
layers. Preliminary analysis' of inelastic neutron
scattering from longitudinal acoustic modes suggest
a significant decrease in the bounding-interior layer
graphite interaction relative to pristine graphite.

The Cz„X structure is important for a generalized
treatment of the phonon modes for intercalated
graphite because it allows the formulation of the
dynamical matrix in which the atomistic nature of
the intercalate layer is incorporated with AXA re-

gistry. In this registry the intercalate atom or
molecule is centered between two hexagons on the
graphite bounding layer planes. The C2„X struc-
ture corresponds to a 1)&1 superlattice for the in-

tercalate layer. The cases for less dense superlat-
tices, e.g. , ~3 X~3, 2X2, &7Xv 7, etc., can he
treated by an in-plane zone folding of the C2„X
dynamical matrix with the subsequent removal of
selected intercalate atoms or molecules. Since
commensurate superlattices do not generally exist
for stage n g 1, the application of the C2„X struc-
ture for the modeling of intercalation compounds
makes use of a distributed layer in which the mass
per unit area is fit to the experimental value for
the intercalate layer. Though this model overesti-
mates the number of intercalate-related modes, the
simplicity of the model makes it possible to calcu-
late high-stage intercalation compounds without
excessive computer time.

For the case of the C2„X structure, we modify
the B atom on the Ao layer to that of an inter-
calant and leave the 3 atom site vacant. The Dzz
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P =$0(1+a/n ), (16)

where Po is the force constant for pristine graphite
and a gives the stage dependent part of the force
constants, and is positive for acceptors and nega-
tive for donors. The physical basis for this stage
dependence of the in-plane force constants can
come from a variety of different stage dependent
mechanisms, such as changes in: (1) the in-plane
carbon-carbon distance (bond length) dc c of the
intercalation compound from that of pristine
graphite, ' where dc c increases for donors and
decreases for acceptors upon intercalation, (2) bond
strength as a result of charge transfer, and (3) the
electron-phonon coupling as a result of the renor-
malization of the phonon modes by free carrier
(plasma) effects. In our calculations, the stage
dependence of the out-of-plane force constants P
were neglected for lack of experimental informa-
tion. This assumption can of course be relaxed
when the pertinent experimental information be-
comes available.

matrix then becomes a 3r X3r matrix, where r is
the number of atoms in the intercalate unit, and re-
flects the internal degrees of freedom for the inter-
calant (i.e., r = 1 for an atomic or ionic intercalant
such as E, r =2 for the molecular intercalant Br2,
etc). Within the C2„Xformalism, in which the Ao
layer is modified to model the intercalate layer, the
A site is eliminated, the intercalant-intercalant in-

teraction has the same form as the in-plane
graphite 8-B site interaction, and the intercalant-
graphite bounding layer interaction takes the same
functional form as the graphite A-8' and 8-8' in-

teractions. Since the first nonvanishing out-of-
plane contribution for the C2„X structure occurs at
the second-neighbor out-of-plane distance, it is
necessary to extend the calculation for graphite by
Maeda et al. to include such terms. An explicit
listing of the intercalate-related matrix elements of
Eqs. (13) and (14) for the C2„X structure is given
in Appendix 0 for the case r =1 and assuming
only nearest-neighbor intercalant-intercalant in-
teractions. In Eqs. (13) and (14) we substitute

BI——8+ and 80——8 and for even stages A„=A+
and A„=A in the graphite-intercalate interaction
terms. Also included in Appendix l3 are the
results for stage-1 compounds, for which every gra-
phite layer is adjacent to an intercalate layer.

To incorporate the stage dependence of the
dynamical matrix in detail, we proceed to include a
stage dependence of the in-plane graphite force
constants for the bounding layers of the form

The inverse stage dependence of the Ezz modeS2

frequencies has been associated with the measured
changes in the in-plane bond length dc C. These
changes in dc c have been shown to be of oppo-
site sign for donors and acceptors and to scale as
the inverse stage 1/n Su. ch a functional depen-
dence on 1/n is associated with a power-series ex-
pansion in the intercalate concentration. Recent
theoretical calculations by Pietronero and Strassler
have estimated the effect of charge transfer into the
graphite from the change in -the in-plane bond
length.

IV. RESULTS FOR THE PHONON
DISPERSION RELATIONS AND

DENSITY OF STATES

Based on the formalism derived in the last sec-
tion, we have calculated the phonon dispersion re-
lations of graphite intercalation compounds in four
limiting cases: (1) zone-folded graphite, (2) the
empty intercalate layer approximation, (3) the in-

tercalate layer as a "modified graphite layer, " and
(4) the C2„Xstructure.

Results for cases (1), (2), and (3) are illustrated in
Fig. 2 for a stage n =3 compound. Figure 2(a)
shows that k, -axis zone folding increases the
number of the graphite phonon dispersion relations
branches by a factor of 3 for n =3. As shown in
Fig. 2(b), the effect of the removal of a graphite
layer and the substitution of an empty intercalate
layer is the removal of six phonon branches from
the dispersion curves with little perturbation to the
remaining branches, except that the k, dispersion
is eliminated due to the absence of any coupling
across the intercalate layer. This loss of k, disper-
sion is reasonable for this model in light of the in-
crease in the separation between two graphite
bounding layers because of the intervening inter-
calate layer. Neither the k, -axis zone-folded
graphite nor the empty intercalate layer model can
account for the splitting of the high-frequency op-
tic mode into bounding and interior layer modes.

To account for this splitting, interaction terms
such as given by Eq. (16) for the modified graphite
layer are included. The interaction parameters g
and o in Eqs. (15) are assumed to differ from one
intercalant to another and to diA'er for donors rela-
tive to acceptors. Results for the phonon disper-
sion relations for the modified graphite layer model
are shown in Figs. 2(c) and 2(d) for donors and ac-
ceptors, respectively. The main effect of the
intercalant-graphite bounding layer interaction is



24 DISPERSION RELATIONS IN GRAPHITE INTERCALATION. . . 6091

(o) kz-axis zone folded (b) Empty loyer
l800 I800—

I600

1400

I 200
E—IOOO

800

600

I200—

600-

200

A I"
(cj Donor layer

I- M

I800 (d) Acceptor layer

I200— I200—

600— 600—

A I" M A I
0

Wavevector k

the splitting of all the graphite optic modes into
bounding and interior layer modes. This interac-
tion also couples the intercalate mode to the low-

frequency graphitic branches of the dispersion
curves. The largest bounding-interior layer; split-
ting is predicted to occur for the modes originating
from the out-of-plane A2„modes of graphite. In
the low-frequency region, the dominant modes in
the intercalation compounds show a large admix-
ture between the graphitic and intercalant parent
modes. Because of this admixture of low-frequency
modes, it is only for the high-frequency optic
modes that intercalant-independent shifts are ob-
served experimentally. It should, however, be not-
ed that the intercalate mode is sensitive to the as-
sumptions of the model, which in this case consid-
ers the intercalate layer as a modified graphite
layer with the same number of atoms and sym-
metry as a graphite layer. This assumption must
of course be modified for each intercalant to ac-
count for the proper intercalant to graphite mass

FIG. 2. Phonon dispersion curves for stage-3 graphite
intercalation compounds under the following conditions:
(a) k, -axis zone-folded graphite, (b) empty intercalate
layer model, (c) modified graphite layer model donor
compound, and (d) modified graphite layer model accep-
tor compound.

ratio per unit in-plane area, and the proper inter-
calate in-plane symmetry.

A more realistic approach for including the ef-

fect of the intercalant is given by the C2„X struc-
ture, where the intercalant is assumed to be cen-
tered over a potential minimum. This corresponds
to an intercalant on a B' site, an A' site unoccu-
pied, and carbon atoms on A and B sites on the ad-

jacent layers. In this situation the intercalant-
intercalant interaction is required by symmetry to
take the same form as the second-nearest-neighbor
in-plane graphite-graphite interaction, except for
the difference in the magnitude of the force con-
stants (see Table IV). There are no terms at the
nearest-neighbor and third-neighbor in-plane
graphite distances for this structure. The
intercalant-graphite interaction, on the other hand,
is identical in form to the second-neighbor out of-
plane AB' and BB' interactions for graphite, again
with different force constants. There are no terms
corresponding to the nearest-neighbor out-of-plane
distance. For this model it is necessary to intro-
duce six parameters in addition to the pristine gra-
phite parameters. These additional parameters are
(a) the radial and tangential components of the
intercalant-intercalant force constants (P, and

), (b) the radial and tangential components of
the intercalant-graphite force constants (t))„and

), and (c) the ratio of the intercalant mass to
graphite mass (p=mz/mc) per unit in-plane area,
and the coefficient o, for the stage dependence of
the graphite in-plane force constants given by Eq.
(16). The intercalant-intercalant interaction param-
eters and the mass parameter per unit area are
determined mainly by the properties of the parent
intercalant. The values for the intercalant-graphite
interaction parameters and for the a coefficient in

Eq. (16) are adjusted to fit the experimental Raman

data.
The values for the six parameters chosen for the

present calculation are summarized in Table V.
These parameters are chosen for a generalized
donor and a generalized acceptor compound
without reference to any specific intercalant or
stage. The intercalant-intercalant force constants

and p, are chosen to be small, as discussed
below. The intercalant mass per unit area (mx)
has been taken to be equal to that for the graphite
layers (mc) or p= l. The intercalant-graphite in-

teraction is chosen for simplicity to have equal
XG

tan ential and radial force constants (i.e., P„
X XG). With these approximations the magni-

tude of P has been determined by the observed
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TABLE IV. Fourier parameters for the intercalant-intercalant and intercalant-graphite in-

teractions.

Symmetrized constants Force constants'

a» (000,1)
Ai

a»8(000,4)
AIa» (300,1)

aps(300, 3)

a» (300,4)

a",8(000,1)

a~G8(000, 3)
AI

a+G (000,4)

ayG8(000, 5)

P(0'+0') + 34'0 '+&'0"+ 0 ')'i/m

)6yx + 6(e2yxG + (2yxG)i/

—3((()t, +(N) )/mg

3(fx Px)/m

6P~(, /m»—
3

((2y XG + py XG + y XG)/( )
Ii2

—3(e P, +g P„)/(mxmc)'~2
—3&2@((P, —P, )/(mxmc)'i2

'In addition to the Maeda force constants, we introduce the intercalate mass m~ and the car-
bon mass mc per unit in-plane area, and the parameters e=(ap/v 3)(cp+ap/3)
g=cp(cp+ap/3)

TABLE V. Values for parameters used in the lattice
dynamical calculation for a generalized donor and ac-
ceptor compound.

Donor Acceptor

(10' dyn/cm)
(10 dyn/cm)
(10 dyn/cm)
(10 dyn/cm)

P
a

1.0
1.0
2.66
2.66
1.0

—0.0388

1.0
1.0
1.70
1.70
1.0
0.0378

splitting of the graphite bounding and interior
layer E2g Raman-active modes in the limit of
infinite stage (i.e., pristine graphite). The magni-

tude of a has been chosen to fit the dependence of
the bounding layer E2g mode frequency on re-

g2

ciprocal stage (1/n). For the values of a and P
listed in Table V, the mode frequencies for bound-

ing and interior layer modes are calculated and the
results are given in Fig. 3 for acceptors as open cir-
cles and for donors as closed circles. The solid and
dashed lines for the bounding layer modes are from
a least-square fit to experimental data. %e also
note that the experimental results for the interior
layer modes for the donor compounds do not show
as large a shift as our calculated results.

The small magnitude of the (()„and P, force
constants reflects the fact that in a real compound

i620-

i600
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~ l580
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Acceptors

OUNO IN 6
Donors

Acceptor s

INTERIOR

~a~
~ Donors

I 560 I I I i I

0 O. I 0.2 0.3 0.4 0.5
i/Stage

FIG. 3. Calculated mode frequencies vs reciprocal
stage for graphite bounding and interior layer Raman-
active E2g lattice modes. The open circles are calculat-82
ed for acceptor compounds and the solid circles for
donor compounds. The constants of the model were
determined to fit the experimental data of Refs. 9 and
46, and the pertinent parameters are given in Tables I
and V.

the intercalants are separated by a large distance
relative to the carbon-carbon nearest-neighbor dis-

tances, so that the interactions between atoms in
the intercalate layer are assumed to be small com-
pared to the interactions between the intercalant
and graphite. It is further observed from the cal-
culation that the phonon dispersion relations for
the optical and acoustic graphitic modes are not
sensitive to the intercalant-intercalant interaction
parameter. Explicit calculations for a stage-I com-

pound, where the eigenfrequencies should be most
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sensitive to the intercalant-intercalant interaction,
show no change in the mode frequencies at the I
point and at the A point over the range of P,
values from 0 to 10 dyn/cm. However, at the I
point a small change in the acoustic-mode frequen-

cies is observed.
For simplicity we have chosen the intercalate

mass per unit in-plane area to be that of carbon, so
that p=1, which is approximately valid for the

C~2„Cs structure for which p=0.92. For applica-
tion to specific intercalants, the appropriate value

for p must be included. The calculation of the
dependence of the I -point mode frequencies on p
shows, as expected, that the modes with the strong-
est dependence on p are the triply degenerate
modes that involve mainly intercalant vibrations.

With the choice of parameters shown in Table
V, the phonon dispersion relations for stages 3, 5,
7, 9, and 11 acceptor and donor compounds have
been calculated and the results along I M are
shown in Fig. 4. In previously published phonon
dispersion relations for the stage-1 compounds,
the curves are found to be qualitatively different
from those for the higher-stage compounds. Furth-
ermore, the phonon dispersion relations for stages
3, 5, 7, 9, and 11 are almost identical, except for
the splitting of the lowest-frequency branches.
Comparing these results to the dispersion relations
calculated by Maeda et al. for pristine graphite
we can trace the origin of almost all the phonon
branches of the intercalation compounds to the
corresponding phonon branches in graphite. For
stages n & 3, we observe that for frequencies greater
than 800 cm ' there are two phonon branches that

track each other. This is more apparent in Fig. 5

where the phonon dispersion relations for a stage-3
acceptor compound are plotted for various high-

symmetry directions throughout the zone. These
tracking branches are identified on the basis of
their eigenvectors to be a mode splitting into gra-
phite bounding and interior layer modes. This is
one of the important conclusions of our calcula-
tion, and confirms the interpretation that had pre-
viously been given for the observed Raman spec-
tra. ' The calculations further show a very small

splitting of each of the interior layer modes (by
-0.5 cm ') depending on the distance of the inte-
rior layer to the nearest graphite bounding layer, so
that for a stage-n compound (n )3), there would be
approximately (n —2)/2 nearly degenerate graphite
interior layer modes. These nearly degenerate
modes are not resolved in the Raman spectra, but
this near degeneracy explains why the linewidth of
the graphite interior layer (E2g ) mode tends to be

greater than that for the graphite bounding layer

(E2s, ).

The C2„X model does not, however, account for
the sign of the shift of the high-frequency
infrared-active bounding layer mode near 1600
cm '. This result is not surprising for the follow-

ing reasons. Firstly, in pristine graphite, the
dynamical matrix in the Born —von Karman for-
malism fails to account for the magnitude and sign
of the Davydov splitting of the E» infrared-active
mode and the E2g Raman-active mode. Expan-

sion to fourth neighbor out-of-plane interactions is
necessary to obtain the terms which determine the

1800
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FIG. 4. Phonon dispersion curves calculate!d for stages 3, 5, 7, 9, and 11 donor compounds using the C2„X model
and the parameters given in Tables I and V. The dispersion curves for the acceptor compounds show only small shifts
to higher frequencies.
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FIG. 5. Phonon dispersion relations calculated for a C2„Xacceptor compound for stage 3 (n =3) along several high-

symmetry axes. Note that most of the graphitic branches occur in pairs and the corresponding normal modes show
that each member of the pair is associated with either a graphite bounding layer or a graphite interior layer. The fre-
quencies of the branch labeled "intercalate mode" are very sensitive to the choice of the intercalate-related parameters
given in Table V. There are other intercalatelike modes in the 100-cm ' region.

Davydov splitting and also satisfy the elastic con-
stants for pristine graphite. Secondly, the in-plane
infrared-active mode involves displacements in two
graphite layers, whereas the in-plane Raman-active
mode requires only a single graphite layer.

The C2„Xmodel, moreover, predicts a signifi-
cant dependence of the A2„ infrared-active mode on
intercalation. Preliminary experimental results for
the behavior of the A2„mode in graphite-FeC13 ac-
ceptor compounds show qualitative agreement with
the predictions of the C2,X model.

The advantage of a symmetry derived pheno-
menological model can be seen in Fig. 4. Once the
problem is set up and the parameters are obtained
for a certain stage and intercalant, one can easily
calculate the dispersion relations for an arbitrary
stage with no additional parameters. The physical
basis for this approach is that different stage com-
pounds of a given intercalant consists of two very
similar building blocks: (1) an intercalate layer
sandwiched between two graphite bounding layers,
and (2) n —2 graphite interior layers. Explicit ex-
tensions to other superlattices can be easily imple-
mented or can be inferred from in-plane zone fold-

ing of the appropriate high-symmetry points in the
C2„X structure. The model indicates that the pho-
non dispersion relations for the high-stage com-
pounds (n )3) are similar to each other, except for
the near degeneracy of some of the phonon
branches. The model further points out that the
low-frequency branches are split increasingly as the
stage index increases, suggesting that experiments

such as inelastic neutron scattering which are sens-
itive to these branches will provide important data
for evaluating the parameters of the model for
specific intercalants.

The model for the C2„Xstructure also gives
branches identified with the intercalant and such
branches are shown in Fig. 5 and labeled "inter-
calate mode. " This identification is made by con-
sidering the atomic vibrations (eigenfunctions) at
the zone center, which for these modes are shown
to involve atomic motions in the intercalate layer.
It is to be noted that in the C2„Xmodel, we have
overestimated the in-plane density of intercalate
atoms commonly occurring in graphite intercala-
tion compounds. The C2„Xmodel, thus, includes
too many intercalant-intercalant interactions, there-

by leading to an overestimate of the intercalate fre-

quencies.
On the other hand, the C2„Xmodel treats the in-

tercalate layer more successfully than the modified
graphite layer model, which yields the unphysical
result of an intercalant mode above 1600 cm
This unphysical mode can be considered within the
context of the shell model for phonons as a low-

lying electronic excitation which interacts strongly
with the lattice modes.

To further explore the implications of our
model, the dispersion along the I A axis for the
low-frequency branches has been calculated for
stages 3 & n & 11 and the results are shown in Fig.
6 on an expanded scale. Our calculations show
that these branches are relatively independent of
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FIG. 6. Phonon dispersion curves along the I 2 axis
for the low-frequency branches for graphite intercalation
compounds with stages 3, 5, 7, 9, and 11, calculated us-

ing the Cq„X model. The parameters for the calculation
are given in Tables I and V. The results for the donor
and acceptor compounds are almost identical along this
axis and are not illustrated separately.

whether the compound is a donor or an acceptor
compound and depend mainly on the stage. This
observation can be explained by the following argu-
ments: (1) The dominant effect in the dispersion
curves along I A is associated with k, -axis zone
folding. (2) The distinction between a donor and
an acceptor compound within this model is the
sign of the stage dependence of the in-plane force
constants; these force constants have little effect on
the dispersion relations along I A; and (3) the
intercalant-graphite bounding layer interactions af-
fect most strongly the acoustic branches, and

branches having the same symmetries. The strong
short-range bonding of the intercalant to the gra-
phite bounding layer for both donors and acceptors
implies that the effect of intercalation on the inter-

layer force constants should be similar. Because of
the increased bonding between the graphite bound-

ing layer and the intercalant, the bonding to the
adjacent graphite layer is weakened for stages n & 2.

It is anticipated that the results for the low-

frequency branches shown in Fig. 6 will require
modification as further experimental information
on the low-frequency phonon spectra of graphite
intercalation compounds become available. It is in

these low-frequency branches that the dominant

stage dependence is found, both in the number of
phonon branches and the value of the mode fre-

quencies, including the zone-center mode frequen-

cies that can be observed by Raman and infrared

spectroscopy. Figure 6 shows that the low-

frequency modes depart significantly from a simple
zone folding of the graphite dispersion relations
and that replacing a graphite layer by an inter-
calate layer is important in determining the disper-
sion relations in these compounds. From the ini-
tial slope of the acoustic branches, we can calculate
the transverse and longitudinal sound velocities for
propagation along the c axis. The resulting longi-
tudinal and transverse sound velocities and the
elastic constants C33 and C44 are listed in Table VI
for several stages for our model intercalant. Based
on this model and the values selected for the
parameters, both the velocity of sound and the

TABLE VI. Calculated velocities of sound and elastic constants.

Stage
p

(g/cm')'

t
Uz

(10' cm/s) (10' g/cm s)

l
Uz

(10' cm/s)
C33

(10" g/cm s)

1b

3
5

7
9
11

HOPG'

1.751
2.001
2.096
2.144
2.172
2.191
2.286

19.413
2.137
1.820
1.687
1.627
1.591
1.414

654.00
9.138
6.941
6.102
5.750
5.542
4.572
4.2d

19.524
5.970
5.110
4.772
4.600
4.507
4.017

65.400
7.130
5.473
4.882
4.596
4.452
3.690
3.90

'In calculating the density p, we have taken equal values for the intercalant and carbon
masses per unit area and I, =(n +~1)co.
'The stage-1 values for the velocity of sound and the elastic constants are obtained using the
same force-constant parameters as for the stage-3 compound. The values obtained for the
velocities of sound and elastic constants are too high to be physically meaningful, indicating
that the nature of the coupling is different for the stage-1 compound, where the graphite
layer is bounded on both sides by an intercalant layer.
HOPG denotes highly oriented pyrolytic graphite, a form of pristine graphite (Ref. 49).
Experimental values from neutron scattering data (Ref. 31).
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elastic constants along the c axis show an increase
relative to the corresponding values for graphite.
The stiffening of the acoustic branches implies that
the Debye temperature should increase upon inter-
calation, in agreement with specific-heat results for
graphite-I. i, ' but not with those for the heavy
alkali-metal compounds. ' It is further observed
that the values for the stage-1 compound are
anomalously high. This is because the interaction
between the graphite and intercalate layers is dif-
ferent for stage 1 since the graphite bounding layer
is sandwiched between two intercalate layers, there-

by requiring a modification of the interaction
parameters.

Using the calculated phonon dispersion relations,
we have plotted the phonon density of states for a
number of compounds and the results are shown
in Fig. 7 for stage-1 and -3 donor and acceptor
compounds. .The phonon density of states curve
shows that the strongest single feature is the mode
at -600 cm ' that comes from the high density of
states at and near the Brillouin-zone edges. This
high density of states near 600 cm ' is more pro-
nounced in intercalated graphite than in pure
graphite, and the magnitude of this peak decreases
with increasing stage. Other features in the density

of states curves for the intercalation compounds
can be identified with features in the density of
states in pristine graphite, with roughly the same
relative contributions from the various modes.
From the density of states results, we can calculate
the second-order Raman spectra and the specific
heat.

V. CONCLUSIONS

We have presented the first general calculation
of the phonon dispersion relations of a stage-n
graphite intercalation compound. In our calcula-
tion the symmetry of the staging phenomenon is
exploited by using the k, -axis zone-folding tech-
nique. The calculation is performed on generalized
donor and acceptor compounds without specific
reference to the intercalant species. Three limiting
cases are considered: (a) the empty intercalate
layer limit where the intercalate layer is approxi-
mated by vacuum, (b) the modified graphite layer
limit where the intercalate layer is a graphite layer
with a modified in-plane mass density, and (c) the~

C2„Xstructure with a modified site occupation in
the intercalate layer. For the empty intercalate
layer limit, the phonon dispersion relations are
essentially the same as those ifor zone-folded pristine
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FIG. 7. Phonon dispersion curves and density of states 6 (m) for stage-1 and -3 acceptor and donor compounds using
the C2„X model. The parameters used in this calculation are given in Tables I and V. Note the overall similarities in
the density of states for donor and acceptor compounds of the same stage, except that the peak in G(co) near -570
cm ' is most intense for the stage-1 donor compound (a), somewhat less intense for the stage-1 acceptor (c), and of still
lesser intensity for the stage-3 donor (b) and acceptor (d) compounds.
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graphite except that there are six fewer modes and
there is, in addition, a loss of k, -axis dispersion.
The modified graphite layer limit is simple to im-

plement and is able to explain the experimentally
observed splitting between the graphite bounding
and interior layer Raman-active modes. The
model predicts very large shifts of the A2„
infrared-active out-of-plane graphite mode which
are of interest to study experimentally. However,
the modified graphite layer model has the unphysi-
cal feature of yielding an intercalant mode at fre-

quencies much higher than 1600 cm '. The possi-
ble interpretation of this high-frequency mode as a
shell or internal mode makes this model attractive
for modeling acceptor compounds which are kno~~
to have internal modes and which generally are also
structurally incommensurate with the graphite.

The Cz„X structure is found to be the most
physical of the three limiting cases for modeling
donor compounds. In the Cq„X structure the met-
al ion lies over the center of the carbon hexagon,
and the resulting model gives agreement with ex-
perimental results for the magnitude and frequency
shift of the high-frequency Raman-active mode
(-1600 cm ') resulting from intercalation. For
the particular parameters that were chosen, the
transverse intercalate mode is identified as one of
the modes near -600 cm

The C2„Xmodel is also able to account for the
observation of very few high-frequency optic modes
in the intercalation compounds. The model shows
that most of the highly perturbed graphite modes
are below 400 cm '. These low-frequency modes
are more diNcult to study with both Raman and
infrared spectroscopy than the modes above -400
cm '. Second-order Raman spectra, far infrared
measurements, and inelastic neutron scattering ex-
periments will be especially important for provid-
ing further experimental data for determining the
parameters of the model for specific compounds.

The folded C2„Xmodel does not, however, ac-
count for the sign of the shift of the high-frequency
infrared-active bounding layer mode around 1600
cm '. This result is not surprising for the follow-

ing reasons: (1) In pristine graphite the Maeda
model for the dynamical matrix in the Born —von
Karman formalism fails to account for the magni-
tude and sign of the Davydov splitting of the E»
infrared-active mode and the E2g Raman-active

mode. Expansion to second interplane neighbors"' is
needed to obtain the Davydov splitting correctly.
(2) The in-plane infrared-active mode involves dis-

placements in two graphite layers, while the in-

plane Raman-active mode needs only one graphite
layer. Thus the infrared-active modes would be ex-

pected to be more sensitive to the detailed in-plane
superlattice structure of the intercalant. Finally,
(3) in-plane zone folding is not considered in this
model. The inclusion of in-plane zone folding
results in new zone-center modes some of which
are optically active.

Further work suggested for the modeling of the
lattice dynamics of the intercalation compounds in-
cludes: (1) explanation of the observed splitting of
the infrared-active modes, (2) detailed fitting of the
Raman and infrared-active modes by including the
interactions with further neighbors, (3) incorpora-
tion of in-plane zone folding, (4) more quantitative
determination of the interaction parameters as
more experimental results become available, and (5)
detailed fitting to specific compounds by explicitly
including the intercalant-intercalant parameters.
Since the completion of the present work, further
neutron scattering experiments have provided
more detailed experimental data on the low"

frequency c-axis modes. Modification of the
present calculation to fit these new data is in
preparation.

Rote added in proof: Since the completion of the
present work, further neutron scattering experi-
ments have provided more detailed experimental
data on the low-frequency c-axis modes. Modifica-
tion of the present calculation to fit these new data
is in preparation.
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APPENDIX A: DYNAMICAL MATRIX
FOR HEXAGONAL GRAPHITE

The site locations for the four distinct carbon
atoms A, A', 8, and 8' per unit cell shown in Fig.
I are given by

rg ——0,
rs ——( a )

—a2)/3,

Tg' —a3/2

rg ——(2a )+az)/3+ a3/2,

where the hexagonal basis vectors are
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Aa )
——apy,

az= —Qp(x~3+y)/2, (A2)

a3=cgg ~

and x, y, z are unit vectors along the orthogonal
axes, and ap ——2.46 A and cp ——3.35 A are the lat-

tice constants. The wave vectors in reciprocal lat-

tice space are given by

Ki ——2n.( —x+y (/3}/(v 3gp },
Kz —— 4nx/—(~3ap),
K3——2mz/cp .

(A3)

The general lattice sites in the real lattice are
given by

+la. )=1)ai+lzaz+13a3+ r„ (A4)

in which lac denotes the scth atom in the lth unit
cell and I ) I ) /3, Iz

——12/3, an—d 13 ls /2. ——
The dynamical matrix for lattice vibrations is

defined by Eq. (1) and values for the force con-
stants for graphite are given in Table I. If one
takes the axis x'(la;I'a') to coincide with
r(la. ) r(l'a') in —defining the in-plane force con-
stants, and takes the force constants with only the

(A6)

The force-constant matrix in the (x', y', z') coordi-
nate system 4(la.;I'a') is related to the force-
constant matrix in the (x,y,z) coordinate system
$(la;I'a') by

C)(la; I'a') =R 'P(la. ;I'a')R,
where 8 is the appropriate rotational matrix:

(A7)

tangential and radial components ()))„(n), (()(n), p„(n)),

then the farce-constant matrix is given by

y
(n) () (}

4(la.;I'a') = 0 ()),(,.
n) () (AS

0 y(n)

where n denotes the nth in-plane neighbor and is
determined by r(la) —r(l'a').

For the out-of-plane force constants, we let the
z'(Ia-, IV) axis coincide with r(la) r(l'a—'), and tak-

in~ only the tangential and radial components
(P,"',(()',"'), we have

0 0
'

4(la; I'a') = 0 P,
'"' 0

~ (n)

cos8cosg sin8cosg —sing

R (8,g) = —sin8 cos8 0
cos8 sing sin8 sing cosg

For in-plane neighbors g=0, and thus the in-plane force-constant matrix takes the form

P„'"'cos 8+/, ';"'sin 8 (P,'"'
(t),';"')sin—8cos8 0

4{Is.;I'a')= (P„'"'—P,';"'}sin8cos8 )(()„'"'sin 8+/, ';"'cos 8 0

0 (} y(n)

(A9)

The out-of-plane force-constant matrix given by
Eqs. (A6) and (A7) using the appropriate values for
8 and g which are given in Ref. 46 for up to
third-neighbor in-plane and second-neighbor out-
of-plane interactions. The terms ((}~/la-, I'a') ap-
pearing in Eq. (1}are the aP components of the
matrix (t'){I)~;I'a'). The dynamical matrix can be ex-
pressed in the symmetrized form which is dis-
cussed in Appendix B.

APPENDIX 8: MATRIX ELEMENTS
OF THE DYNAMICAL MATRIX

FOR PRISTINE GRAPHITE

The dynamical matrix of Eq. (1) is expressed as
an expansion in l and l', which relates to the vari-

I

ous possible distances between carbon atoms
grla) —r(l'a'). The dependence of the expansion on
wave vector k is given by the exponential plane
waves, which are more conveniently written in a
symmetrized form in terms of the Fourier func-

-+ -+
tions I' '( l, g), listed in Table II in order of in-
creasing carbon-carbon (C-C) atom separations,
starting with the constant term l =000, the nearest-
neighbor term 100, and more distant neighbor

r, -
terms 210, etc. The coefficients a~I)( I,v) are the
Fourier expansion parameters, which are related in
Table III to the force constants that have previous-
ly been determined for graphite by Maeda et al.

The symmetry relations given by Eqs. (6) and
(7), establish all terms in the dynamical matrix.
Given below are all the matrix elements of Eq. (5)
determined for the graphite symmetry. In the case
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r,.of the I" '(000, $) terms, the Fourier parameters as-
sume diAerent values depending on whether the

a~p( I,v) parameters are indexed by an A, A', 8, or
8' subscript for the site designation.

The dynamical matrix for pristine graphite can
be written in a form which is identical mathemati-
cally to the Fourier expansion for the elec-
tronic p bands (both m and o bands) in graphite.
The dynamical matrix is Hermitian and takes the
form

in which the 6X6 blocks D~p(k) are given by

D~P(k) D~p" (k)
D p(k)=

D~p" (k+K3) D~pg(k+K3)

and symmetry requires

D '"(k+K,}=D '"(k), (83a)

D„(k) D,b(k)
Dsym

D,b(k) Dsb(k)
(81)

while for the aa and bb diagonal blocks in Eq.
(81), symmetry requires

D„(k+K,) =D„(k), (83b)

Dab'(k+K2) = IDsb'(k)+3Dbs'(k+K3)+tv 3[Dbms'(k) Dbb'(k+—K3)]I/4, (83c)

in which I J denotes the direct product representation I J ——I;XB2„. For the off-diagonal blocks (a+P) in
Eq. (81), symmetry requires

(83d)

(84)

D~pf(k+Kp)= [D~p(k)+—i~3D p(k)]/2, ,

where K2 and K3 are defined in Eq. (A3) and the 3)& 3 blocks with symmetry I;=A
~g or 82„are written in

terms of the dimensionless wave vector g as

Dap(g)= g gamp( I v)[I' '( I g) o~(I k)Ir,.
I v

—+ —+
where linear combinations of the products F ( I,g)o„(I k) are taken to obtain that component which
transforms as I;. The nine basis matrixes o„(I'k) used in the Fourier expansion of Eq. (84) are given by

100
o)(A)s)=S' (Als)= 0 1 0

000
1 0 0

o2(A2s) =S~~(A2g) = 0 —1 0
0 0 0

010 000
03(E2s)=S' (Eps)= 0 0 0, 1 0 0

000 000
000

04(A )s) =S' (A )s)= 0 0 0
001

(Bsa)

(Bsb)

(85c)

(85d)

0 0 0
cr5(E)s) =S'~(E)g) = 0 0 i-

—i 0 0

0 0 0
os(E,s) =S~~(E,s) = 0 0 1

—100

0 0
0 0
0 i

0 0
0 0
0 1

0
0

0
0

(85e)

(BSf)
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in which e and 0 represent the even and odd sym-

metry under time inversion. The dynamical matrix
must be even under time inversion; hence the diag-
onal blocks D~(k) and D&b(k) are expanded using

the spin matrices which are even under time inver-

sion whereas the off'-diagonal block D,b(k) can
have both even and odd terms. The constraint on
the dynamical matrix, Eq. (81), imposed by the re-

quirement that there be no restoring force for a
uniform displacement is that at g =0 the acoustic
mode and all couplings to the acoustic mode van-

ish identically.
The dynamical matrix in the site representation

in Eq. (5) is obtained from the symmetrized form

of the dynamical matrix derived in this appendix

by the unitary transformation

5 12p( g ) = g a p~( 1,3)F "( 1,g ),
I

(89d)

5i3 ( g) = i g a~pg( 1,5)F "( 1,g)
I

+ g a p" ( 1,6)F '"( l,f),
I

(89e}

and for aP=BB',

5f|'(g}=ga. "(1,i)[F "(1g)+F""(l, g)]
I

(810a)

522(g) 511(k) (Blob)

53, (g)= ga p'(1, 4)[F "( l, g)+F "( l, g)],
I

D, (k)=VD,'& (k)V-'

in which

1 0 0
0 0 1 1

1 —1 0 0
0 0 1 —1

j

(86)

(87)

(810c)

5&q(g)= ga p'(1, 3)[F "(l, g)+F '"( l, g)],
I

(810d}

5|3(g)=i+a p (1,5)[F '
( l, g) F'"( l, g—)],

I

(810e)

and for aP=AB and A'B,

and 0 and 1 are 3 X 3 null and unit matrices,
respectively.

In the transformed site representation the
dynamical matrix for pristine graphite is given by
Eq. (5) where the matrix elements are given by

5ii(g)= ga p'( l, l)[F "( l, g)+F '"( l, g)]
I

+i g a ~p" (1,2)[F "( l, g)+F '"( 1,g)],
I

(81 la)

5;,"(g)

D p(k) = 5iz (k)

(g)

5 p(g)

5,p(g} (88)

522(g)= ga pg(1, 1)[F "( l, g)+F '"( l, g)]
I

i ga~~p"—(1,2)[F "( l, g)

+F '"( l, g)), (Bllb}

where a,p=A, B, A', and B', and the basis vectors
are (x+iy, x iy, z} For—np=A. A, AA', A'A', BB,
and 8'8', we have

5$(g)= pa p (1,1)F 'g( l, g')
I

533(g)= ga~p ( 1,4)[E "( l, g)+F '"( l, g)]
1

(8 1 lc)

5i2p(g)= ga pg( l, 3)[F "( l, g)+F '"( l, g)],
(8 1 jd)

+ g a p" ( 1,2)F '"( I,g ),
I

5;P(g) = ga.p'(X, l} 'q X,g)
I

—ga p" (1,2)F '"( l, g),
I

533(g) = ga~p'(1, 4)F '
( l, g),

l

(89a)

(89b)

(89c)

5|3P(g)=i ga p'(1, 5)[F "( l, g) —F '"( l, g)]
I

+i ga p" (1,6)
I

X[F "(l,g) —F '"(l,g)].
(8 1 le)
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In the above equations F '
( I,g) denotes the com-r.

plex conjugate of the function F '
( I,g). In the

sums over l which occur in the above equations
(89), (810), and (811), the nonzero values for

r,.
'

a gl, v) are obtained from the k-space translational
properties [see Eq. (83)] and are given explicitly in
the site representation as

for aP=AA: 1!,12
——0, mod 3; 13

——0, mod 2,
for a13=BB: I!,12

——0, mod 3; 13 ——0, mod 2,
for aP=AB: l!,I&+0, mod3; Ii ——0, mod2,

(812)
for aP=AA': li, lq ——0, mod 3; 13 ——1, mod2,

where

y&
——exp

27Tlp

l

and 1 and 0 are 6&(6 unit and null matrices.

APPENDIX D: INTERCALATE TERMS
IN THE DYNAMICAL MATRIX

where 0& is a 12&12 diagonal matrix of the
form

27Tlm 1 0
Q& m

——exp
l 'Vp0 1

(C4)

for aP=AB'. I!,12+0, mod 3; 13 ——1, mod 2,
for a13=BB'. 1!,12+0, mod 3; 13——1, mod 2,

and for I!,I&+0, mod 3, we impose the further
constraint I!+12.

APPENDIX C: UNITARY TRANSFORMATION
FROM THE ZONE-FOLDED REPRESENTATION

TO THE LAYER REPRESENTATION

The dynamical matrix is written in the site
representation where the lattice displacement
u (Iic) takes the form

u~(lic) =(M„) '~2U (») exp [ icot+i k—(Ir)i]c, .

(Cl)

in which M» and U~(ic) are the mass and normal-

mode coordinate for atom ~. One can then write

U~(K) =(M„) ' g u~(lx) exp [icot i k r(ls)]-,
l

(C2)

where r(lic) = r(l) + ~(s), r(1) is a lattice vector of
the Bravais lattice, and r('a) labels the equivalent
sites within the unit cell. The derivation of the
unitary transformation to a layer representation fol-
lows the same steps as given in Ref. 1 for the uni-
tary transformation for the electronic energy bands.
The resulting unitary matrix is given by

The case for a perfectly ordered commensurate
intercalate in-plane superlattice can be treated ex-
actly within the Born —von Karman treatment of
lattice dynamics. This appendix formulates this
model mathematically.

We consider a single layer, intercalated with one
atom per unit superlattice cell. This introduces a
3)&3 intercalate block Dzz in the dynamical ma-
trix which we can write as a Fourier expansion in
the layer representation as

D»»(g)=gga»» ( l,v)IF '( l, g);o„(I k)Iq
r,. r

(D 1)

in which the basis matrices o.„(I i, ) are as defined
in Eqs. (85). The expansion in Eq. (Dl) is identi-
cal to that given in Eqs. (84) of Appendix 8
w!th the replacement of aP by XX. The sum over
I in Eq. (Dl) for a (9 I, X~1,) in-plane superlat-
tice will depend on l, . Explicitly the sum will be
over all I for a p (1 X 1) superlattice (i.e., the Cq„X
model), or over every other I for a p (2 X 2) super-
lattice (i.e., the Cs,X model). The sum over 13 for
the out-of-plane superlattice contains terms every
n +1 integers for a stage n compound.

One can similarly expand the graphite-
intercalate interaction terms in a Fourier expansion
as

D»a(k)=gga»a( l,v)IF '( I g)'o (I k)jr,
l

U =I/v I

+1—1,0

O, l-& l & (l &)

(C3)

where the curly bracket denotes linear combina-
tions of the product F '( I, g) and cr„(1 k) that
transform as I;. In the site representation, the

r,.
matrix D '+(k) assumes the same form as
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r,. -
Daii (k), which is defined by Eqs. (B8) and (B10),
subject to the constraint (B12), where G+-, respec-
tively, denotes the graphite layers above (+ ) and
below (—) the intercalate layer. In addition we

must in Eq. (B10) replace the Fourier functions

F i(l, g) by [F„(l,g, ) +F ' '"(l,g)] for I .

even under time inversion symmetry and by

[F '(1,g) F~¹—'"( l, g)] for I; odd.
When expanded to first-neighbor interaction

terms within the matrix block DGG (written in the
layer representation), the interaction block D

takes the following forms, depending on whether
G +—=A'-+ or G+-=8'-+. For G-+=A'+-, D + as-m+
sumes the form

5xG —
( g ) 5xG +—

( g ) 5xG +—~

g )

(D3}

in which the scalar quantities

5ii (f)= gaxG'( l, l)[F "( l, g')+F '"( l, g)+F '"( l, g)+F "( l, g)],
1

(D4a)

5,3 (g )= g axG ( l,4)[F' '
( l, g )+F '"( 1,g)+F '"( l, g }~F "( l, j)],

I

5i2 (g)= gaxG( l, 3)[F '( l, g)+F '"( l, g)+F '"( l, g)+F ' ( l, g)],
I

(D4b)

(D4c)

(D4d)

5i3 (g)=i+ax'ag(l, 5)[F 'g(l, g)+F '"(l,g) F'" (l, g—)+F "(l,g')],
I

(D4e)

and for G+-=8'+-, we replace l by —l in Eqs. (D4). The nonzero symmetrized Fourier parameters for the
XX and XG interactions are given in Table IV.

For stage 1, the above equations become

5XG( g } 5XG+( g ) +5XG (D5)
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