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Derivation of Urbach's rule in terms of exciton interband scattering by optical phonons
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The Urbach rule is derived by treating the exciton interband scattering by optical phonons in the dipole
approximation in terms of a Green's-function theory. Our results contain in the limit of low phonon fields the
quadratic Stark eAect, but show that for typical microfields of thermal phonons in polar semiconductors the Urbach
rule is caused by the broadening of the exciton level due to tunneling ionization transitions as proposed by Dow and
Redfield, Furthermore, an analytic treatment of the electroabsorption model of Dow and Redfield is developed.

I. INTRODUCTION

For ionic semiconductors the excitonic absorp-
tion edge has been found' ' to vary exponentially
according to the Urbach-Martienssen rule n =e0
xexp[o(ur —&u,)/k~T*], where o.„o, and up, are
material constants and T* is given by kaT*= (coal/
2) coth(&o~/2keT) Her. e, &u~ is the frequency of
the longitudinal optical phonons and 5=1 is used.
Theoretical explanations of this rule have been
given in terms of intraband and interband' ' ex-
citon scattering processes by acoustical4 and opti-
cal' ' phonons. Because the dominant contribu-
tions are due to multiphonon processes, Dexter'
and Dow and Redfield' used the concept of long-
wavelength electrical microfields, which ionize
the excitons. Recent measurements of the elec-
troabsorption by Mohler and Thomas' confirmed

that the Urbach tail in pure ionic semiconductors
is indeed caused by the ionization of excitons in
the microfields of optical phonons. Here, we use
a, Green's-function technique (similar to that of
Sumi and Toyozawa ) to treat the exciton ioniza-
tion by optical phonons in the dipole approxima-
tion.

Within this approximation the influence of the
phonons on the exciton is that of a homogeneous
microfield. For this limit an exact formal solu-
tion is found and an analytic treatment of the elec-
troabsorption model of Dow and Redfield is de-
veloped. An approximate description of the Ur-
bach tail is obtained by calculating the complex
self-energy of the lowest exciton state.

The Hamiltonian of an exciton coupled to optical
phonons is given by

2 2 ta

I'. mH=Z — — +V(x)+ &u b b-+i ZM (b~= b-) exp-~i™~q r —exp —i™~qr e'q'R
2m 2m zq q ~ -q q
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where E is the band gap, r and R are the relative and center-of-mass coordinates of the exciton, and
m, and m„are the effective masses of the electron and hole, respectively. The masses m and M are
given by m=m, m„/M and M=m, +m„. V(y) is the electron-hole interaction potential. M, iS the Frdhlich
coupling

M,'= »e'cuz/(Ve*q'),

where 1/a*=1/q„—1/e, . b- and b are the optical phonon operators. The center-of-mass motion can0' q
0be eliminated by a canonicaltransformation H'= e"~He'~ with S = (K —g~q qbq b„)R, where K is the total mo-

mentum of the systeni. . The resulting transformed Hamiltonian is

&r .m,H'=8 — ' +V(x)+ &u b b +i ZM (b b) exp-i ~q r
~

—exp i -'
q r—

~

+ K — qb-b
2m I q q q -q q ) 2M

(2)

The last term does not contribute to the interband scattering and therefore is omitted. Because only long-
wavelength phonons can ionize the excitons, the dipole approximation can be used:

2~e2(d
(2)2m L q q @~g
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II. OPTICAL DIELECTRIC FUNCTION
OF AN EXCITONIC COUPLED TO OPTICAL PHONONS

In the framework of the linear response theory
the optical dielectric function is given by

e((o) =e„—,'," Q y„(r = 0)q„*(r= 0)(G„„((u))p„
mo& n, m

+ H. c.((() —(()), (5)

where M,„ is the optical matrix element of the
momentum operator. ppg, is the free-electron
mass and &„ is the background dielectric con-
stant. y„(r) are the wave functions of the relative
motion of the exciton, the quantum number pg runs
over all bound and continuum states. G„((()) is
the Fourier transform of the retarded exciton
Green's function

(6)

()„„denotes the thermal average for the phonons.
H. c.(~- —&u) indicates the nonresonant part which

is obtained from the preceding term by taking its
Hermitian conjugate and changing the sign of the,
frequency. This small term is neglected in the
further calculations. For the Hamiltonian (3) the
retarded exciton Green's functions obey the equa-
tion

Here, q, is a cutoff wave number which has to
be determined self-consistently. "' e „=q/q is
the unit vector in the direction of q. In this ap-
proximation the influence of the phonons on the
exciton is that of a homogeneous electric micro-
field F, which is given by

27(dgF=Q (b +I) )ey&g q q q'
e ~ac

This microfield can be seen as an interaction mode
in the sense of Toyozawa's theory. ~' If the micro-
field F is treated classically, the Hamiltonian (3)
is equivalent to the Dow-Redfield model. '

In the following chapters we calculate the exci-
tonic absorption from the Hamiltonian (3) in two
different approaches. For the Dow-Redfield model
we develop an analytic expression which is in
quantitative agreement with the numerical results
of Ref. V. Furthermore, we show that a good
description of the Urbach tail can be obtained by
calculating the renormalized Green's function
of the lowest exeiton state.

which yields

(9}

Inserting (9) into (5) yields

( )
4&e'IM„„I' g IU„(r =0)I'

(1())
Rto& p CO

—Ep+SC ph

where the completeness relation g„y„(r= 0}U,(n)
= U„(r = 0) has been used. Equations (8} and (10}
are the basic equations of the Dow-Redfield theory.
Alternatively, one can solve directly the Green's-
function equations (I) and use Eq. (5) for calculat-
ing the absorption spectrum. Both approaches
will be pursued in the following two sections.

III. ANALYTIC TREATMENT OF THE EXCITONIC
ELECTROAB SORPTION

As has been shown in Sec. II the problem of an
exciton in the electric microfields of optical phon-
ons can be reduced in the dipole approximation
to the study of an exciton in an effective homogen-
eous electric field [see Eqs. (8) and (10)j. The
resulting absorption coefficient of the exciton in
the effective homogeneous field has to be averaged
finally over the distribution of the microfields.

The absorption coefficient is obtained from the
imaginary part of the dielectric function (10) as

Here, n((d) is the index of refraction and E„and a„
are the Rydberg energy and Bohr radius of the
unperturbed exciton. The factor 2 stems from
the spin summation. The dimensionless optical
density of states [U(0)('S(E} is defined as

with E = ((() -E )/E„.
In the coordinate space the Wannier equation

(8) for the relative motion of an electron-hole
pair in a homogeneous electric field is

(13)

where E = (E, -E )/E„. The dimensionless field
strength is given by f =eFa„/E„Equation (13).
can be separated' in parabolic coordinates & =~+z,
q=r -z, and y =arctan(y/x) with the ansatz

o„„( )=G„'„(~)(o„+eFgo G(~))„, ,

Equation ('t) can be diagonalized by the eigenfunc-
tions of its homogeneous part, i.e. ,

U.(r}= Xi(f}X2(n}expb~q )/&gn,

where pg is the angular quantum number. The

equations for X, and X, are

(14)

(E„—E„)U„(n) = e F ' Q r„,U„(l), (8) (15a)
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The eigenvalues o., according to Eq. (20) are
plotted in Fig. 1 as a function of the reduced ener-
gy e for the first three eigenfunctions }I, (with

n, = 0, 1, and 2). These analytical results are in
good agreement with the numerical values of Ref.
10. For large negative energies the eigenvalues
approach those of the unperturbed hydrogen prob-
lem, i.e. ,

1 —m' 1 —P, E fn
4g' g 4 8

(15b)

Here, P, is the parabolic quantum number. Equa-
tion (15a) has bound-state solutions, while the
potential of Eq. (15b) has a barrier which separ-
ates the Coulomb well for small q and the linear
field potential at large values of q. The asymp-
totic form of the exciton wave function for y- 0
is proportional (x'+y')I ~I, so that only m = 0 con-
tributes to o. ((d). The asymptotic form of }t, is
given by

o. , = v'-e (n, +2). (21)

As a next step we determine the normalization
integral

2j
"d~ Xi &

0

which appears in the optical density of states [see
Eq. (17)j.

Because Eq. (15a) has only bound-state solu-
tions which are not strongly influenced by the
electric field, we make for the wave function X,
an ansatz which has the form of the unperturbed
hydrogen ground-state wave function:

Using the asymptotic behavior of X, and X, one
gets for the optical density of states the following

expression:

The parabolic quantum numbers P, can be obtained
by using the ordinary %KB method, which yields
the following quantization rule (with m = 0):

(22)

where v'-E =SP,/sn„as can be seen from Eq.
(21). Renormalization effects due to the electric
field are taken into account by calculating the
derivative BP,/Bn, according to Eq. (20). In this
approximation the normalization integral reduces
to

a 1 P E f( )/2

, + —' + —— =(n, +-,')s, (18)
0

where a is the classical turning point of Eq. (15a)
and n, is the number of nodes of y, . Evaluating
the integral approximately in zeroth order of the
centrifugal barrier and taking into account only
the first two leading terms of the resulting elliptic
integrals, one obtains

™1 -1/3 (23)

The resulting inverse normalization integral J '
is shown in Fig. 2 as a function of the reduced

where for simplicity a new scale has been intro-
duced: e =Ef ', o(, =P,f ' ', and y= (e'+8n, )'
Equation (19) is a fourth-order polynomial in y
which has for negative energy (e (0) the following
solution:

I I I I
l

I I I

10—

c(, = (e'/8) (4x'/9 —1),

with

)./a I) & (& 1) j i )./2

+ — +2,I 4 2 2

p 4v 2 . 1 2'/IPI 2
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[p) 3 3 16$ 2
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28 5~
P 2'7 2

-&0

FIG. 1. Parabolic eigenvalue ~| as a function of the
reduced energy s = E/f 2/ for 0, 1, and 2 nodes of the
eigenfunction g&. The dots are the numerical results of
Hef. 10.

and

5= v'96 (n„+-,')i&i '/'. (20)
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j
f I I I different regions. This procedure yields the

foQowing value for the coefficient A' of Eq. (17):

where 8' is, according to Hefs. . 11 and 12, given
by

R'= 1+ 2e '" -2e '"(1+e'")'~'sin(2y —8), (29)

-10 -5
E,

FIG. 2. Inverse normalization constant of y~ as a func-
tion of the reduced energy ~ = E/f 2~3 for 0, 1, and 2

nodes of the eigenfunction y&. The dots are the numeri-
cal results of Bef. 10.

8= argl'(~ + ~iH)+ —1 —l,n )BI

(31)

(32)

energy for tl, =o, 1, and 2, respechvely. Con-
sidering the simplicity of the approximation for
y, the result compares very favorably with the
numerical values of Ref. 10.

Finally, the proportionality constant A. in the
asymptotic form of X, [see Eq. (16)] has to be
evaluated. Because the classical turning points
of Eq. (15b) can become complex, one has to use
instead of the ordinary %KB method a generalized
one, which has been developed by Miller and
Good. '"" In this method the wave equation

X,"+@'X,= 0

is solved with the ansatz

X,(rl) = &f&(s(q))/v's'(rI),

where P(s) fulfills the equation

P "(s)+P'(s)P(s) = 0.
In the lowest order one obtains for the function
s(g) the implicit relation

where I'(z) is the gamma function I'(z) = J"f~ '
x e 'dt. Combining Eqs. (17), (20), (23), and (28)
(32), the final result for the optical density of
states is

~
U(0)

~

'S(E) =
4m Byg,

grH

1+ ~
e'" —(1+e'")'~' sin(2p —8)

'

(33)

10-

10—

10—

10-

I' X 4k=
Sp Qp

(27) cv

C3

10—

which xeduces to the ordinary WEB result for the
choice P'(X)=1. The function Q'(q) is divided in
three regions: the Coulomb well for small argu-
ments, an intermediate quadratic potential bar-
rier, and a linear decx'easing function for large
values of g. Using the asymptotic forms of these
potential sections, exactly solvable model Hamil-
tonians for Q(s) are constructed with the following
choices: P'(s) = I/s+ I/4s' in region I, P'(s) = H+ s'
in region II, and P' = s in x egion III, respectively. The
resulting eigenfunctions P(s) have to be continuous at
the classical'turning points q, and g, which divide the

10—
f=

10—

10—

10—

FIG. 3. Absorption edge of the exciton as a function of
the energy for various field strengths. The dots are the
numerical results of Bef. 7.
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FIG. 4. Absorption edge of the exciton as a function of
the inverse field strength for various energies. The
dots are the numerical results of Ref. 7.
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( ~
U(0)

~
'S(E)),„=(

—'rrE') 'Z'4rr

where

00 3+2
x dE E' exp —~, ~

U(0)
~

'S(E),
0

(34)

C

(35)

The phase integrals of Eqs. (30) and (31) are again
evaluated in lowest order of the centrifugal bar-
rier. The optical density of states of Eq. (33)
consists of the Franz-Keldysh-type function"
e'H, which approaches asymptotically for large
fields the form exp(-~~~a ~'Z'). The excitonic
enhancement factor, which is given by the numer-
ator of Eq. (33), peaks at an energy close to the
unperturbed 1s exciton level. Therefore, the
resulting line shape varies nearly exponentially
as a function of ~E~ /f as can be seen in Figs. 3
and 4, where only the contribution of n, = 0 is
taken into account. Again our results are com-
pared with the numerical values of Refs. 7 and
10. For very large fields f ~ 1 the results ap-
proach the Franz-Keldysh line shape (see Fig. 5).
The results of Figs. 1-5 demonstrate that the
electroabsorption of the exciton can be calculated
for al/ field strengths by the generalized WKB
methods, i.e. , this method is not limited to small
fields f ~ 0.1, as has been claimed in Ref. 10.

'The Urbach tail of the excitonic absorption is,
according to Eq. (11), obtained by averaging the
optical density of states over the microfield dis-
tribution, ' i.e. ,

-10

FIG. 5. Absorption edge of the exciton, neglecting the
resonance, as a function of the energy for a field
strength f =1. The dots are the numerical results of
Ref. 10.

q,' —2m em'j' .

Combining Eqs. (35) and (36) finally yields

(36)

g )fc
~

3 e*~
The results of the thermally averaged optical den-
sity (34) are shown in Figs. 6 and 7 as a function
of energy and the inverse mean field f ' with f
= eE&„/E„Again, a ne.arly exponential energy
dependence is obtained. The spectra are in close
agreement with the results of Dow and Redfield. '

IV. COMPLEX SELF-ENERGY OF THE EXCITON
IN THE PHONON FIELD

In this section we develop an approximate de-
scription of the excitonic absorption, which dem-
onstrates that the Urbach tail can be obtained by
calculating the complex self-energy of the lowest
exciton state. It will be shown that the main effect
is the broadening of the 1s exciton level due to
tunneling transitions into the ionization continuum.

'The critical wave number q, is determined in such
a way' that the localization energy of an electron
in the valley of a sine wave does not yet suppress
the tunneling out of the Coulomb potential well.
This requirement yields a field-dependent critical
wave number
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FIG. 6. Averaged absorption of the exciton as a func-
tion of the energy for various average field strengths.
The dots are the numerical results of Ref. 7.

FIG. 7. Averaged absorption of the exciton as a func-
tion of the inverse average field strength for various
energies. The dots are the numerical results of Ref. 7.

We calculate the dielectric function (5) by sol-
ving the Dyson equation (7) directly. First, we
note that the nondiagonal elements of 6 are of
odd power in the phonon microfields and there-
fore vanish when the thermal phonon average is
taken. As has already been shown in Ref. 7 the
main contribution to the Urbach tail stems from
the exciton ground state. The contribution of
the ionization continuum, e.'g. , is about three
orders of magnitude smaller than that of the
exciton ground state.

The Dyson equation for the exciton ground-state
Green's function G« is

G„(se)= G„',(se)(le eF Z r, ;G;,(se)), (38a)

(E —E~)U„(k)= eF Q rp~e U„(k'),
t

(39)

we obtain

G„;(&u)= G,',e F U„(k)U „*(k')
40 —E + $EVo~

which yields after insertion into Eq. (38a) the
exciton ground-state Green's function

(40)

G-„,(se)=Gs'-„(se)eF(s„„G„„(se)sZr„-,.G-„. ,(se)(, (3()b)

where only interband transitions into the ioniza-
tion continuum (labeled by the wave vector k)
are taken into account. Expanding G-„, in terms of
the Franz-Keldysh-type' eigenfunctions of the
homogeneous part of Eq. (38b), i.e. ,

Goo((d) = [~ E, —Z(&u)]--',

where the self-energy is determined by the dy-
namical complex exciton polarization, i.e. ,

~ e') (0I F rI v)t'
(~ E„+ie)- (42)

ImZ(~)
v' [~ E, —R eZ( (d)]'+ [—ImZ (e)]' '

(43)

For very small fields and frequencies below E,
the imaginary part of the self-energy vanishes
and the usual quadratic Stark effect of the exciton
is obtained. This result is already contained in
Toyozawa's early two-mode model' in which he
proposed a quadratic exciton-phonon coupling.
In the framework of our theory this effective quad-
ratic coupling arises naturally by eliminating
the Green's functions Gg, . 'The same result has
been derived phenomenologically by Dexter' using
the quadratic Stark shift of the exciton in the
phonon field.

The self-energy is explicitly proportional to the
square of the phonon field F. A further implicit
dependence of F stems from the renormalized
continuum states U„(k). These functions are ap-
proximately Airy functions due to the acceleration
of the electron by the phonon field. Since Z(e)
contains the matrix element (0~ F ~ r

~
v) it is re-

lated to the probability for finding a continuum
electron near the hole (origin of the relative mo-
tion).

The optical density of states is given by
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For larger fields (f & 0.1) the exciton broadening
becomes dominant. This broadening can be esti-
mated in the following way:

l0—

ImZ((u) = -e'E'v + 6((u -Z„)) (0)z ) v) ~'. (44)

The renormalized continuum states are approxi-
mated by Franz-Kelydsh functions so that the
following expression is obtained (see Ref. 13):

5/3
ImZ(&o) = " dk„dk,

47/

IO—

d g 8 Al exp lk++ sky/ —J' 10

(45)
where k„k, x, y, and z are dimensionless in-
tegration variables. 'The Airy function Ai has the
following arguments:

Ai=Ai(f '/'[z —(E —p„'- k')/f]) .

Expanding the Airy function for small s values
and using its asymptotic form for large arguments,
one gets for the leading term of the imaginary
part of the self-energy

4 ~@(3/2
I!HZ(td) = MlfR f exp(—

where 8 = (co -F,)/F„. Neglecting the real part
of Z(&u) we plotted the optical density according
to Eqs. (47) and (43) in Fig. 8 and compare it
again with the numerical results of Ref. V. One
sees that the braodening of the excitonic ground
state alone already gives a good description of the
excitonic electroabsorption which can be approxi-
mated asymptotically by an exponential depen-
dence on (&u —&u,)/f.

For the explanation of the changes of (n)» in

an external electric field, the exponential shape
of n(&u) even before the thermal. average is taken
is essential. Recent experiments' on TlCl. and

CuC1. showed that the relative change of (n),„
due to an external electrical field f,„,varies for
constant absorption as

E

FIG. 8. Absorption edge fEqs. (43) and (47)] of the ex-
citon as a function of the energy for various field
strengths. The dots are the numerical results of Bef. 7.

6 (n),„o
~hf I( )„ t ~ ~*) (48)

This result cannot be explained in terms of a sirn-
ple quadratic Stark-effect theory because it yields
a linear dependence of the relative change of
(n)» on (o/ksT*) This res.ult is easily obtained

by superimposing the external field f,„, and the
microfield f, expanding the resulting absorption
coefficient for small f,„, and finally averaging
it over all. possible configurations. However,
the experimentally observed quadratic dependence
on v/AT* follows directly from the asymptotic-
ally exponential absorption spectrum which is ob-
tained as a consequence of the broadening of the
exclton grouIMI state.
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