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A self-consistent pseudopotential approach has been used to calculate the electronic structure of GaP(110) surface
in both ideal and relaxed configurations. Calculations have been performed using the repeated slab method and a
local form of the bare ionic pseudopotential. An efficient self-consistent procedure, which allows us to obtain quick
convergence and eliminates some difficulties found in previous applications of the method, has been used. Particular
care has been devoted to have complete consistency between bulk and slab calculations. Our results for the ideal
surface show various surface states, whose distribution and nature are similar to those found in tight-binding
calculations. For the geometry of the relaxed surface we assumed a rotation-relaxation model determined by a recent
low-energy electron diffraction study. With this geometry our results show that a nonvanishing density of empty
surface states, to a large extent due to backbonds, remains in the gap. The orbital composition of these states, as well
as of all the other surface features, is detailed, together with the mirror-plane symmetries relevant in the
interpretation of angle-resolved photoemission data. Our results are in agreement with the experimental data

provided by various different measurements.

I. INTRODUCTION

This paper will report on a theoretical investi-
gation of the electronic structure of the (110)
surface of GaP. This surface appears to be some-
what different from the (110) surface of other
III-V compounds, in that it shows a nonvanishing
density of empty surface states in the band gap,
even in absence of cleavage defects. Contact po-
tential difference and photon-threshold measure-
ments® indicate that the Fermi level is pinned
on n-type GaP(110). Such a situation does not
occur for the other semiconducting compounds,
unless cleavage defects or chemisorbed impurities
give rise to extrinsic states in the gap. This
conclusion is supported by photoemission yield
spectroscopy data,?by which the existence of a
low-density tail of an intrinsic surface-state band
near the conduction-band minimum has been
proved. Photoemission partial-yield data® and
energy-loss spectra? can be understood assuming
that the final state is an empty band in the gap,
provided that the exciton binding energy for core-
level transition is about 0.5 eV.

It is now well established that the absence of
surface states in the gap of the other III-V com-
pounds is due to the relaxation of surface atoms.
Low-energy electron diffraction (LEED) structural
analysis has shown that the (110) surface is usually
distorted with respect to the geometry of an ideal
termination of the crystal, the metal atoms moving
inward and the nonmetal atoms outward, in such
a way that 1X1 surface periodicity is preserved.®’
The modifications in the electronic configuration
occurring after this distortion are responsible
for the removal of the dangling-bond surface state,
found in the case of the ideal geometry, from the
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gap.

Except for GaAs, where the structural analysis
of the (110) surface is quite exhaustive, details
of the lattice geometry near the surface for other
III-V compounds are not so well defined. The
main sources of experimental information on the
surface atomic positions available for GaP(110)
are electron paramagnetic resonance data for
adsorbed O, species'***? and preliminary re-
sults'3 on elastic low-energy electron diffraction
(ELEED) intensities. The surface relaxations
suggested by these two methods are essentially
the same, consisting in bond-length-conserving
rotations within the surface layer. This model-
of relaxation is called rotation-relaxation (RR)
model. A total energy minimization study,*?
based on a bond-orbital description of hybridiza-
tion energy and on an elastic deformation model
for the strain energy involved in the relaxation,
has shown that the vertical displacements of the
surface atoms occur without significant changes
in bond length and that displacements of sub-
surface atoms are very small. These conclusions
are in agreement with those achieved by the
analysis of ELEED data, which suggest a value
of 27.5° for the surface bond-rotation angle and do
not show significant distortions in the positions
of the atoms belonging to the second or third
layer.!® Figure 1 shows the relaxed geometry
according to this model of relaxation.

From this structural information it seems pos-
sible to conclude that in GaP, unlike what happens
in other III-V’s, surface relaxation does not
remove completely the surface states from the
gap. Support to this conclusion has been given
by theoretical calculations of the surface elec-
tronic structure performed by the authors** and by
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FIG. 1. Side view of a slab of five GaP(110) layers.
The surface layer is relaxed according to the rotation-
relaxation model with a surface bond-rotation angle 6
=27.5°. Chains of atoms along a (110) plane passing
either through P (chain A) or through Ga (chain B) sur-
face atoms are shown.

Nishida,'® assuming several relaxed geometries.
Both calculations rely upon a tight-binding de-
scription of the electron states, which has been
used for a number of calculations of surface pro-
perties. While the method seems appropriate
for the valence states, it does not provide an
accurate description of the conduction band. This
fact imposes a serious limitation on the con-
clusions drawn from tight-binding calculations
about the empty surface states, which are mainly
conduction-band derived. It is therefore inter-
esting to perform a theoretical study of the elec-
tronic structure of this surface, using a method
which does not suffer from these limitations. The
pseudopotential method is particularly suitable
to this purpose, since it is well known that it
provides a realistic and accurate description of
the bulk states.'®!” This is specially true of
empirically adjusted nonlocal pseudopotentials,®
which yield bulk bands in very good agreement
with the experimental data. However, these
potentials are not suitable for a self-consistent
calculation, since they cannot be partitioned in a
bare potential and in a screening contribution,
given as a functional of the valence charge den-
sity.'? On the other hand, for the purpose of the
present research, i.e., in order to establish
whether the gap is free of intrinsic surface states,
a local pseudopotential should prove satisfactory.
We have, therefore, undertaken a local pseudo-
potential study of the electron states at GaP(110)
surface, performing a self-consistent calculation
for the ideal and the relaxed configuration with a
27.5° rotation angle. Our results agree with
those obtained in tight-binding calculations in that
we find a nonvanishing density of surface states
in the gap, but show significant differences in
the nature and the location of the main surface

states.

The plan of the paper is as follows: Sec. II pre-
sents the theoretical framework; Sec. III is de-
voted to the discussion of the pseudopotential used
in the calculation and of the bulk band structure;
the details of the surface calculations are given
in Sec. IV, where a discussion of the self-con-
sistent procedure is also presented. The results
are displayed in Sec. V for both the atomic geo-
metries. Section VI is devoted to the comparison
with theoretical and experimental work. Possible
improvements of the theory and future applications
of the results are given in Sec. VII together with
the conclusions.

II. THEORETICAL FRAMEWORK

In this section we present the basic ideas un-
derlying the method we used to calculate surface
electron states. The method has been used in
previous papers®*?' and we refer to them for an
extensive discussion. The key step of the pro-
cedure is to build up a periodical structure made
of GaP slabs separated by regions of vacuum.
Each slab is obtained by regularly stacking atomic
planes and has a (110) surface on both sides. In
our calculation we considered a repeated slab
composed by nine GaP layers and six layers of
vacuum. The introduction of the periodicity per-
pendicular to the surface plane allows us to em-
ploy bulk band structure techniques to derive the
surface electronic properties.

The slab unit cell [orthorombic with z axis
perpendicular to (110) plane] has a volume 15
times larger than the bulk one. The mesh of re-
ciprocal-lattice vectors is given by

f}:gg(@n1;+nzf+f5@nsl$), (1)

a being the bulk lattice constant and 7,7,% the unit
vectors of the axis of Fig. 1. The odd number

of planes makes it possible to take advantage of
the existence of reflection symmetry z —~ — z with
respect to the central plane of the slab. An ad-
ditional plane yz of specular symmetry exists so
that the point group of the repeated slab is C,,.
We fully exploited the symmetry of the system
choosing for the slab calculation symmetry adap-
ted combinations of plane waves as basis func-
tions. This allowed us to reduce the size of the
Hamiltonian matrix at high symmetry points
T,X,M,X’ of the two-dimensional Brillouin zone
(2DBZ) and along T'-X’ and X-M directions, where
the point group of wave vector K has four opera-
tions, by approximately four times and approxi-
mately two times elsewhere in the 2DBZ, where
the K-vector point group has two symmetry opera-
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tions only. We considered up to 300 plane waves
plus 1000 plane waves included via Lowdin second-
order-perturbation technique.?® These correspond
to cutoff values of 2.7 and 7.0 Ry, respectively,
and, as we will show in Sec. III, the number of
plane waves is high enough to provide a good
description of bulk bands.

The repeated slab scheme transforms a sur-
face problem into a bulk one, therefore in the
following we will describe the general features
of our pseudopotential scheme valid for both the
bulk and the surface calculations.

If the calculation has to be carried out self-
consistently, three main ingredients are re-
quired. The first is the geometry of the system,
specifying the periodicity and the location of the
atoms in the unit cell. The second is a bare-ion
pseudopotential, in our case the Ga* and P% ionic
pseudopotentials, to be screened by the appro-
priate valence charge density in the iterative
procedure, which leads to self-consistency.
Lastly, we need some screened pseudopotential
to use in the first step of the self-consistent pro-
cedure.

The geometry of the problem is described by the
structure factor S;( G). Within the small core
and local approximation, the bare pseudopotential
is written as a superposition of ionic pseudo-
potentials,

V(A= S Vi(6)S,(D) e F, (2)
G i

where V,(G) is the Fourier transform of the bare
ionic pseudopotential

(0= o faret®iy,(5) 3)
a

normalized to the atomic volume €, (half of the

bulk unit-cell volume).

We will discuss our choice of the bare pseudo-
potential in the next section together with the
results for bulk GaP. As to the pseudopotential
used to initiate the self-consistent process, its
choice may depend upon the particular problem
under consideration. Usually it is taken of the
form

Vol )= 20 2W(6) 5,(8) 57, @

where W;(G) is the screened single-atom form
factor. This procedure, based on the concept
of the superposition of linearly screened pseudo-
atoms, is a good start for a bulk calculation. In
the surface case a large contribution arises from
the existence of a potential barrier mainly due to

exchange and correlation potential between the
region of the crystal and the vacuum. As indicated
in Sec. IV, an additional term must be included

in the starting potential to describe the surface
barrier correctly from the first iteration.

The eigenvalues and eigenfunctions are de-
termined by diagonalizing the secular equation.
The resulting wave functions are used to calcu-
late the Fourier coefficients p(é) of the total
valence charge density, from which a Hartree
potential is formed according to the Poisson equa-
tion

vV, (G) =41e2p(G)/G? . 5)

p(a) has been evaluated by including high-sym-
metry-point contributions. For the bulk we con-
sidered I',X,L, W, and the midpoints of = and A
directions. For the surface we took I',X,X’, and
M points of the two-dimensional Brillouin zone.

The knowledge of the valence charge density
p(¥) allows us to derive the exchange and cor-
relation potential in the form

V() == S [3r2p(D)] 15 ®)
xc 217
To this end p(¥) has to be evaluated on a grid of
about 80000 points throughout the slab unit cell
using fast-Fourier-transform algorithm. The cube
root of p(¥) is evaluated at each grid point. The
resulting function is transformed back into the
recigrocal space, to give the Fourier coefficients
V,.(G). . .

The sum of V,(G) and V,(G) gives the Fourier
coefficients of the screening potential. By adding
it to the bare ionic pseudopotential, one forms
the total crystal potential

V(G =V, (8 +V (8) +V,D). (1)

To achieve self-consistency this potential is
used to calculate new eigenvalues and eigen-
functions. With the wave functions a new
screening potential is determined and another
iteration starts. Care must be taken in per-
forming this procedure, since instability pro-
blems can arise, particularly when dealing with
surface calculations.?%23:2% This point will be
detailed later. The computing speed with which
self-consistency is obtained depends upon the
initial potential. It should be noted in this con-
nection that the factorization of the Fourier trans-
form of the total potential in structure factor and
atomic form factors which is present in the initial
potential V(, does not exist in the successive
iterations. From the physical point of view this
is a consequence of the covalency of the chemical
bond, i.e., of the contribution of multiple scat-
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tering by different atoms in the unit cell to the
one-electron wave function. 2528

III. CHOICE OF IONIC PSEUDOPOTENTIAL
AND BULK ELECTRONIC STRUCTURE

As indicated in the preceding section, the re-
peated slab method used to treat the surface pro-
blem requires the diagonalization of a large size
matrix. The number of plane waves required
is 15 times higher than in bulk calculation in
order to have the same cutoff on |k +—CE.|2 in the
evaluation of the matrix elements (k +G’| W|k +G)
of the one-electron pseudopotential. The choice
of the same cutoff and, more generally, the as-
sumption of the same ingredients and of the same
approximations in both bulk and surface calcula-
tions is necessary to have a meaningful compari-
son between the electronic structure of the sur-
face and the bulk one. Furthermore, itis im-
portant to perform an accurate test of the po-
tential and of the numerical method on the bulk
problem before handling the surface problem.

The ionic potential, chosen among the different
forms of pseudopotentials available at present,
must be suitable for surface calculations with the
same accuracy as in the bulk and it must provide
a good description of the bulk band structure
expecially in the gap region.

The maximum number of plane waves we can
include in the calculation for the slab crystal is
~1300, this limit being essentially due to the
size of the core memory and to the computing
speed of the computer available (Cyber 76). This
choice in the surface calculation corresponds to a
cutoff value of 7.0 Ry in Ik +G|2 and, therefore,
to a bulk calculation with a basis set of ~80 plane
waves. Such a basis together with an appropriate
choice of the bare ionic pseudopotential is suf-
ficient to provide a good self-consistent descrip-
tion of the bulk bands.

Contemporary pseudopotentials which have been
used in surface calculations can be roughly di-
vided into two classes:

(i) model soft-core local pseudopotentials ex-
tensively used by the Berkeley group®2;

(ii) first-principles hard-core nonlocal pseudo-
potentials®” used for GaAs by Zunger.?®

The hard-core potentials of class (ii) have the
advantage of being first-principles and fully non-
local (i.e., the potential can be different for the
different projections of the pseudowave on the
states of different angular momentum). They
have, however, the disadvantage of requiring a
large number of plane waves (some hundreds) in
bulk calculations because of their long tail in
G space so that the comparison between bulk and

surface calculations becomes problematic without
a cutoff of the Fourier components of the ionic
potentials. This shortcoming can be avoided by
smoothing the potential in the core region. The
softening of the core allows for a reasonable trun-
cation in G space and simplifies the calculation.
First-principles calculations performed up to

now with these potentials do not give correct
energy gaps for semiconductors. However, the
failure has not to be attributed to the pseudo-
potentials but to the use of the density-functional
approach in the description of the single-particle
energies®®: varying the exchange parameter «
from the value @ ~ £ to @ 0.9 generally improves
the agreement with the experiments, leading to
excellent gaps.

Simple analytical forms of the pseudopotential
in reciprocal space have been used by the Ber-
keley group for calculations of Si,?° GaAs and
ZnSe surfaces,?’ and also interfaces.*® The
parameters appearing in those expressions
were chosen to fit more complex-model potentials
or to reproduce atomic eigenvalues. However,
these authors did not show a detailed comparison
between bulk and surface calculations obtained
with the same ingredients.

In this work we have adopted a local form of
the potential, which has an analytical expression
in both real and reciprocal space. This form,
due to Frensley and Kroemer,* is written as

Vi(r)=- %Z(Zi _Qi)+§j{zi exp[- (@;/Z,) a; 7]
+Q; exp(-a; 7)}

+Voiy,3(211)'3/zexp(—'yf'rz/2) , (8)

where @; and Z; are the number of core electrons
and the atomic number, respectively, «; is fitted
to the ionic charge distribution, and the two para-
meters V,, and y;, appearing in the repulsive part,
can be adjusted to obtain the electronic levels
of the free ion or to reproduce directly the band
structure of the solid.

The Fourier transform of the bare potential is
given by

V()= - 4re’® (Z‘- -Qi, z, 2)

2, q® g*tai (@/Z)ai+q

V. -
+ 03 q
Q exP(Zv ?)' ©)

a

The values of the parameters for Ga* and P*
are given in Table I. This potential corresponds
to a core of intermediate softness and is rather
similar to the first-principles /=0 and /=1
potentials in a large region of space.?® The ionic
potentials of Eq. (8) are shown in Fig. 2 together
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TABLE I. Pseudopotential parameters of Ga and P
ions used in Eq. (9). One-electron eigenvalues obtained
for the potential of Eq. (9) (column A) and from the trun-
cated approximation (column B). For a comparison with
an all-electron calculation we report in column C the
eigenvalues for the outer electron obtained by a Herman-
Skillman calculation with @ =1 for Ga?* and P%,

Potential parameters

Ton z QR  a;(ay) Vo Byad vy (ap)
Gad* 31 28 3.64 30.5 2.0
p> 15 10 4,99 41.0 2.5

Energy eigenvalues (Ry)

A B c

Ga 4s —2.334 —2.337 -2.212

4p —-1.653 —1.656 ~1.646

4d —0.966 —0.966 —0.953

5s -1.031 —-1.029 —1.009

5p —0.787 —0.788 —0.825

P 3s —4.949 —4.,914 —4.803

3p —3.891 —3.915 ~4.026

3d —2.550 —2.576 —2.937

4s —2.373 —2.323 —2.349

4p -1.972 —-1.965 —2.073

with those obtained by truncating the Fourier
transform of Eq. (9) at G_, =4.34 (a.u.)" and
coming back to real space. The comparison
visualizes the effect of F}-space truncation which
has been adopted in the computation. One can
see that the two curves have nearly the same

i (a) 1 (b)
16 —\ 16
4 4
12 12 4
-~ 817 ~ 8-
P >
o = o .
- -
N 4 X 4
5 3
[ b g b
[=
w o W oo
\G/aa‘- Ga®’
-4 ps* ~4 ps*
-8 -8
T T T T T T T
1 2 3 4 1 2 3 4

Distance (a.u) Distance (a.u.)

FIG. 2. Bare ionic pseudopotentials for Ga®** and P°*
as obtained from Eq. (9) (a) and from the truncated ap-
proximation (b), plotted as functions of the distance from
the nucleus.

“classical turning points” (i.e., crossing points
of the r axis) and the same depth of the minima.
The main effect of the truncation is the slight
shift of the minima toward higher distances from
the nucleus and the introduction of a small oscil-
lation, more evident in P%*, around the Coulombic
tail of the potentials. In Table I we also show
how some energy eigenvalues of these potentials
are varied by the truncation and how they com-
pare with the energy eigenvalues obtained by an
all-electron calculation of Herman-Skillman
type.** We can remark that, as far as the energy
eigenvalues are concerned, the effect of trunca-
tion is negligible (a maximum deviation of 0.2% or
2X10-® Ry for Ga and 0.8% or 3X10-2 Ry for P).
The agreement with the eigenvalues obtained by
the atomic calculation is good, with special re-
ference to the 4p level of Ga. This turns out to be
essential in order to get a good description of the
bulk band gap. It is also possible to notice that
the local approximation is rather appropriate for
these pseudopotentials, since it gives reasonable
results for eigenvalues of different angular mo-
mentum. The only obvious exception is the P 3d
level for which the pseudopotential coincides with
the true ionic potential. The full test of the po-
tentials used in the calculation is eventually the
self-consistent bulk band structure they give.
Figure 3 shows the GaP bulk band structure ob-
tained with the potentials of Fig. 2 and witha =1
in the expression of the exchange and correlation
potential. This value corresponds to the original
choice of Slater®® and it is larger than those
generally used at present. Many authors use the
Kohn and Sham?® value o =2 or the value @ =0.80
suggested by Xa method.* These choices do not
give a good description of the gap between empty
and filled states, because of the previously men-
tioned failure of the density-functional method.
To overcome this difficulty it is convenient to
choose an “effective” o in the range 0.9-1.0 to
evaluate the exchange and correlation term ac-
cording to Eq. (6).°® Therefore, the old-fashioned
o =1 is more suitable to our purposes.

The obtained indirect band gap is 2.26 eV, the
experimental value being 2.21 eV. The direct
gaps I'y\s —~TI'y, Ly—~L,, A;—~4,, I'\;— T, and
L;—~ L, are, respectively, 3.41, 3.51, 4.63,
4.82, and 6.48 eV against the experimental values
2.94, 3.79, 4.80, 5.19, and 6.70 eV. The larger
deviation is the I';;—~ I', gap, which is the feature
mostly affected by the truncation of the potential.
The other transitions are described with errors
between 4% and 7% . The absolute gap is thus
accurately reproduced and this is the main goal;
the band structure as a whole compares favorably
with the one of Ref. 18, which has been obtained
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FIG. 3. Self-consistent bulk band structure of GaP.

by means of the empirical nonlocal pseudopotential
method used to fit the experimental data.

Self-consistency in the bulk band-structure
calculation, using Si empirical pseudopotential
as starting potential, required eight iterations
with differences of less than 10-% Ry in the Fourier
components of the total potential in the last two
iterations.

In order to have a closer comparison between
bulk and surface calculations we have solved the
eigenvalue problem through a reduction of the
Hamiltonian matrix size using the Lowdin second-
order perturbation method to treat the plane waves
with 2.7 <| X +G|2< 7.0 Ry perturbatively. In
this way the size of the matrix is ~24 in the bulk
calculation. The eigenvalues are varied by a
maximum of 0.02 eV with respect to the results
of the full diagonalization all over the energy
region indicated in Fig. 3. This result gives an
estimate of the accuracy of the use of Lowdin
procedure in the surface calculation.

In order to check the convergence in our cal-
culations, we changed the number of plane waves
in the expansion of the wave function, retaining
the same cutoff in G space. We found excellent
convergence in the calculated energy eigenvalues.

FIG. 4. Self-consistent pseudo-charge-density for bulk
GaP along a (110) plane. The contours are spaced by
2.0 electrons per bulk unit cell.

The pseudo-charge-density obtained for the bulk
in the (110) plane is displayed in Fig. 4. The
pileup of charge along the bond directions is
clearly visible. The agreement with the charge
map obtained by the empirical pseudopotential
method is quite good.!” The maximum of the
charge density along the bond is 32 e/cell. This
picture of charge distribution is realistic outside
the core region. Inclusion of the nonlocality or
use of a hard-core potential can lead to modifi-
cations even in the bond region; however, these
effects will not alter the conclusions about the
comparison between bulk and surface charge dis~
tributions.

IV. SELF-CONSISTENT PROCEDURE
FOR THE REPEATED SLAB

As we mentioned in the previous sections,
iteration in the self-consistent surface calcula-
tions may be a highly unstable procedure. This
fact has been recognized by several authors?3:2*
and various suggestions have been proposed in
previous papers in order to dispose of this dif-
ficulty. The instability arises essentially from
the low-G behavior of the screening potential. G
vectors as short as 0.115 a.u. appear in the re-
peated slab calculation. The Fourier components
of the potential at these small-G vectors are not
present in the bulk. They are extremely impor-
tant in the surface case, since they determine the
behavior of the surface potential barrier. Small
changes in the screening potential at these G vec-
tors can give rise to significant modifications to
the shape and height of the surface barrier and
can introduce spurious fields with periodicity
comparable with the slab size, caused by small
deviations from local charge neutrality. These
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effects arise both in the repeated slab and in
semi-infinite crystal calculations.

If the starting potential is taken as a super-
position of linearly screened atomic pseudo-
potentials or as empirical pseudopotential, as
indicated in Eq. (4), the low-G behavior of the
input screening potential turns out to be extremely
different from the one obtained after the first
iteration, so that any simple iteration procedure,
with standard damping techniques, does not con-
verge. To avoid this difficulty, Schliiter and co-
workers®® have suggested a procedure which con-
sists in systematically altering input and output
screening potential until they are in essential
agreement. This is done by inspecting V_ , versus
V.. separately for each small-G component and
with some sort of graphical interpolation between
the calculated values. In successive applications
of the method the small-G components were also
constrained to reproduce the experimental work
function. The necessity of imposing this con-
dition stems from the fact that work function and
ionization potential are not obtained correctly
by this way of treating the self-consistency. How-
ever, this procedure does not allow us to fix
univocally the Fourier components of the pseudo-
potential, as the height of the surface barrier
depends on all the low-G coefficients. There-
fore, it would be possible to get the same ex-
perimental work function with different sets of
Fourier coefficients. Furthermore, it is our
experience that this procedure does not permit
the rapid achievement of self-consistency, which
is desirable in these sorts of calculations. On
the other hand, we feel that a good self-consistent
calculation should give satisfactory values of the
barrier height without imposing any constraints
upon the screening potential, which automatically
ensures agreement with the experimental data.

To find a more satisfactory and efficient pro-
cedure we notice that the factorization of the
total potential in screened atomic pseudopotential
and structure factor, while reasonably adequate
to treat electrostatic contributions, is inappro-
priate when used in surface calculations, since
it is highly inconsistent with the behavior of the
exchange-correlation potential at the surface.
Therefore, if starting potentials of the form given
in Eq. (4) are used in the self-consistent pro-
cedure, the output potential of the first iteration
turns out to be too different from the input po-
tential to allow quick convergence.

This same instability has been found by Lang
and Kohn?® in their work on jellium. The con-
tribution of the exchange and correlation potential
to the jellium surface barrier at the electron
density appropriate to GaP is indeed quite large,

being 9.6 eV, nearly 60% of the total barrier-
height. It is therefore important to treat this term
correctly from the very beginning by including
it in the starting potential of the self-consistent
calculation.

According to these considerations we took our
starting potential as

VoD =22 2 W,(6) (B e F iy (2), (10)
G i

where ch(z) is the exchange and correlation po-
tential of the jellium with the same density as
GaP. The Fourier coefficients W,(G) have been
chosen so that the factorized form Y., W,(G) S, (G)
would approximate as close as possible the
Fourier components of the self-consistent bulk
potential at the bulk G vectors. For slab G vec-
tors lying between the bulk ones we have de-
termined W,(G) by interpolation. For the small
slab G vectors, with n, =n,=0, whose modulus
is less than-the first bulk G, we interpolated
between bulk values and the long-wavelength limit
appropriate for linear metallic screening,” i.e.,
2 W;(0)=-2E,. With this starting potential

the self-consistent procedure can be carried out
with the standard damped iteration technique, the
input potential of stage n being given in terms of
input and output potentials of the previous stage

n ~1 by the expression

V@) =2,V (n=1)+(1-2)V, (n-1),

0y, <1. )

The parameter ), is chosen according to the de-
gree of agreement between V_ (7 ~1) and
Via{n—1). A typical value at the beginning of the
iteration is », =0.1, while at last stages »,~0.8.
Good convergence is achieved after seven to nine
iterations. To illustrate this point we show in

Fig. 5 the laterally averaged potentials
V(z)=2_V(0,0,G,) ei¢s (12)
GZ

obtained from the input and output potentials at
the last iteration and from our starting potential
in the case of the relaxed surface. It is seen that
the degree of agreement between input and output
potentials at the last stage is quite relevant. No
significant modifications in energies and wave
functions occur in further stages of the procedure.
The surface barrier height obtained in this way
is 1.18 Ry. This has to be compared with the
value 1.09 Ry obtained by adding the experimental
photoelectric threshold! to the difference between
the top of the valence band and the bulk average
potential. The agreement is good, considering
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FIG. 5. Total laterally averaged potentials for re-
laxed GaP(110) surface. The input and output potentials
of the last iteration (continuous and small-dotted line,
respectively) are shown together with the starting po-
tential of the self-consistent procedure (large-dotted
line). The position of GaP layers and of the relaxed sur-
face atoms are also indicated.

that our calculation is totally from first prin-
ciples and we have not constrained the surface
charge density to give the right work function.
Comparison with the starting laterally averaged
potential shows that the self-consistent procedure
leads to significant modifications of the potential
in the internal layers too. This fact is not sur-
prising in view of the inadequacy of the starting
potential to represent covalency effects in the

chemical bond. Such effects give rise to non-
linear screening contributions, not accounted

for by the factorization. Indeed the iterative
procedure gives a final potential, whose behavior
in the internal planes is the same as the bulk
self-consistent potential. Therefore we have a
description of the repeated slab, which is com-
pletely consistent with that achieved in the bulk
calculation.

V. RESULTS

We calculated the surface band structure for
both ideal and relaxed surfaces assuming the RR
model with a bond rotation of 27.5°.*% A detailed
comparison between the results for the ideal and
relaxed surface and the experimental data allows
us to draw more definite conclusions on the sur-
face geometry of the system. We start from a
description of the results for the ideal geometry.
Figure 6 shows the energy spectrum coming out
of our self-consistent slab calculation for the
ideal surface geometry at the high-symmetry
points of the two-dimensional Brillouin zone. Sur-
face states, identified through the localization of
the wave function near the surface, are indicated
by arrows and labeled by A; and C,;, depending
on whether they are localized on the anions or
cations, respectively. The subscripts used here
are chosen in such a way as to simplify the com-
parison between the calculation for the ideal and
relaxed surface geometry. Notice that surface

a b a b a b a b
4 ] Gex
2: CA:-: C, = C4== CA-;-_
0 1 Ay = A=E Ag=s+
] ta= A
S _a] i ;:i °
® . £
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FIG. 6. Energy spectrum for GaP(110) ideal surface. Electron states are divided according to the representations of
the point groups of the bulk directions corresponding to the high-symmetry points of the two-dimensional Brillouin
zone. In column a the projected bulk band structure is displayed. Column b shows the eigenvalues resulting from the
slab calculation. Surface states are indicated by arrows and labeled by 4;, C; according to the notation of Sec. V. En-

ergies are referred to the top of the valence band.
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FIG. 7. Charge-density plot for surface state A, at
M in the ideal geometry; the contours are spaced by 0.3
electrons per bulk unit cell.

states always appear in couples due to the slab
geometry exposing two surfaces to vacuum. Cou-
ples of surface states are almost degenerate, the
degree of degeneracy being higher when the
localization of surface states at the surface is
stronger.

In the case of ideal geometry, surface states
exist only in gaps and lenses of the projected
bulk band structure (PBBS). The orbital charac-
ter and the localization of surface states near
the surface is illustrated by plotting the square
modulus of the wave function along (110) planes
perpendicular to the surface and passing through
either Ga or P surface atoms. Figure 7 shows
such a charge-density plot for the surface state
labeled A,, which is located near the lower edge
of the ionic gap around — 9.8 eV. This state is
present at all symmetry points and appears to be
a P-derived s state strongly localized at the sur-
face. A surface state of this kind has been found
for the ideal (110) surface of all the other III-V
zinc-blende semiconductors .28 38

Figure 8 shows the charge-density distribution
for C,, a surface state present at M point only,
near the lower edge of the lens opening in the
PBBS at the center of the Brillouin zone. It ap-
pears to be a Ga-derived sp state. Figure 9
shows the charge-density distribution for A5 and
C,, the dangling-bond states lying inside the
fundamental gap, centered on P and Ga, respec-

FIG. 8. Charge-density distribution of the surface
state C, for ideal surface geometry at /.

@B@ @

FIG. 9. Charge-density distribution for (a) filled sur-
face state A; and (b) empty surface state C, at M point
for the ideal geometry.

tively. The presence of such filled and empty
surface states inside the gap is a very well-known
characteristic of all the calculations of surface
band structure for III-V’s (Ref. 38) in the case of
ideal geometry. A planar p_P-derived surface

FIG. 10. Charge-density distribution for surface
state C; at X’ in the case of ideal surface geometry
plotted along a (110) plane passing through P (a) and Ga
(b) surface atoms.
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FIG. 11. Total valence charge density for relaxed
GaP(110). The contours are spaced by 3.0 electrons per
bulk unit cell.

state A, exists at T and X’ just below the valence-
band maximum. Finally C; (Fig. 10) located at
3.98 eV at X’ is localized on the Ga atoms of the
second layer with a non-negligible contribution
from P-derived states.

Let us turn now our attention to the results for
the relaxed surface. In Fig. 11 we display the
total self-consistent valence charge density plots
for GaP(110) relaxed surface. The perturbation

induced by the surface extends up to two layers
and manifests itself only in a change of shape:
The pileup of charge along the bonds between Ga
and P is essentially the same in the surface re-
gion as in the bulk. It should be mentioned that
this is not the case for the ideal surface where
the value of the bonding charge at the surface
differs more from the bulk value than in this case.
This fact, as it has been noted for GaAs,’ is a
positive test of the greater stability of the re-
laxed surface compared with the ideal one.

Figure 12 shows the energy spectrum calculated
for the relaxed surface geometry. Again A, and
C; label the anion- and cation-derived surface
states. The surface band structure is consider-
able different from the ideal case: All the surface
states found for the ideal geometry are still pre-
sent in the relaxed surface but at different ener-
gies; moreover, due to the difference between
the geometrical array of the atoms at the surface
and in the first sublayer, many new surface
states and resonances with maxima of electronic
charge in the first two layers appear either in
gaps of the PBBS or degenerate with the bulk
continuum. This is the case of the strong surface
state A, near the bottom of the valence band
around —11.0 eV. It is present at all the high
symmetry points except T where it becomes a
very weak resonance. Its charge-density dis-
tribution in Fig. 13 allows to identify it as a
second-layer P-derived s state.®

State A, charge-density plot is displayed in
Fig. 14 and appears to be the same P-derived
s state as in the ideal surface. The same can
be said for C, (Fig. 15), an sp Ga-derived state
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FIG. 12. Energy spectrum for relaxed GaP(110) surface at high-symmetry points. Surface states and resonances are

indicated by arrows and dotted arrows, respectively.
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FIG. 13. Charge-density plot for A; at X point for the
relaxed geometry.

also present in the ideal case, which now extends
to X and X’ following the lower edge of the in-
ternal gap. C,, on the contrary, is a new surface
state induced by relaxation, localized on the Ga
atoms of the first sublayer with predominant

s character (Fig. 16). It is present only at M
point. Near the upper edge of the internal gap

at X point a strong surface state A, arises upon
relaxation (Fig. 17). It is a well-defined p, state
localized on the first sublayer anions and be-
comes a weak resonance on moving toward I’ and
M.

We are now approaching the valence-band
maximum, where we find a couple of surface
states A, and A; shown in Fig. 18. A; is the
P-derived dangling-bond state already found in
the ideal case. Its energy position is now con-
siderably lower than in the ideal surface so that
it lies completely out of the gap. A, is a P-de-
rived p p, back-bond state located between — 1.7
and —1.1 eV. Both A, and A; are present at all
the high-symmetry points. State A, appears only
at ' and X’ and is a planar p, state.

As already predicted by tight-binding studies,**
relaxation is not able to remove empty surface
states from the gap: C, and C,, whose charge-
density plots are shown in Fig. 19, occupy the
upper part of the gap interchanging their relative
positions at different points of the Brillouin zone.

&

Ga Gi

P (\Fm

FIG. 14. Charge-density plot for state A, at M point
in the case of relaxed geometry.

N2

a5

FIG. 15. Charge-density plot for state C, at M point
in the relaxed surface case.

C, is the dangling-bond Ga-derived state already
found for the ideal surface which now has been
pushed up at I', X, X’ and down in energy at M by
relaxation. C, is a back-bond state which over-
laps the gap region, except at M where it lies
higher than C,. The presence of this state in the
gap is the consequence of rehybridization, which
occurs at the surface, and can pull back-bond
states out of the conduction-band bottom.*°
Table II summarizes the energy positions of
surface states at the high-symmetry points, to-
gether with parity under mirror-plane reflection
x — —x. Mirror-plane-symmetry properties
of surface states can be experimentally defined
by angle-resolved polarization dependent photo-
emission experiments. Such data, now available
for GaAs (Ref. 41) only, can be useful in a com-
parison between theoretical results and experi-
mental data.

VI. COMPARISON WITH PREVIOUS WORK

In this section we compare our results with
previous theoretical work and with the experi-
mental data available for GaP(110) surface. The
overall picture of surface electronic structure we
have been describing here is similar to the one
coming out from previous tight-binding calcula-
tions.'* Surface states for the ideal geometry
are in both cases located inside the gap of the

Q (@
P
s @
Ga Ga
pl p

FIG. 16. Charge—depsity distribution of surface state
C; in the relaxed surface case.



6040 MANGHI, BERTONI, CALANDRA, AND MOLINARI 24

Ga

- ©

©

FIG. 17. Surface state A3 charge-density plot at X
point.

PBBS and their orbital character and energy
position are quite similar, in spite of the dif-
ference of the description of the bulk bands given
by the two methods. Tight-binding results for the
velaxed surface are only available for the RR
model with §=34.8° and 6§=20°. All the same
the main surface features obtained by tight binding
are comparable with the ones obtained in the
present calculation even if the details of the elec-
tronic structure, in terms of energy position,
surface band dispersion, and symmetry ordering
of surface states, being sensible to the surface
geometry, are somewhat different.

Four surface states are in both cases located
in the gap region, the two filled ones out of the
gap and the empty ones still inside the gap. It
should be mentioned that filled surface state bands
obtained by tight binding have the same orbital

Ga Ga

FIG. 18. Charge-density plots for (b) the dangling-
bond surface state Ay and (a) back-bond surface state
Ay at X point.

@

@@
2

FIG. 19. Charge-density distribution for (a) C; and
(b) C4 surface states at M point.

O

character and ordering as in pseudopotential cal-
culation. For tight-binding results the orbital
composition of the empty states is somewhat dif-
ferent, although they seem to rise from dangling-
and back-bond states.

The main difference between the two calculations
arise in the lower part of the energy spectrum.
Tight-binding calculations involving no bond-
length changes do not predict any surface state
at the bottom of the valence band as the pseudo-
potential does. Moreover, the surface Ga-
derived state given by tight binding at # point
partially overlapping the ionic gap is totally absent
in pseudopotential calculation.

Cluster calculations performed using the ex-
tended Hiickel method!® yield an empty dangling-
bond surface state in the gap of dominant Ga
character in the relaxed surface. Unlike the pre-
sent calculation and the outcome of the tight-
binding studies, there is no overlap between the
back-bond surface state and the gap. At present
it is not clear whether this discrepancy arises
from the use of a cluster of atoms to simulate the
bulk or from some inadequacy of the extended
Hiickel method in approaching the main features
of the conduction band.

As we mentioned previously, the pseudopotential
approach has been used to perform calculations
similar to those presented in this paper, mainly
for GaAs. Calculations with a local pseudopo-
tential®?! give results quite close to ours, the
main surface features having the same composi-
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TABLE II. Energy positions referred to the valence-band maximum and parity with respect
to mirror-plane symmetry of surface states found in the case of relaxed surface geometry at
the high-symmetry points of the two-dimensional Brillouin zone.

T X M X’

ev Parity ev Parity ev Parity ev Parity
A -10.95 odd -10.87 odd -11.75 even
A, -10.17 even ~9.87 even -9.85 even -10.74 even
Ag -3.13 even ~3.22 odd -2.93 odd
Ay -1.72 even ~1.62 even -1.12 even -1.24 even
Ag -1.20 even ~0.88 even -0.74 even -0.80 even
A -0.06 odd -0.77 odd
C, -6.20 even
C, -5.59 odd —6.09 odd -3.76 even
Cy 1.96 even 1.53 odd 3.87 odd 2.10 even
Cy 2.63 even 2.21 odd 3.35 even

tion and symmetry. A nonlocal calculation has
been carried out by Zunger,?® assuming the same
geometry of Ref. 21, for GaAs. The results show
some differences with respect to those of the local
theory, the most important being the presence

of an additional As-derived state at ~3 eV below
the valence-band maximum, a strong d contribu-
tion in the empty surface bands near the con-
duction-band minimum, and a higher binding
energy for the lowest As (s-derived) states near
the valence-band bottom. The overall picture
seems to be in better agreement with the ex-
periments than the one provided by the local
theory. A similar calculation for GaP(110) would
probably yield similar differences with respect to
the results of the present paper, particularly

in the description of the lowest valence states,
which are better described by the nonlocal theory,
due to a more accurate description of the valence
band.

We turn now to the comparison of our results
with the experimental information. Most of the
experimental work on GaP(110) surface has been
focused on the detection of intrinsic states in the
gap. To this end contact potential difference and
photoelectron spectral distribution measurements
have been performed’:? to show Fermi-level sta-
bilization. For n-type samples pinning occurs
at 1.65-1.7 eV above the valence-band maximum,
which can be caused by the lower edge of intra-
gap band of surface states. Our results agree
with this conclusion: The lower edge of the empty
surface band lies at about 1.53 eV above the
valence-band maximum near X point. It has a
clear back-bond character and is the bottom of
the back-bond surface band. Partial-yield spec-
troscopy with ultraviolet photoemission®* shows
a transition from the spin-orbit split Ga 3d levels
to empty surface states. The transitions occur at
19.7 and 20.2 eV and the final-state energy is

1.3 eV above the valence-band maximum. Taking
account of the excitonic effects, an excitonic
binding energy as large as ~1 eV would be re-
quired to locate the final state out of the gap.
Values of ~0.5 eV give a better estimate of this
energy in other III-V compounds.’? It seems,
therefore, rather likely that the transition ob-
served would involve a final state in the gap.
Since our empty surface bands are mainly lo-
cated around 1.9-2.1 eV, the estimated exciton
binding energy from our results is around
0.6-0.8 eV, so that our picture is consistent
with the experimental information.

Energy-loss spectra have been used to derive
an approximate energy-levels diagram consistent
with the other experimental data for all the
II-V’s.* In the case of GaP(110) the proposed
surface-state positions referred to the valence-
band maximum are-10.5, - 6.5, —1.2, 2.2, and
8.5 eV. Such assignments are consistent with the
results obtained by the method of the fractional
change of external reflectivity,* which shows a
surface optical transition at ~3.4 eV in GaP. Our
description of the filled surface states gives a
band in the range —1.1-1.7 eV and two bands
between - 9.8 and —10.8 eV, in agreement with
previous assignments. Surface states located
between—5.6 and — 6.2 eV are found at X and M
points near the lower edge of the lens in the
PBBS. As to the surface structure observed in
optical spectra at 3.4 eV,* it can be ascribed to
a transition from P-derived filled states between
—-1.2 and -1.5 eV to the empty Ga-derived states
in the band gap. Such an assignment was pro-
posed in the experimental work and our calculation
gives substantial support to it. A more detailed
test of the theory, especially of our description
of the filled states, could be provided by angle-
resolved photoemission experiments like the ones
performed on GaAs.*
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