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Dispersion relations are obtained by two different methods for surface plasmons {in the nonretarded limit)

propagating on the surface of a dielectric medium on which a large-amplitude grating has been ruled. The first

method is based on the Rayleigh hypothesis; the second method is based on the extinction-theorem form of Green's

theorem. It is found that there is an infinite number of branches of the surface-plasmon dispersion curve. Numerical

solutions of the dispersion relations are obtained in the case that the dielectric medium is a free-electron metal for
two surface profiles: a sinusoidal profile and a symmetric sawtooth profile. For the former profile, results are
obtained for corrugation strengths far exceeding the value for which the Rayleigh hypothesis ceases to be valid.

I. INTRODUCTION

Recent experimental" and theoretical" work
on the propagation of surface plasmons' over a
randomly rough, planar surface has shown that
in the presence of surface roughness each branch
of the surface-plasmon dispersion curve for a
perfectly flat surface is split into two branches.

'The theoretical work on this problem" has been
carried out in the limit of small roughness. Be-
cause real surfaces ean be rougher than those to
which the small roughness limit is applicable, it
is of interest to obtain the dispersion curve for
surface plasmons on a very rough surface. Un-
fortunately, such a calculation appears to be very
difficult at the present time if the surface is ran-
domly rough.

The situation is quite different if the profile of
the rough surface is deterministic and periodic.
In this case it is possible to obtain a dispersion
relation for surface plasmons that is formally ex-
act, irrespective of the strength of the roughness.
In this paper we present the derivation of such a
dispersion relation, and numerical solutions of it,
for two different surface profiles, in the expecta-
tion that the results will provide some insights
into the nature of the corresponding dispersion
curve for surface plasmons on a randomly rough
surface.

We consider here a surface plasmon propagating
perpendicularly to the grooves of a grating, whose
profile is given by the equation x, = f(x,), where
the surface profile function &(x,), is a periodic
function of x, with period a. The region defined by
x, & g(x, ) is a vacuum, while the region x, & f(x,)
is filled by a dielectric medium characterized by
an isotropic, frequency-dependent dielectric tensor
e„,(&d) =5„„e(v). The region g;„&x, & g,„is called
the selvedge region.

We seek the solution of Laplace's equation

for a p-polarized surface plasmon propagating in
the x, direction, that vanishes as

I x, ~

- ~, and
satisfies the boundary conditions

v (xix. I ~) I;=«;&- = «x.x. I ~) I;=«.,&

a
& (&&.&} &&&(xi' I

&») I „=

(1.2a)

(1.2b)

In Eq. (1.2b),

(1.3a)

is the derivative along the unit vector directed
normally outward from the surface, i.e. , from
the dielectric into the vacuum. We will also have
occasion to use the normal derivative 8/Byg that
is defined by

8 8 (1.3b)

We see from Eqs. (1.1) and (1.2) that there is
no loss of generality in our assumption of a dielec-
tric-vacuum interface. For, if the region x, & g(x, )
were filled with a dielectric medium characterized
by a dielectric constant q2(&d), while if the region
x, & f(x,) were filled with a dielectric whose die-
lectric constant was q, («&); the results obtained
here could be applied to that case merely by re-
placing &(«&) with $,((0)/&2(&d),

In Sec. II we obtain the dispersion relation for
surface plasmons on a grating on the basis of the
Rayleigh hypothesis. This is the name given the
assumption' that the solutions of Eq. (1.1) that are
valid outside the selvedge region can be continued
into the selvedge region, to the surface x, = f(x,)
itself, and used in the boundary conditions (1.2).
It is now known' ' that in the case of the scattering
of a scalar plane wave from a corrugated hard
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wall described by the surface profile function where

l(xy) = Ko cos (1.4) k =0+
a (2.2)

II. THE RAYLEIGH HYPOTHESIS

In this section we solve the boundary-value prob-
lem posed by Eqs. (1.1)-(1.2) on the basis of the
Rayleigh hypothesis. ' ' The solution of Eq. (1.1)
that vanishes as x, -+~ can be written for x, & g
in the form

&'(xix. l~)= g &~em(ik&x, —lk& lx, ), (2.1)

the Rayleigh hypothesis is valid provided the ratio
(g,/a) &'0.072. The limits of validity of the Ray-
leigh hypothesis are not known for the problem
we are studying in this paper. However, it can
be safely assumed that it is valid only for a suf-
ficiently small degree of surface roughness. Nev-
ertheless, the derivation of the surface-plasmon
dispersion relation on the basis of the Rayleigh
hypothesis is a simple one, and the results ob-
tained through its use are exact in the small rough-
ness limit.

In Sec. III an exact dispersion relation for sur-
face plasmons on a grating is obtained by the use
of the extinction-theorem form of Green's theorem.
The extinction-theorem formulation, as followed
here, is presented by Toigo et a/."for the case
of the scattering of an electromagnetic wave from
the periodically rough surface. It is free from
the limitations present in the use of the Rayleigh
hypothesis and enables quite rough surfaces to be
studied. This same extinction-theorem method
of Ref. 10 was also followed by Laks et al.' to
calculate the dispersion relation of surface polar-
itons (i.e. , with retardation).

Numerical results for the dispersion curves ob-
tained by both the Rayleigh and extinction-theorem
methods will be described for two different sur-
face profiles in Sec. IV, and a brief discussion
of the results obtained and conclusions that can be
drawn from them will be presented in Sec. V.

and k is the wave vector of the plasmon. Similar-
ly, the solution of Eq. (1.1) that vanishes as x,- -~ can be written for x, & f in the form

min

q'(x, x, l(o)= Q B,exp(ik, x, + lk, lx, ) (2.3)

Bath solutions possess the Bloch property

q (x, + a, x, l
I,)) = e'"y(x,x, l (o), (2.4)

( e-I kpI t(xg) +i pe~ + el kt Ic( y) +jkpxyB ) 0 (2 5a)

OO

lk, l+ k
de

+ a &~) (I~, I
—+,dg(x, ) &

dx, )

& eI'o&l&(~q)+~a& x,~ (2.5b)

Past this point one can proceed in several al-
ternative ways to obtain the dispersion relation
for surface plasmons. " We proceed here in a
manner that leads to a form for the dispersion re-
lation well suited for numerical calculations. We
multiply Eq. (2.5a) by [lk„l +ik„df(x, )/dx, ]
x exp[lk. l g(xx) —ik„x,], multiply Eq. (2.5b) by
-e '(&u)exp[lk„lf(x, ) —ik„x,], add the resulting
equations, and integrate the sum on x, over the
interval (- za, -', a). In this way we obtain an equa-
tion for the (QP alone:

as they must in view of the periodicity of the sur-
face profile function.

We now assume that the solutions (2.1) and (2.3)
can be continued into the surface itself (this is
the Rayleigh hypothesis), and substitute them into
the boundary conditions (1.2). The expansion co-
efficients {Aj and LB/ are thereby found to satis-
fy the pair of homogeneous equations

1 I'~' & . dg(x, )d lk( ) lk, l+ lk. i]+i[~(~»,+k~] ' e~KJk, I
—1k~i)&(xx) -i(k, -k,)x,]&,=0

de (2.6)

An equation of this type for surface polaritons was first obtained by Toigo et al.'
The term containing df(x, )/dx, can be integrated by parts. It yields a nonzero contribution only for pe r

on the assumption, that we make here, that g(—', a) = f( &~a) . T-his assumption means that in addition to
being periodic in x, with period a, f(x,) has no jump discontinuities at x, = + a/2, or within the interval
—(a/2) ~ x, ~ (a/2). The modifications in the results that follow when this is not the case are straightfor-
ward. Thus Eq. (2.6) can be rewritten as

q (o +1 0 + 1 —5 1-q (.~ " ' " ' — dx e&l
"~' '"~"'&"~)e '" 'P"~ A =0.lu„iiu i-u u 1

lu„l —lu, l
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This equation can be rearranged into the form

(2.8)

where the elements of the matrix M(k) a,re given by

r P ' ~r ~P ( kr -)k&))C(xl) j(2&/a)(r-P)~y +~ p
I k„ I ( I k„ I —I k&I ) a

M„pk)—
0, y=p.

(2.9a)

(2.9b)

Consequently, if we denote the eigenvalues of the
matrix M(k) by 1A.,(k)}, where s labels the dis-
tinct eigenvalues, the dispersion relation for a
surface plasmon on a grating can be written as

c((d) + 1
(k)~(~) —1 (2.10)

and leads to a separate branch for each distinct
eigenvalue.

The eigenvalues ( X,(k)) are periodic functions
of k with period 2s/a. This can be seen as follows.
If we replace k by k+2'/a in the expression for
the matrix element M„~(k) given by Eq. (2.9), this
has the effect of replacing k„by k„„and k, by
k „, according to Eq. (2.2). Consequently, we
have the result

M „,(k+ (2»/a)) =M „„~„(k)=M„, (k), (2.11)

~,(k+(2~/a)) = ~,(k). (2.12)

where x'=r+1, p'=p+1. The relabeling of rows
and columns of an infinite matrix in this way leaves
the eigenvalues unaltered, and we therefore have
the result

I

As a result of Eq. (2.12) we can restrict k to lie
in the interval of.0- k ~ (2s/a) with no loss of gen-
erality. The numerical solution of Eqs. (2.9)-
(2.10) will be discussed in Sec. IV.

We now turn to a determination of a dispersion
relation for surface plasmons that is free from
the limitations of the Hayleigh hypothesis.

III. THE EXTINCTION-THEOREM METHOD

Bv ~7g
(nv v —»v u)d x= u ——v —dS, (3.1)

where 8/Bn is the normal derivative at the surface
Z, directed outward from inside the volume V.

If we apply Eq. (3.1) to the vacuum above the
dielectric medium, we obtain the pair of equations

To obtain a dispersion relation for surface plas-
mons on a grating that is free from the limita-
tions of the Rayleigh hypothesis, we begin with
Green's theorem" and follow the methodology of
Ref. 10. If u(x) and e(x) are arbitrary scalar
fields defined in the volume V bounded by the
closed surface Z, this theorem states that

(3.2a)

(3.2b)
, G(x,x, (x,'x,')y'(x,'x,') ur) —G(x,x, (x,'x,'), p'(x,'x,'] ~ ds,'=

0, x, &g(x,).
In Eqs. (3.2) p'(x, x,

~
~) is the electrostatic potential in the region x, ~ g(x, ), and G(x,x, ~x,'x,') is a Green's

function that is the solution of

v'G(x, x, ~x,'x,') = -4s S(x, —x, )V(x, —x,). (3.3)

The Fourier integral representation of this function is

exp[i@(x, —x~) —I q I I xs —x,' I ]
00 Ig

(3.4)

The integration in Eq. (3.2) is carried out over the corrugated dielectric-vacuum interface, and ds, is the
element of path length along this surface. Because we seek solutions 9&'(x,x,

~

ur) that vanish as x, -~, there
is no contribution to the ],eft hand side of Eq. (3;2) from the surface of an infinite hemisphere in the upper
half-space that together with the surface S constitutes the surface Z.

If we now apply Eq. (3.1) to the region occupied by the dielectric medium, we obtain the following pair
of equations:

, G(x x, )x'x')q'(x, 'x,'~ u&) —G(xx, ~x,'x,'), q'(x,'x,' (~) ds,'=
q'(x, x, ~&.&), x, & g(x,).

(3.5a)

(3.5b)
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In Eqs. (3.5) y'(x,'x,'
~
Id) is the electrostatic potential in the region x, ~ g(x,). If we make use of the bound-

ary conditions (1.2), as well as the relation (1.3b), we can transform Eqs. (3.5) into

, G(x x, (x,'x,')P (x'x,' (v) —e(ur) 'G(xx, ~x'x,')s, p'(x'x,' (+I~ds,'=
q'(x, x, ~~), x, &t-(x,). (S.6b)

Although one can obtain more than one form of the dispersion relation for surface plasmons on a grating
by starting from Eqs. (3.2) and (3.6)," the procedure we will follow here yields a particularly simple form
of this relation. %e begin by expressing the element of integration ds, in terms of dx, alone, in the inte-
grals over the surface S on the left-hand sides of Eqs. (3.2) and (3.6). For this we use

dg )~qx/2
dsg= 1+

(
dxg I

dx~ j
and the definition (1.3}, and obtain the two pairs of equations

(3.7)

(dg S S) . . . , , , q'(x, x, t~), x, &g(x,) (S.8a)

0, x, & g(x, ) (3.8b)1,(dk
dx,' i, , ——,G(x,x, ix,'x,')H(x,'i~) —~(u)) 'G(x,x, ix,'x,')L(x,'i(o) 0, x, & t'(x, )

4p (pe' Qg' Qg'
y'(x, x, ~

(e), x, & L(x,)
I

(3.9a)

(3.9b)

where

H(x, l~) = y'(xxx, i(u) l„,=z(.,),
W 1/2

I,(x, i
(o) = 1+ — cp'(x, x, i (o)

i „, , ( „,) .
(3.10a)

(s.lob}
I

Equation (3.8b) holds for all x, «(x,). We will require that it be satisfied for any value of x, &g . . Sim-
ilarly, Eq. (3.9a) holds for all x, & p(x, ). We will require that it be satisfied for any value of x, & f . We
then substitute into these two equations the Fourier integral representation of the Green s function
G(x,x, ~x,'x,') given by Eq. (3.4), and use the periodicity of P(x,) and the Bloch property of H(x,

~
a&) and

L(x,
~
co),

H(x, + a
~
(o) = e '"H(x,

~
(o),

L(x, +a) u)}=e'"L(x, ((o),

(s.i la)

(3.11b)

where k is the plasmon wave vector. In this way we obtain the following pair of coupled homogeneous
equations for H(xi I

~) nd L(x) I
~}:

qO

dx, e ' "~ ' '"~'([ik f'(xi)- I~. ) )H(xil~)+L(x. l ~)& =o «r each m
&-qy

pa/2 .

dx,e '"~" ' '~'"" '([ik &'( x) +(k ~]H(x, ((~)+q((o) 'L(x, ((u)j=0 for each m.

(3.12a.}

(3.12b)

To solve this pair of equations we expand H(x,
~

&o) and L(x,
~

&o) in Fourier series according to

H(x,
~

(e) = Q e'""H„(bur}, (3.13a)

L(x, ~(o) = Q '"e"~ L(k(o , } (s.lsb)

and substitute these expansions into Eqs. (3.12); the equations for the Fourier coefficients take the simple
forms
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Q ('„.„'(()(( "(H.(k~) —J..((.td)(1=0,

(0) „c(td)( (H„(k(e)+l„(ktd))=0,
oo m

(S.14a)

f(x,) = t, c os
2 71XQ

a (4.2)

these calculations. The first is the sinusoidal
profile given by

where

1 t a/2

1(~)(k)=- dx e-'(2«/»)*le-~» ~«~1)
1a ~@2

a/2

g( w)(k) dx +- ((2 )m/a)xye I»((( I ((x))
rl 1 »a

(S.14b)

(S.15a}

(S„15b)

The two corresponding equations for polaritons
(2.25) in Ref. 11 (to be called LMM) can be shown
to be equivalent to our Eqs. (3.14) in the electro-
static limit if after letting c-~, we multiply both
equations (2.25) by Ik I/O =k /Ik I, multiply
(2.25b} by &(v), and then use the substitutions

(LMM)—

and

L(LMM) y Zg
6 tf 5

The H„and L„reverse roles in the two problems,
because in one case they refer to a component of
the vector magnetic field and in the other case to
the electric scalar potential.

The dispersion relation for surface plasmons on
a grating is obtained by equating to zero the de-
terminant of the coefficients in these equations
(3.14). It is known from the theory of a related
problem, viz. , the scattering of a scalar plane
wave by a periodically corrugated hard wall, '4

that Eqs. (3.12) are exact, but that their solution
by Fourier series as we have done here may not
converge for surface profile functions g(x, ) of suf-
ficiently large amplitude. Nevertheless, we will
see in the following section that at least for an
analytic profile function, the solution of Eqs. (3.14)
yields convergent results for the surface plasmon
dispersion curve for quite large amplitudes of
the corrugation.

IV. NUMERICAL RESULTS

In this section we describe the numerical solu-
tion of the dispersion relations derived in Secs.
II and III in the case that the dielectric medium
on which the grating is ruled is a free-electron
metal, whose dielectric constant is

CO

&((d) =I-
(d

(4.1)

where ~~ is the bulk plasma frequency of the con-
duction electrons in the metal.

Two different surface profiles have been used in

The second is the symmetric sawtooth profile, de-
fined b

4Z

g(x, )= (

II
h- —x„4h

a——&x, ~O
2 1

a
Q ~wx 2'

(4.3a)

(4.sb)

Whether it is the Rayleigh method or the method
based on Green's theorem, the following integral
is required for each choice of the surface profile
function g(x, }:

] a/2I-- d e '"'"/') "~e ""~)
a -a/2

(4,4)

This integral can be evaluated analytically for
each of the profiles given by Eqs. (4.2) and (4.3),
and the results are as follows.

Sinusoidal:

(4.5)

where I„(x) is a, modified Bessel function.
Sau tooth:

4hz , sinhho. , n even
7( +n4h o

4ko. , coshho. , n odd.

)).

We now consider in turn the numerical solution
of the dispersion relations given by Eqs. (2.9)-
(2.10) and Eqs. (3.14)-(3.15).

(4.6a)

(4.5b}

A. The Rayleigh hypothesis

(4.7)

The solution for the eigenvalues, )(.,(k}, of the
infinite matrix Sl(k) is found, for a fixed k, by
diagonalizing a matrix of finite dimension, N [cor-
responding to ~, /)=-N/2, . . . , 0, ... , N/2-1 in
Eqs. (2.9)], and searching for a converging result
as N is increased.

For the sinusoidal profile, the eigenvalues oc-
cur inpairs: + X, (k), a )(,(k},... , corresponding
to branches of the dispersion relation that are
shifted upward and downward nearly symmetri-
cally with respect to the dispersionless flat-sur-
face-plasmon dispersion curve at or= (d,/v 2. The

With the choice of dielectric function given by
Eq. (4.1), the dispersion relation for surface plas-
mons that follows from Eq. (2.10) of the Rayleigh
method can be written
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FIG. 1. Branches of the dispersion relation that are
above the flat-surface-plasmon frequency, cu = ~&/v 2,
for a sinusoidal profile with &0/g =0.07. Measured from
&/~2 as &co~,(k) and calculated with the Rayleigh method:
0 Qcof ~y ~ Q(A32+s Q gu3„and &&

—gm~, for g & 3 (taking
Iv&= 15.3 eV for Al).

difference between this frequency of the flat-sur-
face plasmon and that of a branch of &o(k) is ex-
pressed as

(4.6)

In Fig. 1 we have plotted &~,,(k} for the case that
g, /a =0.07 (not shown is the fact that the dispersion
curve is symmetric with respect to k=0. The
eigenvalues (X,(k)j decrease in magnitude essen-
tially geometrically:

I ~, I
&

I X, I
~

I ~3 I
~ ~ ~, with

I X, l/I X„,l =const, so that the branches rapidly
merge into the flat-surface curve as

I X, I
-0.

Convergence with increasing N is always most
rapid for + X,(k), the largest eigenvalue pair, and
becomes slower for each successively smaller A,
Moreover, the convergence becomes slower as
the ratio g, /a is increased.

Beginning at the ratio $0/a= 0.016 and using
matrices up to %=48, we find clear convergence
down to the tenth pair of eigenvalues for fo/a up
to O.OV, down to the seventh pair for l', /a up to
0.075, and to the third pair for go/a up to 0.1 (with
values nearly identical to those found with the ex-
tinction-theorem method to be discussed below}.
At fo/a=0. 116, divergence is seen in the largest
eigenvalue pairs. Divergence for a value of g, /a
smaller than 0.116 may be seen in the very small
eigenvalues; for example, at g, /a= 0.1 the a A. ,
are diverging. It is, however, often difficult to
interpret the convergence properties of the small
eigenvalues. This is because spurious results,
such as degeneracies (with nonzero imaginary
parts), occur in them, even at small l,/a, but

0.02

0.0 I

0.00
)

0.0
l l I

O. I 0.2 0.5
k/(2m'la)

ZL4U ~

0.000
l

0.4 0.5

FIG. 2. The In~ nu~
~

vs the 1nt'0/a st k = 0.2 (2w/a)
for a sinusoidal profile, for the three branches the far-
thest below the flat-surface-plasmon frequency: (1)
6(d&, (2) 6&2, and (3) Aco3. Here Sco&=15.3 eV cor-
responding to Al, and 0—Hayleigh method and C3-
Green's-theorem method.

more frequently as go/a is increased.
It is, furthermore, interesting to note that

I
her„l

is directly proportional to fola, I «o„ I
to (fe/a)',

I
6&v„

I
to (&,/a)s, etc. (see Fig. 2). This is what

we find analytically for 4~, and ~(d, when we ex-
pand the exponential in the integral of Eqs. (2.9)
to O(g'(x, )}in the small roughness limit.

For the sawtooth profile, Eqs. (4.3), the Ray-
leigh method again yields pairs of eigenvalues:
+ X,(k), ~X,(k), ... , which for the small ratio k/a
= 0.016 are each tending towards convergence as
we increase 1V up to about 30. Moreover, these
&,(k) when calculated with small N matrices
yield dispersion curves that are nearly identical
to those found with the extinction-theorem ap-
proach. However, as N is increased beyond 30,
the eigenvalues all begin to diverge. This behav-
ior is reminiscent of the conclusion by Hill and
Celli, ' for the scattering of a plane wave from a
corrugated surface, namely, that the Rayleigh
method is valid when a nonanalytic profile is ap-
proximated by its Fourier series up to a certain
number of terms, beyond which the method be-
comes invalid. At larger k/a, e.g. , k/a=0. 064,
the eigenvalues, X,(k), are seen to be diverging
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and to have nonzero imaginary parts beginning
immediately with small N.

B. Extinction theorem

The solutions, &o,(k), that are the zeros of the
infinite-dimensional determinant of the coefficients
in Eqs. (&.14), are found by solving the N-dimen-
sional determinant equation [corresponding to m,
n=-(N/4-1), ... , 0, . .. , N/4] and searching for
convergence as N is increased. The N-dimension-
al determinant equation yields N/4 —1 pairs of
roots, corresponding to the branches of the dis-
persion relation found with the Bayleigh method.
Because these branches rapidly merge into the
flat-surface curve, ~= &u,/W2, only a few may be
resolved by a numerical root search, thus demon-
strating a computational advantage of the Bay-
leigh method, which immediately yields all N/2
pairs of branches.

For the sinusoidal profile, using matrices of
dimension up to N=48, we have convergent re-
sults for ratios of f,/a up to 0.25, while at rola
= 0.3 we begin to see nonconvergent behavior.
The limit of g, /a= 0.116, where the Rayleigh meth-
od gives a diverging X» is now seen to be the

o.o'

—O. I

CL

3

3
~ —0.2

CI

0.0 O. I 0.2 0.5 0.4 0.5
k / (2m/a)

FIG. 3. Branches of the dispersion relation that are
below the flat-surfac e-plasmon frequency, ~ = cu&//v 2,
for a sinusoidal profile with fp/+=0 25. Measured from
co& /v»s d ~~ (4) and calculated with the Green's theorem
method: o—&co~, ~—~cu2, o—&F3, and &&

—&~~ with
g & 3 (taking S~~= 15.3 eV for Al).

point where the plots of 1nf, /a vs ink~ no longer
follow straight lines (Fig. 2) ~ The curves of &~(k)
for t', /a=0. 25 are plotted in Fig. 3.

For the sawtooth profile, for a ratio of k/a
= 0.016 using determinants of up to N=48, we have
investigated the first three branches and have
found convergence. Convergence is also seen. for
k/a=0. 04. However, divergence is found when k/a
~ 0.064.

The present results for the surface-plasmon
dispersion curves obtained by use of the extinction
theorem may be compared to those in the work of
Laks et al. for a surface polariton on a grating, "
which uses a similar extinction-theorem approach
but proceeds from Maxwell's equations and thus
includes retardation. For large 0 where the flat-
surface polariton becomes almost dispersionless,
the two sets of results should agree. Indeed, in
this limit the three pairs of branches about ru, /~2
for a sinusoidal grating that are considered in
Ref. 11 have frequency spacings corresponding
to the first three pairs of branches found here.

V. CONCLUSIONS

Both a method based upon the Rayleigh approxi-
mation and a formally exact method based upon the
extinction theorem, with Fourier expansions of the
terms containing the unknown scalar field and
its normal derivative on the boundary, predict the
existence of an infinite series of branches in the
dispersion relation of a plasmon propagating on a
surface with periodic roughness. No more than,
perhaps, two or three of these branches will be
experimentally resolvable, since they merge rap-
idly into the flat-surface-plasmon curve at +
= ~~/W2. To heighten their resolution, a very
large roughness will be desirable, as their sep-
aration, b, &u(k), from ~,/v 2 is proportional to
some power of the roughness strength.

For the purpose of computation, the Rayleigh
method is the easier one, directly yielding N
branches when formulated as an N-dimensional-
matrix eigenvalue problem. It is, however, valid
only for small roughness (ro/a& 0.1) when applied
to an analytic profile, and even more restricted
when applied to a nonanalytic profile.

The extinction-theorem method, with a Fourier
expansion, yields properly convergent results for
the plasmon dispersion relation with much larger
roughness strengths. %hen used with a sinusoidal
profile, it leads to no problem with ill-conditioned
matrices, with profiles with $0/a up to 0.25. Re-
sults for the nonanalytic sawtooth profile, for
relatively small roughness, are also found to be
convergent —here, ill-conditioned matrices arise
for f,/a ~ 0.064.



N. K. GLASS AND A. A. MARADUDIN

We emphasize the fact that the extinction-theo-
rem method is formally exact, the lack of con-
vergence for large roughness being due to ex-
pansions in Fourier series. Expansion in a dif-
ferent set of basis functions could lead to con-
vergence where the Fourier expansion does not.""

It ls hoped that the results presented here for
periodic profiles, valid for very large roughness
strengths, may also provide insight into the prop-
erties of the surface-plasmon dispersion curve

for a randomly rough surface with large roughness
strengths. In particular, one can speculate that:
more than the two branches obtained in Refs. 3
and 4 in the small roughness limit will be found
in this case in the limit of large roughness.
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