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A modified version of the tight-binding method of band-structure calculations, based on
well-defined localized orbitals, is proposed. The localized orbitals are obtained as the
self-consistent eigenstates of a local Hamiltonian defined in a unit cell at each atomic site,
with an arbitrary localizing potential about each cell. The crystal eigenstates are comput-
ed by expanding the Bloch functions in localized orbitals and diagonalizing a crystal
Hamiltonian which compensates for the arbitrary localizing potential. A general discus-
sion of this method and a comparison with similar approaches is given. Specific results

are reported and discussed for the case of NiO.

I. INTRODUCTION

The oldest approach to the study of the electron-
ic band structure of crystalline solids is the tight-
binding method, based on expanding Bloch func-
tions in atomic orbitals centered on lattice sites.!

A similar approach was introduced by Hiickel for
molecular systems, where no translational sym-
metry exists. The calculations are simplified in
this case by assuming atomic orbitals on different
sites to be orthogonal.? The orthogonality condi-
tion can be rigorously imposed in the case of crys-
tals by using Wannier functions centered at each
unit cell, instead of atomic orbitals.’

While the above approaches have been very use-
ful for a general understanding of the atomic struc-
ture of solids, they have encountered considerable
difficulties as computational methods because of
slow convergence in the number of atomic func-
tions to be used and in the number of interacting
lattice cells. This is the reason why the tight-
binding method was not applied with confidence in
spite of its general validity and of its usefulness in
establishing connections between atomic and crys-
tal properties. Following Mooser and Pearson,’
ideas based on atomic states are currently used to
explain the very existence of complex semiconduc-
tors and to justify the variation trends of optical
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properties in crystal families.*

The difficulties- with the calculations reside
essentially in the inadequacy of the initial localized
functions used in constructing the Bloch functions.
One may state that the problem of the band struc-
ture of solids can be reduced to that of determining
“appropriate localized functions.” They should be
similar to atomic functions near the nuclei and
should not extend very far from the nucleus to
which they refer, so as to have interactions only
between neighboring cells. Atomic orbitals are not
“appropriate localized functions” in the overlap re-
gion between cells, where the crystal potential does
not coincide with the atomic potential. Wannier
functions are not satisfactory either, because of the
difficulties of their a priori determination.’ Dif-
ferent sets of localized functions are equally valid
in principle, because the same Bloch function can
be expanded in different types of localized func-
tions.

Because of its advantages, the use of the tight-
binding approach has been revived in recent years
along this line of thought by using different points
of view. The first one is semiempirical in nature
and consists in developing formally the method
and in finding ways to estimate the relevant
parameters (one-center and two-center energy in-
tegrals). The first attempt was suggested by Slater
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and Koster,® and amounts to choosing the dispos-
able parameters by fitting results to experimental
data or to results obtained at a few k points by a
more accurate calculation. A modification of this
method was adopted by Bassani and Pastori-
Parravicini in studying the band structure of gra-
phite and layer compounds.’ They computed the
overlap and energy integrals from the atomic func-
tions, but introduced scaling factors to reduce them
to more acceptable values. Interesting results for
complex semiconductors have been obtained in this
way by many authors, who have semiempirically
modified the overlap and the energy integrals® or
the atomic functions (distorted atomic orbitals).’

In some cases the integrals computed from atomic
orbitals are found to be appropriate for reproducing
valence bands,!? eventually taking into account
three-center integrals'! in covalent materials.

A second point of view is to search for the best
localized functions to be used in the expansion of
the Bloch functions. They do not have to coincide
with the Wannier functions nor with the functions
of isolated atoms or ions, but should rather
represent as closely as possible the electron density
in the crystal. Two ways have been suggested to
obtain them. One is to determine the localized
functions from the variational principle by minim-
izing the total energy. The other is to set up an
appropriate local potential and to solve the corre-
sponding Schrodinger equation.

The theoretical basis for the first approach has
been given by Kohn,® but it has been used only in
a test case for metallic hydrogen.'? The same idea
has been followed by Ellis ef al. for semiconduc-
tors,'> but their starting functions have to be
chosen somewhat arbitrarily.

The theoretical basis for the second approach
has been given by Adams'* and by Gilbert.!* They
have shown that one can set up a localizing poten-
tial, defined as the projector of an arbitrary poten-
tial on the manifold of occupied states, without
changing the physical results. Following similar
physical ideas, Anderson has formulated a “chemi-
cal pseudopotential method,”!® which has been
very useful in studying valence states in semicon-
ductors.!” More recently Doni et al.'® have clari-
fied the theoretical grounds of the semiempirical
tight-binding method, by establishing a direct rela-
tionship between the integrals to be computed in a
Hartree-Fock approach and the semiempirical
tight-binding parameters.

The general formulation of Adams and Gilbert
has been used by Kunz for obtaining local orbitals

to be used in band-structure calculations.!® He
found the solutions of a local Hartree-Fock equa-
tion without introducing the Slater approximation
for the exchange term. Many interesting and accu-
rate results have been obtained by Kunz and co-
workers by using these local orbitals in actual
solid-state calculations.?’

While all this confirms the validity of a localized
orbital approach, we think that it is possible to ob-
tain a simplified formulation of Gilbert’s theory,
which still gives definite prescriptions on the
choice of the local Hamiltonian, but is more relat-
ed to the physical situation in the crystal. We are
interested in the electronic structure of compound
semiconductors with d- or f-like states, in particu-
lar, transition-metal and rare-earth oxides. In
these cases the ionicity must be taken into account.
Physical intuition suggests that one can find local-
ized functions to be used for the lowest conduction
bands as well as for the valence bands. In this pa-
per, following the general ideas of Gilbert,'®> we
suggest a practical prescription for obtaining local-
ized functions in ionic crystals. Such localized
functions are self-consistent solutions of the
Schrodinger equation for a potential which coin-
cides with the crystal potential inside an ionic cell
and is an arbitrary localizing potential outside it.
By using our method, particularly suitable local
functions for crystal calculations can be deter-
mined. They can be obtained also in cases where
the free ions do not have bound states by choosing
an appropriate localizing potential outside the
atomic cell. The novelty of this approach, besides
the specific definition of the potential inside the
unit cell, is in fact the use of the arbitrary poten-
tial.

Recently Zunger and Freeman?! have developed
a self-consistent LCAO method in the local density
formalism, and have obtained very accurate results
for a number of crystals. While the philosophy
underlying our method is quite close to theirs, we
give a mathematically and computationally less in-
volved procedure, focusing our attention on the
modification of the original atomic functions due
to the presence of neighboring atoms and to the lo-
calizing potential. Our procedure takes into ac-
count self-consistently the contributions to the po-
tential inside a local cell due to the electrons be-
longing to other cells, though it does not attempt
full self-consistency in solving the crystal secular
problem. Our goal will be reached, as we will dis-
cuss later, if we can really obtain “good” localized
functions to be used in the expression of the Bloch
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functions.

Finally, we note that other self-consistent calcu-
lations have been performed by Ciraci and Batra,*
but their method gives no emphasis on the locali-
zation of the wave functions and, therefore, does
not avoid problems related with multicenter in-
tegrals and distant-neighbor interactions.

We apply the procedure outlined above to the
case of NiO and we plan to extend the calculations
to the other transition-metal oxides. In Sec. IT we
define the local Hamiltonian and discuss the choice
of the local potential. In Sec. IIT we give the pro-
cedure for the coupled self-consistent solutions of
the local Hamiltonians.

In Sec. IV we discuss aspects of energy-band cal-
culations using our localized functions. In Sec. V
we give the results for the localized functions of
NiO and compare them with the functions of the
isolated ions. The band structure of NiO is given
as a first example and the role of the localizing po-
tential is discussed. Finally, in Sec. VI we summa-
rize the results and suggest applications of the
method.

II. DEFINITION OF THE LOCAL HAMILTONIAN

We define a local Hamiltonian, which is particu-
larly suitable for complex semiconductors with ion-
ic character, and which satisfies as closely as possi-
ble the theoretical requirements discussed in the
Introduction for the definition of the localized orbi-
tals.

The first condition is to subdivide the crystal in
cells, in order to determine functions which are lo-
calized at each cell. There are many possible ways
to affect this subdivision, depending on the type of
crystals. For molecular crystals like H, a cell
should preferably contain the molecule, so that the
localized function is not too different from a
molecular function near the nuclei. Similarly, for
strongly covalent crystals a cell should be centered
about a bond. On the contrary, in the case of ionic
crystals it seems appropriate to consider cells cen-
tered around each nucleus. The shape and size of
the cells is determined so that the lattice is com-
pletely filled and the translational and rotational
symmetries are preserved.

The localized functions to be used in construct-
ing the Bloch functions are obtained by solving a
local Schrédinger equation with a local potential
equal to the crystal potential inside the cell and
with a constant arbitrary potential V| outside it.
This constant potential does not appear in the crys-

tal potential and its role is just that of localizing
the orbitals so as to make the crystal secular equa-
tion more rapidly covergent. This corresponds to
the localizing potential well introduced by Gil-
bert.!> Obviously, the value of ¥, influences some
of the wave functions, mostly in their tails. A
careful choice is required since we want to be able.
to consider only a limited number of localized
functions. On the other hand, once the localized
functions have been obtained, the band structure
should be ultimately independent of ¥}, once full
self-consistency is achieved.

The Schrodinger equation at site / for the local-
ized orbitals about a nucleus of charge Z Ve, is
written as follows:

HY®)p () =EPpP(7) , )
where the local Hamiltonian is defined as

. 2 Z(I) 2 =
HOD=L— - 22 v

+ V en(F) + Vitercen() (2a)
inside the cell, and
2
H”’(f'):fr—n—+V0 (2b)

outside the cell. The Coulomb potential in (2a) is
expressed through the spherically averaged electron
densities in the usual way, i.e.,
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The exchange-correlation (exch) potential is taken
as the averaged Slater exchange, corrected by a
correlation factor a(r), which should be density
dependent?>24;
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In actual calculations, we adopt a constant aver-
aged value of a, as is frequently done in band-
structure calculations.?’

The density P(ul))t( r) is computed from the local-
ized wave functions of the occupied electronic
states, taking into account both the ones centered
on the Ith crystal site and the tails of the ones cen-

tered on the other sites I’ which extend in the /th
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cell:

1
piol(r)= yr ? | R (r)|?

1 'y oy 12
— R, '(r)|*°,
+4W'§| n (1] (5)

where R,(,” denotes the radial part of the nth wave
function. It should be observed that the number of
occupied states to be considered in the first sum-
mation on the right-hand side of Eq. (5) is smaller
by one than the number of valence electrons when
we compute valence bands. This results because
the averaged exchange potential (4) does not cancel
the corresponding Coulombic interaction of the
electron with itself. In practical calculations one
uses the total number of valence electrons, since
the difference is very small inside the cell. This
procedure has the advantage of using the same po-
tential for both valence and conduction states,'® but
in many cases is not sufficiently accurate to give
the correct valence-conduction band gap.

The remaining potential due to the other cells is
the long-range contribution due to the ionic
charges

2
Exlx)tercell(r)z 2 % ’ (6)
i# | T—Tr|
where g, gives the value and sign of the ionic
charge in units of e. This summation can be per-
formed over all types of crystals. The result can be
separated into a spherically symmetric contribu-
tion, i.e., the Madelung potential, plus other contri-
butions which can be expanded in crystal harmon-
ics adapted to the lattice symmetry. In NaCl-type
crystals, with lattice distance 7, one obtains an ex-
pansion in terms of spherical harmonics Y7 as 2

2
(1) ’ e
Vintercell(r )= qray | —
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where the constants depend on the lattice structure
(for instance, ay = —1.747 56 and S,= —3.5789
for the NaCl structure). The Madelung term a,,
only contributes a shift to the potential inside the

cell, while the other terms in (7) give a much
smaller contribution, which removes the degen-
eracy of some levels. The splitting of the d- or f-
like levels produced by the higher-order terms of
Eq. (7) is computed by perturbation theory.

For crystals which have atoms with a permanent
magnetic moment, the exchange potential is dif-
ferent for spin-up and spin-down electrons, since
the total density in (4) and (5) must be referred
only to electrons with the same spin. Consequently
(ptot/2) in Eq. (4) must be replaced by p, x Which
is obtained by summing in (5) only on the occupied
states of the electrons with spin up (0=1) or with
spin down (o= — 1) respectively.?” Of course, this
will separate the spin-up and spin-down states and
will also give slightly different energies in the fer-
romagnetic and paramagnetic cases.?®

As mentioned before, in addition to the above
described potential inside the lattice cell, we intro-
duce an arbitrary uniform potential V, outside the
lattice cell. This does not modify the physics of
the problem because the potential outside the lat-
tice cell does not appear in the total crystal poten-
tial. However, the introduction of the potential
well ¥V, specifies the local functions which are used
as bases in the construction of the Bloch functions.
The freedom in the choice of ¥}, is due to the fact
that some freedom is allowed in the choice of these
local functions. Local functions can be obtained
also when the potential inside the cell would not
localize orbitals.

III. SELF-CONSISTENT SOLUTIONS FOR THE
LOCALIZED WAVE FUNCTIONS

The localized wave functions are obtained by
solving numerically the Schrddinger equation (1)
using a self-consistent procedure. This is done by
using the classical Herman-Skillmann computer
program?® and inserting the contributions to the
potentials due to the electron densities of atoms be-
longing to other cells, as contained in the expres-
sions (3), (4), and (5), and the potential V.

Since we consider, in general, semiconductors
with different atoms in the unit cell, we have to
consider coupled solutions of the equations for dif-
ferent cells and to impose self-consistency on all of
them. Furthermore, computational simplicity can
be achieved only by approximating the elementary
cells around atoms with spheres.

The relevant parameters on which the localized
eigenstates depend are, for each elementary cell, its
volume, the value of the localizing potential ¥V,
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and finally, the value adopted in expression (4) for
the a parameter in order to take properly into ac-
count exchange and correlation effects. We adopt
the value @ =+ which has been used in many cal-
culations, though a better choice would come from
a detailed analysis of correlation screening.?*2*

The volume of the elementary cell at an atomic
site is limited by the condition that the sums of the
volumes at different atoms must be equal to the
volume of the translational unit cell. In a binary
lattice, one is left with only one parameter, the
volume of one subcell.

The value of the localizing potential ¥, should
not influence the crystal eigenstates since it does
not appear in the crystal potential

Veys()= 3 V(T) , (8)
1

where each local potential ¥'? is defined as in Eq.
(2a) and V=0 outside the Ith cell. Its role is just
to define the basic set of functions used for expan-
sion of Bloch functions. Of course, the choice of
V,, modifies the localized functions and, therefore,
affects the band structure since the expansion of
the Bloch function is not taken on a complete set.
However, when the calculation is done self-con-
sistently, the resulting band structure should be in-
dependent of ¥V because it is the self-consistent
solution of a well-defined crystal potential indepen-
dent of V.

In practice, of course, it is useful to make a
choice of Vj so that the method is rapidly conver-
gent, which happens only when the localized func-
tions are very close to the exact crystal eigenfunc-
tions.

There are two practical ways to achieve this
goal. One, rather cumbersome but theoretically
appealing, consists in repeating the calculation
with computed sets of functions until self-con-
sistency is achieved. The rate of convergence
depends on ¥V, and a good choice would give a
band structure nearly self-consistent from the be-
ginning. This can be verified by computing the
electron density from the Bloch states and compar-
|

Hy(K)= 3 <¢,°><r> Loy S e

Owing to the localization of the orbitals ¢™(T)
and to the finite radius of each V'Y(r), we are, in
general, justified in neglecting the contributions of
three-center integrals (/£n=40). This, however, is

ing it with the initial density.

A second way is to compare from the beginning
the electron density with the experimental results,
as can be obtained, for instance, from x-ray scatter-
ing experiments.’* The densities can be made to
agree because the local Hamiltonian discussed in
Sec. IT can be constructed to give the correct elec-
tron density in each cell. The two approaches
should be equivalent. Unfortunately, at present, x-
ray diffraction experiments may not be sufficiently
accurate to give electron densities which can be
used to define the goodness of crystal states.

Another possibility is to treat ¥, and the poten-
tial sphere radius in a semiempirical way as dispos-
able parameters, which can be fixed so as to give
good results for the band structure. Though less
satisfactory then the fully self-consistent approach,
this procedure still has advantages over the current
tight-binding semiempirical energy-band schemes,
which use as parameters the basic Hamiltonian
matrix elements®® (13 parameters needed in zinc-
blende semiconductors®). The advantage is due to
the fact that, once ¥V, and the volume of the lattice
cell is fixed, everything can be computed from first
principles.

IV. PROCEDURE FOR OBTAINING
CRYSTAL EIGENSTATES

Once the localized functions have been obtained
at each atomic site, the procedures of the tight-
binding method can be used to obtain the crystal
eigenstates. The secular equation to be solved is

||Hy(K)—E(K)S;(K)||=0, )

where the indices i and j refer to all different Bloch
functions constructed from the available localized
functions. The overlap matrix S;;, obtained in the
usual way, is not diagonal because we have pre-
ferred to concentrate on the localization of the
functions rather than impose the condition of
orthogonality at different lattice sites.

The Hamiltonian matrix elements can be written
as

KT, "¢ > (10)

hot a general rule but has to be verified case by
case, because it depends critically on the type of lo-
calized functions which are used.!"3"3? The finite
radius of the local potential ¥'"(r) does not elim-



5954

inate the influence of a cell on the functions local-
ized on another cell, because they extend on the en-
tire space, as shown in Sec. III. However, their
high degree of localization allows us to consider
only the interactions with a small number of neigh-
boring cells.

All the matrix elements can be expressed as a
linear combination of a smaller number of indepen-

|

Hij(E)in(O)—Vz)O)<¢i(0)(?)I¢i(0)(?)>’>’0+ z <¢
n£0
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dent integrals in the usual way.%3? These have to
be computed by direct numerical integration. We
can write typical formulas for the matrix elements
of H, making explicit use of the eigenvalue E,‘,” of
Eq. (1) with the local Hamiltonian H", as given
by Eq. (2). We have for the diagonal matrix ele-
ments:

I V(n)(i:’) I ¢:O)(f')>

+2e [E2${2()) — Ve { ${OT) | ${"(F)) 5 p, + (62T |V (7) | ()]
+3 3 T OE) | V) | 60T (11)
15£0 n=£l
The expression for the off-diagonal elements is
Hi(K)=3 e T g0 410(F) [6,°(8) =V (${UE) | ;D) 5., +({OT) [ VOUF) | 6,77 ]
10
(12)

+3 S O | V) | 6AD))

1 n=£l

where V‘O) is the constant potential outside the
zeroth cell, which localizes the wave functions cen-
tered on that site, and the notation 7 > 7; means
that the corresponding integral must be Iperformed
outside the /th cell. We remark that V' appears
formulas (11) and (12) in such a way as to compen-
sate its effect on the eigenvalues of the local Ham-
iltonian E; D Its introduction has the only effect of
specifying the localized orbitals so that the expan-
sion set is reduced and the two-center approxima-
tion is justified.

V. EXAMPLES TO THE CASE OF NiO

We wish now to discuss the localized orbitals for
an application of this method to NiO. This is a
typical case in which the method we propose may
be useful because the crystal is ionic and intercell
potential contributions are important; furthermore,
the presence of localized d states suggests that a
tight-binding approach should be used.

We want then to obtain localized functions for
the O?~ ions and for the Ni** ions. In particular,
since we are interested in the highest valence bands
and the lowest conduction bands, we are looking
for 2s- and 2p-like oxygen functions and for 3d-
and 4s-like functions of nickel. We expect that
lower localized states will not be different from

[
atomic states, with the correction due to the
Madelung term.

We present in Fig. 1 the self-consistent potential
of the local cell of Ni?* in NiO, and for compar-
ison the self-consistent potential of isolated Ni**.

Potential on Ni site

-
T

Potential (au)

FIG. 1. Self-consistent potential on Ni site in NiO
with ¥Vy=1.2 a.u. outside the cell (full line), and with
Rni=2.65 a.u., compared with the self-consistent poten-
tial for the Ni** ion (dotted line).
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It can be observed that the contributions of the
neighboring cells modify the shape of the potential.
The positions of the relevant energy levels are also
indicated. One can see that the core levels are
shifted upwards just by the Madelung term, while
the energy positions of the valence states (3d,4s)
depend also on the contributions of the neighboring
cells and on the choice of V. The values of ¥,
(1.2 a.u.) and Ry;=2.65 have been chosen so as to
localize the 4s function of Ni?*, which could bare-
ly exist as a bound state without the ¥, well be-
cause of the repulsive Madelung term. The choice
is not unique, and we have verified that band-
structure results obtained with different values of
V, are about the same, provided the 4s state is lo-
calized.

We show in Fig. 2. the radial 3d-like wave func-
tion of NiO computed from Eq. (1), obtained with
the potential about Ni?* shown in Fig. 1, and, for
comparison, the wave function obtained without
the ¥V, well and the wave function of the free ion.
In Fig. 3 we show the radial 4s-like function about
Ni?*+ with the ¥, well, without it, and, for com-
parison, the 4s orbital of the free ion. The wave
functions display clearly the localizing effect of the
Vo potential added to the self-consistent potential.
Inside the cell the functions are little different from
atomic orbitals. Near the cell boundaries impor-
tant differences occur. Without the V; potential
the local orbitals are slightly expanded with respect
to the corresponding orbitals of the free ion be-
cause of the repulsive intercell ionic potential (6);
with the ¥V potential added, the tails of the orbi-
tals are shortened and the orbitals are strongly lo-

3d -like function P3(r)=rR3(r,

05

J

o 1 2 3 5 8 7
R a r(au)

FIG. 2. Radial part P;(r) of the 3d-like wave function
on Ni site in NiO obtained for Vy=1.2 a.u. (full line)
compared with the 3d-like wave function on Ni site in
NiO obtained for V=0 (dashed line) and compared
with the 3¢ wave function for the Ni** ion (dotted line).
The first-neighbor distance a and the radius of the Ni’*
well R are indicated.

calized. This effect is much more relevant on the
4s function, which would be barely bound without
the ¥, potential, than on the 3d function, which is
already well localized in the free ion and remains
localized also without the ¥, potential. The main
effect of the ¥V, potential is then to localize the 4s-
like function about the Ni** site.

We also report in Fig. 4 the self-consistent po-
tential for O’ with V,=0.15 and Ry =2.8 a.u.
and the self-consistent potential which would result
with ¥V,=0. The comparison with the free-ion po-
tential is not possible in this case because the free
ion is not stable. We present in Fig. 5 the 2p-like
functions obtained from the above potential; the
function with ¥, =0 is also reported and for com-
parison also the function obtained with the method
proposed by Watson>* is given. It may be observed
that the effect of ¥, here is very small because the
localization is already obtained with intercell po-
tential interaction (6). It can be observed that our
2p wave functions are more localized than those
obtained by Watson putting the ion at the center of
a charged hollow sphere to compensate for the ion-
icity. The choice of the well radii have been made
to conserve volume and the relative size of the two
ions. Slightly different choices have a very small
effect on the results.

We wish to point out that the shapes of the lo-
calized orbitals inside the atomic cell depend
strongly on the self-consistent potential inside the
cell and, in particular, on the choice of the
exchange-correlation term. A better estimate of
the correlation-screening factor a(r) of formula (4)
and the exclusion of the potential of the electron on
itself in formula (5) would indeed modify the func-
tion 2p much more than a change of the V poten-

FIG. 3. Radial part P,(r) of the 4s-like wave function
on Ni site in NiO obtained for Vy=1.2 a.u. (full line)
compared with the 4s-like wave function on Ni site in
NiO obtained for ¥,=0.0 (dashed line) and compared
with the 4s wave function for the free Ni2* ion (dotted
line).
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)
s
§ Potential on O site
&

N —_—
2p | 3 r(@u)
2s

FIG. 4. Self-consistent potential on O site in NiO
and V,=0.13 a.u. and Ry=2.8 (full line) compared
with the self-consistent potential on O site in NiO and
Vo =0 (dashed line).

tial. An approach of this type is being carried out
by Kunz on alkali halide crystals.**

A related question which we wish to raise is how
the localized wave functions obtained here repre-
sent the true electron density in the crystal. A
direct comparison could be made by computing the
x-ray scattering factors, as done in a recent paper’®
for the alkali halides, with the Watson sphere
model. The present model should give systemati-
cally larger deviations from scattering factors of
free ions than the Watson model, as indicated by

10}
= ™
: 2p-like function Pz(r'=rR2(r)
o5} l
0 1 2 3 4 5 6 9
R a r(au)

FIG. 5. Radial part P,(r) of the 2p-like wave function
on O site in NiO obtained for V,=0.13 a.u. (full line)
compared with the 2p-like wave function on O site in
NiO obtained for ¥;=0.0 (dashed line) and compared
with the 2p-like wave function for the O~ ion as ob-
tained by Watson (Ref. 34) (dotted line).

Fig. 5. This seems in line with measurements of
y-ray diffraction intensities in alkali halides.’® The
comparison with the electronic crystal density
should also be a sensitive way of estimating the ac-
curacy of the self-consistent potential, particularly
its exchange-correlation contribution. Preliminary
x-ray scattering experiments have been performed
in cubic oxides by Sasaki et al.’’ We have not at-
tempted a detailed comparison of atomic scattering
factors because the results do not appear sufficient-
ly accurate to give a test for the individual wave
functions and their discrepancies from atomic
values. Such a detailed comparison should involve
very large reciprocal lattice vectors and y rays
should be used.’® We hope that this will be possi-
ble in the near future. As mentioned before, the
correspondence between experimental and comput-
ed electron densities with a given V¥ can be taken
as a test for the goodness of the initial localized
basis functions. The final self-consistent densities
should agree with diffraction data independent of
the choice of V.

Using the potentials and the wave functions
described above, we have performed a calculation
of the electronic band structure of NiO. The de-
tailed description of the calculation of NiO and
other transition-metal oxides will be reported else-
where.** We give here in Fig. 6 the valence bands
and the lowest conduction bands at the center of
the Brillouin zone and in the A and A directions.
The band structure shows an s-like conduction
band with the maximum at I', and p- and d-like
valence bands, with maxima along the A and A
directions, as obtained with more involved compu-
tational methods.’®% Our results on the valence-
band structure, and particularly the splittings be-
tween d bands and the p bands, agree more closely
with the results of Collins, Kunz, and Ivey39 than
with the results of Mattheis.*®

To show the influence of the constant potential
wells and of the choice of the radii we also plot in
Fig. 7 the band structure obtained by interchanging
the values of the two cell radii (2.8 for Ni and 2.65
for O) and by changing the value of the potential
V, on oxygen to 0.025. It can be observed that the
band structure is practically the same as that of
Fig. 6. In particular, the decrease in the radius R
would increase the value of the p levels of O, but
this is compensated by the decrease in the potential
well V,, so that the separation I';5—1I',s, of p and
d edges remains about the same. The shape of the
bands is even less sensitive to changes in R and
VO-
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FIG. 6. Energy-band structure of NiO along the A
and A directions of the Brillouin zone with the values of
the potential given in the previous figures. Also the 4p
higher conduction band is included.

A more detailed description of the NiO band
structure with a discussion of the electron densities
and of the rate of convergence towards self-con-
sistency will be reported separately.** We do not
wish to give here a detailed discussion of the band
structure of NiO in comparison with experimental
data. We can refer for that to previous papers’
and to a general review article. We only wish to
point out that the results we obtain with the pre-
sent method are generally encouraging, and suggest
further applications to oxides*’ and other ionic
crystals.

VI. CONCLUSIONS

The main results of this paper can be briefly
summarized as follows. A prescription has been
given to generate self-consistent localized functions
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FIG. 7. Energy-band structure of NiO along the A
and A directions of the Brillouin zone with different
values of the potential wells and inverted cell radii
(Rp=2.65,Rn,=2.8,V,=0.025,Vy,=1.2).

in crystals, making use of an arbitrary localizing
potential. The localized functions can be used as
the basis set for energy-band calculations in ionic
semiconductors or insulators with a complex unit
cell. They can also be used to compute electron
densities and atomic scattering factors in crystals.
The advantage of this prescription with respect
to other procedures is twofold. First of all, the
functions obtained in this way satisfy the self-
consistent equation appropriate to the crystal den-
sity inside a lattice cell. Second, they. are suffi-
ciently localized to ensure rapid convergence with
respect to the number of neighbors and to justify
the validity of the two-center approximation.
Localized functions have been obtained for NiO
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and have been compared with the corresponding
ones for isolated ions. A detailed calculation of the
band structure of NiO with the above localized
functions gives valence and conduction bands of
comparably quality to those of other band-
structure approaches.

We think that this method can be easily applied
to a large number of compounds, particularly to
transition-metal oxides or to rare-earth oxides, and
to other ionic semiconductors. Our aim will be to
couple the simplicity and the physical insight
granted by the tight-binding approach to a satisfac-
tory degree of accuracy.
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