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A basic difficulty in applying the Green s-function formalism to deep defects in solids

is discussed. A cure is provided. It is shown that the conventional Green s-function for-
malism as applied to point-defect problems is derivable by requiring a dual representation
of the defect wave functions both in terms of an expression in "local" basis functions

and, independentIy, in terms of the eigenfunctions of the host-crysta1 Hamiltonian. It is

then shown that this dual representation leads to a fundamental limitation of the method.
In contrast to what may have been thought, the defect Green's-function (DGF) method

does not become increasingly effective as the defect-induced potential perturbation be-

comes more localized in coordinate space. In fact, a consequence of this dual representa-
tion is that for impurities which are chemically mismatched to the host-crystal atoms a
computationally intractable and physically undesirable enormous number of host-crystal
eigenfunctions (10 —10 ) is needed to obtain even modestly accurate defect wave func-

tions, energies, and chemical trends. A new, formally exact approach (the "quasi-band-

structure representation") is presented. This approach overcomes' the'difficulties underly-

ing the dual representation in a simple way. It is based on redefining the zero-order basis

set and expanding the defect wave functions in terms of such "quasi band wave func-
tions" rather than by pure host wave functions. The former diagonalize the (finite) ma-

trix of the host-crystal Hamiltonian and include aspects of both host and defect orbitals
but need not form eigenstates to the host-crystal Hamiltonian operator. We illustrate this

exact method for two analytically solvable models: a parabolic defect potential as well as

a transition-atom impurity in a silicon free-electron host crystal. A comparison with the
results of the conventional DGF calculation is given. Finally, the method is illustrated
for a fully self-consistent calculation for substitutional Cu in silicon using nonlocal pseu-

dopotentials.

I. INTRODUCTION

The understanding of the nature of deep impuri-

ty centers in semiconductors has long been recog-
nized as central to the design of efficient solar cells,
light-emitting and Schottky diodes, and a multi-

tude of other semiconductor devices. ' However,
the chemical identity of such centers has often been

impossible to determine experimentally because

deep impurity centers, even when present in minute

concentrations (as small as one part in 10' ), are
capable of profoundly modifying the transport and

optical properties of a semiconductor. One then
frequently encounters the situation where detailed
data are available on properties such as spin, g-
value, thermal and optical activation energies, as
well as the characteristics of the radiative decay of
"ghost" defects that remain chemically and struc-
turally unidentified. Under these conditions it is
difficult, if not impossible, to design effective

chemical purifications and other defect sterilization
and passivation techniques. A comprehensive
'theory of deep defect states seems therefore to be
acutely needed. Such an approach could link the
theoretically predicted properties of specified im-
purities with the observed characteristics of hither-
to "ghost" states.

Among the various theoretical techniques capa-
ble of predicting deep impurity levels, the defect
Green's-function (DGF) method often has been
described as the most effective and precise (e.g. , see
discussions in Refs. 10—12). Unlike the crystal
field, ' ' ligand field, ' ' defect molecule, ' and
other cluster techniques, ' ' or the repeated-cell
method, ' the DGF approach allows one to treat
directly only the defect induced pe-rturbations
b, V(r ) and bp(r) in the system's potential and
charge density, respectively, rather than having to
describe at the same time the details of the extend-
ed parts of the host (0) plus defect potential
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VH(r)+b, V(r).
This property has led in the past to efHcient and

precise descriptions of simple s,p-electron deep de-

fect states' " in which the range of b, V(r) is typi-

cally one or more host-crystal bond distances.
However, the fact that the Green's-function ap-
proach permits one to treat directly only the physi-
cal phenomena within the range of 6V(r) has

spurred the hope that the same approach will be

equally effective (if not more so) for treating local-
ized perturbations in which h V(r) has dimensions

typical of an atom or a core. Such perturbations

frequently occur for core holes, first-row and
transition-atom impurities in semiconductors, etc.
It was often thought that in fact the same ap-
proach can be used to deduce chemical trends in

defect energies, over a broad range of chemical
coordinates characterizing EV(r) (Ref. 24) (e.g.
electronegativity differences, impurity-host size
mismatch). We show in this paper that in fact this

is not thc case. Foi suf5c1cntly localized dcfcct po-
tential perturbations i), V(r) the conventional DGF
approach becomes totally impractical. If used in

its present form for such localized states the results

are grossly inaccurate. We will identify and dis-

cuss this limitation. A simple and efHcicnt cure is
then proposed.

The program of this paper is to show that (i) for
sufficiently localized defect potential perturbations
b, V(r ) the conventional DGF approach becomes

totally impractical due to the need of incorporating
coupling to many ( & 10 —10 ) host bands. (ii)
Such critically localized potential perturbations are
often encountered in many deep defects such as
first-row as well as transition-atom impurities in
conventional semiconductors, perturbations associ-
ated with extensive lattice rclaxations, and core ex-

c1tons ln solids. In gcncral, this difBculty with thc
DGF method becomes acute when the impurity
atoms or structural defects are chemically and

physically sufficiently different from the host crys-
tal. (iii) This limitation of the DGF method stems
fundamentally from the requirement, tacitly as-
sumed in all of the conventional formal deriva-
tions and practical applications, ' that the
wave function of an arbitrary defect be effectivcly
spanned by the (frequently chemically and physi-
cally unrelated) eigenfunctions of the host-crystal
Hamiltonian operator —1/2V + V&(r). It may
not have been previously recognized that even if a
defect wave function is expanded exactly in terms
of some localized basis functions, but an additional
representation in terms of host wave functions is

used, " the conventional DGF formalism re-

quires that the latter expansion be independently

complete. We show, for example, that in order to
determine the energy of a deep level such as that
arising from a transition-atom impurity in silicon
with useful precision (e.g., a tenth or two of a host
energy band gap), a computationally intractable
and physically undesirable large number of host
eigenfunctions (hundreds to ten of thousands of
host bands) is required by the DGF method. (iv)
%c show how this fundamental limitation of the
conventional DGF method can be eliminated by
redefining the zero-order (unperturbed) basis set
(host wave functions) to consist of quasi band wave
functions", which incorporate from the outset as-
pects of both the host and the impurity. Further-
more, such basis functions need not be eigenstates
of the host-crystal Hamiltonian operator. %ith
this representation, only a few (often as little as
5 —10) quasi bands are needed to obtain the exact
defect energies and wave functions, even for an
exceedingly localized potential perturbation b, V(r).

We illustrate and compare the method with the
conventional DGF approach for two analytically
solvable models: (1) a parabolic defect potential
perturbation b V(r ) in a sihcon free-electron host,
and (2) a 3d transition element in a silicon free-

electron host. These two examples illustrate the
capability of the method to treat accurately both
the wave functions and the energies of arbitrarily
deep defect centers. As a final illustration, we
comment on the results obtained with this method
for a realistic case, a substitutional Cu-atom im-

purity (represented by a self-consistently screened
nonlocal ab initio pseudopotential) in a silicon crys-
tal.

In Sec. II, we describe two different views taken

up in previous work to describe the defect wave
function —expanding it in terms of some localized
basis fg, (r ) j, as done in cluster-type methods, '

or expanding it in terms of the host Hamiltonian
eigenfunctions [Pi(k, r }J, as done in perturbative

approaches. ' ' %e then show that the conven-
tional DGP approach is derivable by requiring that
both descriptions of the defect wave functions be
simultaneously and independently valid ( the "dual
representation"}. Section III discusses the conse-
quences of the dual representation. We illustrate
the underlying difficulties caused by the dual
representation using a simple analytically solvable
model. This illustrates the fact that a deep poten-
tial perturbation 6V(r) requires an intractable
number of host eigenfunctions in order to obtain
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the defect energies and wave functions with a use-

ful accuracy. Section IV introduces the quasi band
representation that solves this difficulty in a simple
and effective manner. Applications of these
methods are presented in Sec. V.

II. TWO VIEWS ON DEFECT WAVE FUNCTIONS

The basic problem in the theory of the electronic
structure of defects in solids is to solve the single-

particle equation for the system containing a defect

[——,
' V'+ VH(r)+EV(r)]g;(r) =e;g;(r }

[where VH(r) and b, V(r) are, respectively, the host
(8) potential and the defect-induced potential per-
turbation], given the solutions ~o the corresponding
problem for the unperturbed host:

[ ——,V + VH(r)]Pi~(k, r)=ej(k)PJ(k, r) .

Here, VH(r ) is the periodic host potential, [ej ( k ) ]
is the associated one-electron band structure, and

PJ ( k, r ) are the Bloch eigenfunctions.
Previous theoretical models on the electronic

structure of localized defect states, not using a
DGF approach, have often assumed one of the two

fundamentally different expressions of the defect
wave function P;(r): expansion in host-Bloch
wave functions as used in perturbative
methods, ' ' or expansion in some localized func-
tions as used in cluster' ' and ligand-field"'
methods. We will first describe these approaches
and then show that the standard Green's-function

approach to defects as used in all recent applica-
tions is derivable by requiring that both descrip-
tions of the defect wave functions be simultaneous-

ly and independently satisfied.

A. Expansion in host 81och states

While the formation of a defect with the atten-
dant loss of translational invariance prohibits the
Brillouin-zone wave vector k from being a good
quantum number, many approaches to the problem
seek a representation of the defect wave function

g;(r ) in terms of combinations of M, perfect-host-
band wave functions:

K Bz
p;(r)= g QAJ(k)pj (k, r) .

j k

(3)

The problem of solving Eq. (I) is now transformed
into one of finding the projections [A,J.(k) j and de-
fect energies [ e;I in

~i sz
[e& (k') —e;]A,J'(k')+ g QA,&(k)($ (Jk', r)

~

b, V(r)
~ PJ (k, r)}=0,

j k

given the host state {ej(k)[ and [PJ~(k, r)J over
the Brillouin zone (BZ). If the perturbation b, V(r)
is delocalized to the extent that only a single host
band is effectively coupled to

~

i },one can reduce
the problem to the effective-mass approximation
(for impurities or excitons). ' Generally, however,
the perturbation b, V(r ) may couple several host
bands. The advantage of the representation of
defect wave functions by host-Bloch wave functions
is that the structure of Eqs. (3) and (4) permits the
analysis of the evolution of defect states from the
host states as b, V(r) is turned on. At the same
time, this representation relates naturally the defect
energy levels e; to host-band edges ej (k). This ap-
proach requires, however, that the wave functions
of an arbitrary defect g;(r) be effectively spanned
by a (hope'fully) manageable number M~ of (in gen-
eral physically and chemically unrelated} host wave
functions [PJ (k, r) I. This will frequently lead to

t

the undesirable situation where the physics of a few

defect levels, energetically closely spaced, need to
be described by an intractably large number M; of
host bands spread over a wide range of one-
electron energies. Various perturbative treatments
of defects ' are rooted in the representations
(3) and (4).

B. Expansion in local orbitals

An alternative view of g;( r ) is possible if one ex-
pands it in a set Ig, ( r ) ] of X; basis functions an-
chored to specific atomic sites (i.e., loosely speak-
ing, "local basis functions"}:

N;

li;(r)= gC;,g, (r) .
a

This leads to a secular equation of the form
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N;

g Ctb[(g, (r)
~

——,V' + VH(r)+AV(r)
~

gb(r)) —e;(g, (r)
~
gb(r))] =0.

b

(6)

The crystal-field' ' approach is based on Eq. (5)
where Ig, (r) j are limited to the impurity-atom or-

bitals, while the ligand-field, ' ' defect-molecule, '

or cluster' ' ' approaches allow the local orbi-
tals g, (r) to be situated also on a number of atoms
(ligands) surrounding the defect site. While the
description of f;(r ) in terms of local orbitals is

often intuitively appealing, such a representation
describes poorly the extended host states with

which the defect interacts.

C. The Green's-function way

In the standard DGF approach, " one is tacit-
ly requiring that both views expressed in Eqs. (3)
and (5) be simultaneously fulfilled. In this ap-
proach it not only is required that if the expansion
(3) is used enough bands M; should be included to
make this expansion valid for state i, but also that
the expansion in Eq. (5) in terms of jii; localized
basis functions Ig, (r) j should be independently
valid in the subspace of the perturbation. That is,
if 8(r —R, ) denotes a step function which equals
unity in that part of space (r &R, ) where the de-

fect potential b, V(r) is nonzero and is zero (or de-

cays to zero) otherwise, it is required that both
Eqs. (3) and

lN

8(r —R, )1(t;(r)= g Ct,g, (r) (7)

be valid.
This is shown in Appendix A, where it is

demonstrated that the basic Green's-function ma-
trix equations for calculating one-particle energies
and wave functions (e.g. , those used in Refs. 6—11)
are derivable from Eq. (4) under the assumption
that Eqs. (3} and (7) are simultaneously satisfied.
It will be illustrated in Sec. V that not only are
conditions (3) and (7) sufficient to derive the con-
ventional DGF formalism, but that also if Eq. (3)
is assumed (as is the case virtually in all applica-
tions, e.g., Refs. 6—11, 24, 27, 30—33), condition
(7} is necessary.

According to Appendix A, the one-particle ener-
gies e; and wave-function expansion coeAicients C;,
for state i are determined by the set of simultane-
ous equations

r

ti„—yG'(e;. ), , (g, ~

b, V
~ g, ) C;, =0,

0 a"

where the nonorthogonal representation of the
Green's-function matrix is

G (e)„=[S 'G (e)S ']„
and the basis set overlap matrix is denoted as
S,b ——(g,

~ gb ). Here, the host-crystal Green's-
function matrix is given in its standard form as

o
' az (gg ~itij~(k, r)) (y, (k, r) ~gb)

G (E),b ——

j=i e—ej~( k )

(10)

The overlap matrix S has been introduced for a
general nonorthogonal basis. The notable advan-
tage of the dual representations is that it leads to
Eqs. (8)—(10) in which only the potential pertur-
bation 6 V( r ), rather than the full potential
VH(r)+b V(r), needs to be treated. The standard
Green's-function representation in Eqs. (8)—(10)
forms the basis for a number of recent approaches
to the defect problem; e.g., the work by Callaway
and Hughes (Ref. 8) (Ig, j represented as Wannier
functions); Jaros and Brand and Lindefelt ( tg, j
represented as products of exponentials and
Laguerre polynomials, "or harmonic oscillator
functions ib'}; Baraff and Schluter' ([g, j
represented by a number of individual Gaussians
on atomic shells next to the defect but not on the
defect site); and Bernholc, Lipari, and Pantelides"
( Ig, j represented by a set of orthogonalized local
orbitals on the defect site and few atomic shells
around it). In all of these calculations, various nu-

merical computational schemes have been devised
to solve the underlying Eqs. (8)—(10) for defects
whose associated perturbation b V(r ) extends over
a few host bond distances (i.e., vacancies,
nontransition-atom impurities, and impurities
whose core structure and size is similar to that of
the host atoms). The consequences of the underly-

ing dual representation of the defect wave func-
tions cannot be fully appreciated for such
moderately "weak" perturbations. We discuss the
general implications of this requirement in the next
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section and show that it leads to fundamental
limitations when the defects perturbation
approaches an atomic dimension.

III. CONSEQUENCES OF THE
DUAL REPRESENTATION

The great strength of the Green's-function
method in combining the two different views on
the defect wave functions expressed in Eqs. (3) and
(7) is also its fundamental weakness: One needs to
make the two descriptions of 1(;(r) equally and
simultaneously complete. Even if one has an exact
description of a defect wave function g; (r ) in
terms of a localized basis [g, (r ) I in Eq. (7), one
still needs to describe g;(r) accurately via Eq. (3)
by the extended periodic host wave functions, and
vice versa. If the impurity atom is chemically suf-

ficiently different from the host atoms, or if signifi-
cant defect-induced lattice relaxations occur, an in-
tractable number of host bands M; may bc re-
quired.

This feature constitutes a fundamental difference
between linear direct-matrix diagonalization ap-
proaches to electronic structure [e.g., linear com-
bination of atomic orbitals (LCAO)] and Green's-
function approaches. Whereas in LCAO methods
one is free to implement one s knowledge, intuition,
or hypothesis on the electronic structure of the sys-
tem at hand (e.g., covalent, metallic or ionic bond-

ing, lone-pair orbitals, etc. ) by directly including
suitably chosen local orbitals in the wave-function's
expansion [Eq. (5)], in Green's-function methods
one needs to independently cope with a nonintui-
tive expansion in terms of host wave functions. A
partial resolution of this difficulty is possible if one
simply increases the number of host wave functions
in the expansion (3). This often leads to intract-
ably complicated calculations and physically in-
transparent results.

We will first give a simple illustration of the
consequence of the requirement of dual representa-
tion using an example that can be solved analyti-
cally in closed form. We will then discuss the
question of the number of bands M; required from
the structure of Eq. (4) and give a simple quantita-
tive numerical example. We will present our solu-
tion to this problem in Sec. IV.

Consider a diamond-type host crystal with the
lattice constant of bulk silicon that is described in
the free-electron model, i.e., VH(r) =0 and

PJ.(k, r)=1/~Qe'" +'" in Eq. (2). Here, G is
the BZ reciprocal-lattice vector and 0 is the unit-
cell volume. We place in the crystal a localized

defect perturbation potential b, V( r ) in the form of
a parabolic (harmonic oscillator) potential with a
spring constant K:b,V(r ) =K( r —ro) at a lattice
site R= ro. The exact energy levels e; (i =nlm)
and wave functions g;(r ) of this point defect in the
crystal are given by

and

e,(~ =~K(n+3/2)

(r) lV (Kr2)l/2e Kr —/2

XL„'+( ((Kr )Y( (6,$),

(1 la)

(1 lb)

where N„( is a normalization factor, Lz~(Kr ) is the
Laguerre polynomial, and Y( (6,$) are the spheri-
cal harmonics. We now attempt [Eq. (1 la)] to find
the exact energy solutions to the defect problem
using the standard Green's-function method in
Eqs. (8)—(10).

We will demonstrate that if one uses the stan-
dard expansion (3), then even if the defect wave
function g;(r ) is given exactly in terms of some lo-
calized orbitals, one still needs to express it exactly
also in terms of host eigenfunctions to recover the
correct energies in Eq. (1 la). To show this, we use
the exact solution given in Eq. (11b): g, ( r )

=P„(~(r) for the local-orbital expansion of Eq. (7).
[In fact, the first 15 solutions of Eq. (11b) for
l =0, 1, 2, and 3 are used as a basis (cf. Sec. V); all
basis functions are defect-site centered]. All in-

tegrals in Eqs. (8)—(10): (g,
~

b, V~gb) and

(g,
~ PJ ( k, r ) ), are calculated by an accurate radial

numerical integration. The upper part of Table I
compares the exact energy eigenvalues [Eq. (1 la)]
for the lowest defect levels of symmetry a &, t2, and

e2 (angular momentum of l =0, 1, and 2, respec-
tively), as well as the first excited a ( state, with
those obtained by the conventional Green's-
function approach when the first 10, 20, 32, and 41
host bands are used. These host bands span a very
large energy range of 1.66, 2.99, 3.66, and 4.49 Ry,
respectively. Yet, the errors involved in the defect
energy levels e; can be seen to be enormously large
on any relevant scale. Furthermore, the errors are
seen to increase rapidly with angular momentum I
and excitation.

Figure 1 shows the exact defect wave functions
of Eq. (11b) compared with those obtained with the
standard DGF technique, using in the expansion of
Eq. (3), 10 and 41 host bands, respectively. It is
seen that in the DGF method, an expansion of
g;(r ) in terms of as many as 41 host-band. wave
functions still leads to substantial errors for local-

I

ized perturbations. Figure 2 shows the spectral
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TABLE I: The calculated defect energy levels of a parabolic perturbation potential
AV(r )=E( r —ro) in a silicon free-electron host, using the conventional defect Green's-
function method and the present quasiband Green's-function method. The average number
of host-band wave functions included for each k point is Mb,' six quasi bands are used

corresponding to the three lowest defect levels a&+t2+e2. The potential perturbation is
characterized by K= 1 Ry/a. u. ' and

~

r —ro
~

&4 a.u. ; energies are given with respect to the
zero of the potential well (1 Ry=13.605 eV). Notice the extremely slow convergence of the
values obtained with the conventional DGF method relative to the far better convergence
obtained with the present quasi band DGF method.

Number
of bands

n =O, l =0
a)

(eV)

n =1,/=1
f2

(eV)

n =2,l=2
e2

(eV)

n =2,1=0
a~

(eV)

Conventional
DGF method

Mb ——10
Mb ——20
Mb ——32
Mb ——41

69.413
52.175
46.257
43.835

130.553
96.759
83.507
77.440

186.946
146.240
127.139
115.180

200.987
163.382
138.349
124.091

Exact results 40.815 68.025 95.235 95.235

Quasi 'band

DGF method

Mb ——1

Mb ——10
Mb ——20
Mb —32

40.815
40.815
40.815
40.815

68.025
68.025
68.025
68.025

95.235
95.235
95.235
95.235

184.756
116.894
103.765
99.058

decomposition of the defect wave function P;( r )

for the
~

i ) =e state in terms of host wave func-
tions PJ. (k, r) for four k~ values. Plotted are the
absolute values

~
3;i(k~)

~

of the expansion coefTi-

cients in Eq. (3), normalized such that

, ~A;J(k~) ~
d~=l, where d~ is the

P
number of wave vectors in the star of kz. It is
seen that a deep defect wave function such as f,(r )

draws its intensity from a large number of bands
(their energy spread is indicated on the top abscis-

sa); no strong attenuation of the contribution of
high-energy bands is observed.

Clearly, the conventional Green's-function ap-
proach with its underlying dual description of the
impurity wave function fails in reproducing eff'ec-

tively these correct defect states even if g;(r ) is in-

putted exactly in terms of localized orbitals [Eq.
(7)]. The lower part of Table I displays a far
better convergence achieved with our "quasi band"
reformulation of the Green's-function method (cf.
Sec. IV): only a small number of "quasi band wave

,
functions" (i.e., wave functions that diagonalize the
host Hamiltonian matrix and include localized
components) are needed.

Our second example involves an atomic impurity
in a crystal. The question of how many host bands
are required for an adequate description of impuri-

ty levels obviously cannot be answered in general.
However, one can obtain a limit for this number
for the physically interesting case of very localized
impurity states, such as those produced by a transi-
tion atom in a semiconductor. When the orbital
binding energy of an impurity atomic orbital is
larger than the binding energy of the states at the
bottom of the host's valence band (e.g., —18 eV for
bulk silicon), one often obtains "hyperdeep" impur-

ity levels below the valence-band minimum. 8'

These levels largely retain the characteristics of the
free-atom wave function R„t(r), renormalized into a
host Wigner-Seitz sphere (e.g. , Zn 3d in silicon, 29

nitrogen in diamond, oxygen in GaP). While the
precise location of such energy levels is rarely of
direct technological interest (since they are fully

occupied and sufficiently tightly bound so as not to
affect the mobility of free carriers in the system),
its characteristics may determine very sensitively
the nature34 (i.e., energy and spatial extent) of the
important gap defect states (which need to be
orthogonal to it). We will demonstrate in Sec. V
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FIG. 1. Defect wave functions for the three lowest

levels a], t2, and e2 of a parabolic defect-potential per-
turbation in a silicon-like free-electron host obtained in

the standard DGF approach using Mq ——10 (dashed line)

and Mb ——41 (dotted line) host-band wave functions per
k point. The exact solutions are given by Eq. (11b) and

represented by the full line. The localized basis Ig, (r)]
[Eq. (7)] includes the exact solutions to the defect prob-
lem. Nevertheless, it is seen that the DGP approach
produces poor defect wave functions if the representation
in terms of host wave functions [Eq. (3)] is incomplete.

Number of Host Bands j

FIG. 2. Spectral decomposition of the defect wave
function f;( r ) for state e of a parabolic defect potential
in a silicon free-electron host [Eq. (3)]. Shown are the
absolute values of the expansion coefficients

~
A,J(k )

~
of

the state
~

i )=e in terms of the host wave functions

~
j,k„) for four wave-vector values k~ (given in Carte-

sian coordinates). The norInalization is such that

, ~
A;;( k~ )

~

'd~ = 1, where d~ is the number
P

of wave vectors in the star of k~. The bands are ar-
ranged in increasing order of ( j ); their one-electron en-

ergy is shown on the top abscissa. The discrete values
of

~
A,J{k~)

~

are connected by straight lines to guide the
cyc. Notlcc that thc dcfcct wave function draws Its ln"

tensity from many host wave functions, the contribution
of the high-energy states being very significant.

that in fact an adequate Green's-function approach
to transition-atom impurities in semiconductors
needs to accurately describe the atomichke hyper-

deep wave functions whose energy may lie in the
lower part of the valence band, or even below it. It
then becomes relevant to ask how many host bands
are needed to represent the wave function 1(t~(r ) of
such a hyperdeep defect state.

To estimate this number, let us assume that the
band-structure calculation for the host crystal is
performed in a plane-wave basis:

suNcient number of plane waves in the band-
structure calculation to correspond to the highest
momentum component q,„present in the impuri-

ty wave function:

8Z max i6 M.

y,(r)=g g g~„(k)a,(k+O)e""+ "
k 6 j

msx

= g A&(q)e'q',

msx

(k, r)= g BJ(k+G)e'"+o"
G

The question of how many host bands are needed
is, of course, independent of the nature of the
underlying basis set used in the band-structure cal-
culation, provided that the calculation is conoerged
with respect to the basis functions in the energy re-

gion of interest. By substituting Eq. (12) into Eq.
(3), it is then clear that one has to incorporate a

A~(q)= I f&(r)e '"'dr

is the Fourier transform of the impurity wave func-
tion and q,„ is the largest momentum k+G ap-
pearing in the host wave functions. Furthermore,
it is also clear that, in principle, one has to use as
many bands as there are plane waves since only
then there exists a unitary transformation between
the band-structure wave functions IP; (k, r) J and
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Number of Silicon Free-Electron Bands
59 113181307 965 1471
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the plane waves I
e' "+ i'] to make these two

sets of functions equivalent. If, however, one re-

stricts M; and G,„so that the highest momentum

q,„ included efFectively in Eq. (12) is qm, „(q,„,
then the defect wave function 1(i(r) will not equal
the exact solution; instead it will be

jeffmax
~approx(~) yA (~) iq ~ r

q

(13)

Similarly, the orbital energy will be e„'I
""rather

FIG. 3. The radial part of the Fourier transform

A„i(q) [Eq. (13)] of the 3d orbital of Fe (full line). Note
its long tail in momentum space. The dashed curve

q

shows the function P(q) = A„~(k)k dk: Its departure
0

from unity measures the incompleteness of a description
of this orbital wave function in terms of silicon free-
electron-band wave functions with a maximum momen-

tum q. The number of such bands is indicated on the

upper abscissa. Further, note the large number of free-

electron bands required to achieve a reasonable accuracy
in the description of the orbital. The consequences of
small errors in such localized "defect" wave functions
on the defect energy levels is demonstrated in Table II
for the Cr atom.

than the exact atomic value e„I. One can then
estimate the e6'ect of truncating q,„ to a smaller
value q', „by making a simple approximation to
pi(r): for hyperdeep states, one sets 1(i(

~

r
~

)

=R„i(r). Figure 3 shows the Fourier transform

A3d(q) of the Fe 3d orbital, as well as the quantity

P3d(q) = A 3~(q')q' dq'. The approximate
0

wave function 1(„'iPP""(r ) becomes exact for a
momentum q,„such that P3d(q, „)=1. Not
surprisingly, the long tail of A3~(q) in momentum

space requires a high q,„value ( the equivalent
number of host free-electron bands is indicated on
the abscissa) to obtain P3d(q) =1. We can now
find the error

~
e„i—e„'ipp""

~

associated with using
various finite sizes of the host wave-function basis
in Eq. (3). Table II illustrates the number of host
bands M; (and the corresponding highest
momentum q,„contained in them) which is

required to obtain a given accuracy
~
e„i—e„'i

""
~

for the 3d hyperdeep level of Cr: about 36000
silicon-type free-electron bands are required for a
precision of 0.45 eV, while =70000 bands are
required for a precision of 0.2 eV. While not
surprisingly, the conventional Green's-function
method is inapplicable to such problems, it is of
interest to notice what is the extent of the effort
that would have been required to obtain a useful

precision. To the extent that the hyperdeep
impurity wave function 1(,(r) is similar to an
atomic orbital, one would need to (i) perform the
band-structure calculation for the host crystal to an

accuracy corresponding to using around 70000
plane-wave basis functions and, (ii) to use 70000
bands in the evaluation of the host-crystal Green's
function in order to achieve an accuracy of about
0.2 eV in the defect energy. A lower number of

TABLE II. The orbital energy of a Cr 3d level as calculated by expanding its wave func-
tions in silicon empty-lattice band wave functions [Eq. (3)]. We show separately the contri-
butions from the orbital potential energy and kinetic energy. The exact result ("oo bands") is
obtained by numerically integrating the single-particle equation without expanding the wave
function in a finite basis. Note the enormous number of band wave functions needed to
achieve a modest precision of 0.4—0.2 eV in the orbital energy.

Number M; of
host bands
included in

expansion [Eq. (3)]
/max

(a.u. -')

Orbital
kinetic
energy

(eV)

Orbital
potential

energy
(eV)

Orbital
energy

(eV)

Error
in orbital

energy
(eV)

4 570
15 410
36 520
69 630

10
15
20
24.8

138.984
147.396
148.898
149.226
149.370

—139.887
—151.731
—154.091
—154.635
—155.013

—0.903
—4.335
—5.193
—5.409
—5.643

—4.74
—1.31
—0.45
—0.23

0.0
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bands will obviously be needed if gi(r) becomes
delocalized through hybridization. However,
atomiclike hyperdeep levels are frequently found
for many transition-atom and rare-earth
impurities. ' Similarly, the incapability of a
small number of host bands to adequately describe
defect-induced perturbations is likely to show itself
when lattice distortions are present.

The source of this diAiculty with the standard
DGF approach can be easily appreciated from the
structure of Eq. (4). Even small interband mixing
coefficients A;J(k) corresponding to high-energy
conduction bands ej ( k ) » e; (and having the ap-
propriate point-group representation) may con-

tribute significantly to the solution due to the large
size of the product A,J( k)[ej ( k ) —e;]. Further, the
existence of a high density of host states at high
energies in the conduction bands (where the host

bands of many materials are already free-electron-

like) increases their contributions to the sums in

Eq. (4). Finally, as [et(k) —e;] is either positive (j
in the conduction band) or negative (j in the
valence band), the determination of bandgap defect

states e; involves a delicate balance of large cancel-

ing terms. Unfortunately, the small residue of
these extensive cancellations contains chemically
and physically important trends. This diAiculty is
further highlighted by the fact that while the cen-

tral quantity in self-consistent defect calculations,
the charge perturbation

OCC OCC

~p(r)= Q Ik I' —X I&j~(" ')
I

j, k

[Eqs. (1) and (2)], is localized' in the subspace of
the perturbation EV(r), its evaluation involves the
calculation of a large number of spatially extended
components Ig;,PJ(k, r}I that interfere de-

structively to produce a localized fluctuation

hp( r ).
Note that while the problem of inherent slow

convergence of P;(r ) with the number of host
bands exists also in the various tight-binding
Green's-function approaches to defects, ' ' it
remains untreated since these models are restricted

by construction to have a fixed and small number
of host bands (a total of 8 and 10). In such studies

one uses a small and fixed number of host bands to
study the variations in gap-state energies of impuri-
ties having a diverse range of central-cell poten-
tials (e.g. , +5 to —40 eV). The assumption that
the same small number of bands is sufficient to
describe a large variety of impurities is likely to in-

validate even the trends in the energy levels24 (let

alone the absolute values) predicted by such
models.

The existence of a dual representation in DGF
methods, therefore, poses an obstacle to construct-

ing computationally simple and physically trans-

parent basis sets. This basic difficulty with the
standard Green's-function approach to localized

impurities may be treated with brute force by in-

creasing the number M; of host bands to either the
convergence limit or to the computer's capability
limit. (As demonstrated, it is likely that the latter
limit is attained first. ) However, the physical
transparency of the model may be lost. In the next

section, we will describe a simple method to over-

come the difficulty by redefining the "unperturbed"
Bloch functions to include not only host but also

impurity characteristics. Only a few such "quasi
band" wave functions will be required to achieve a
result that is in principle exact, and in practice
very precise (Table I).

Ml Bz
1(;(r)= QQApj (k)pjq (k, r)

j k

(14)

IV. THE QUASI BAND STRUCTURE APPROACH
TO THE DEEP DEFECT PROBLEM

In the standard derivation of the Green's-
function approach to the localized defect problem
(e.g., Refs. 10 and 11}one assumes that the orthog-
onal crystal wave functions PJ (k, r) are eigenfunc
tions to the host-crystal Hamiltonian operator

Ho ——,V' + Vtt——[Eq. (2)]. By expanding the de-

fect wave functions in this set [PJ ( k, r ) ) one gets
the basic Eq. (4) (cf. Appendix A). As discussed in

the previous section, the requirements of Eqs. (2)
and (3) will often result in a computationally in-

tractable and physically undesirable large number

M; of host bands required to represent a localized
defect state 1(;(r). The central point of our argu-
ment on this issue is that while the condition that

p
PJ ( k, r ) be an eigenstate to Ho is sufficient for
deriving the underlying formalism, it is in fact not
a necessary condition. The far weaker condition
that an arbitrarily chosen orthogonal set of Bloch

functions [pjq (k, r)I diagonalizes the host crystal-
Hamiltonian matrix is, in fact, a sufficient condi
tion. One is then free to choose the set I pjq ( k, r ) I

(quasi band functions) with its eigenvalues ejq (k )

(quasi band structure) so that the impurity wave
function le;(r ) is expanded in principle exactly and
in practice very accurately by a small number M;
of such quasi bands
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The conuentional choice " ' where iI)P (k, r)
is replaced by some approximation to PJ. ( k, r) in
Eq. (14), is only a particular case. However, far
better choices that incorporate in pjq (k, r) the
physical characteristics of the defect wave func-
tions from the outset are possible. We will show
below: (i) that in fact the weaker conditions are
suFicient, and (ii) the way one can build into the
set If' (k, r) I the physical characteristics that
make the expansion in Eq. (14) rapidly convergent.
The dual description of the defect wave functions
poses no difficulties in such a representation.

The minimal sufficient conditions that lead to
the basic Eq. (4) can be easily derived from the
variational principle. We first expand the desired
solution p;(r) of Eq. (1) in a Bloch set I(('i~o (k, r) [
as indicated in Eq. (14), where pjq ( k, r ) are at this
point any set of Bloch-type functions. We will find
the conditions that this set has to satisfy in order
to recover the basic Eq. (4). By substituting the
expansion Eq. (14) in the variational equation,

5(g;(r) ~Hp+b, V(r}—e;
~
1';(r))=0, (15)

one obtains

g QAo (k)[((t'ijl (k', r) ~Hp ~p~o (k r))+(pjl (k', r) ~&V(r) ~p, (k, r))
j=& k

(16)—e;(yJ& (k', r) ~PJq (k, r))]=0.
It is then obvious that Eq. (16) reduces to the fundamental Eq. (4) if we require that the set If' (k, r)) di-
agonalizes the matrix of the crystal Hamiltonian Hp ————,V + VH(r ) with diagonal elements e&~ (k):

(Pz' (k', r) ~Hp ~gj (k, r)) =ez (k)
~5& 5kk, .

This set is then orthogonal

I itijo (k, r)i'&o (k', r)dr=5JJ 5k k. .

Conditions (17) and (18) transform Eq. (16) into

Ms sz
[ej9 (k') e;]A&—~ (k')+gg. Azp (k)(p~' (k', r)

~
EV(r)

~
pjq (k, r)) =0,

j k

(17)

(18)

(19)

I

(X,(k, r) ~Hp
~ X& (k, r)) and diagonalize it to ob-

tain the quasi band structure ejo (k } and the quasi-
band wave functions:

M

PJO (k, r)= g aq~(k)XJ'(k, r),
j'=1

where ajj (k) are the elements of the diagonalizing
transformation. The functions IPJ~ (k, r) I fulfill
Eqs. (17) and (18) by construction with some con-
stants eJO (k). If the set Ifj(r ) I is incomplete and

physically unrelated to H p (e.g., if Hp ————, V

and [fj(r) ] is a small finite set of hydrogenic
functions), then PJ~ (k, r) and Eq~ (k) will be very
different from Pz(k, r) and ej~(k), respectively. We
will show that a suitable choice of po (k, r)

0 +

QPJ(k, r) will make the summation over M; in

Eq. (19) converge much faster than in the analo-
gous Eq. (4).

Notice that in the example given in Eqs. (20)
and (21) for constructing the quasi band wave func-
tions pjq (k, r ) one would obtain the true eigen-

(21)

(20)

then generate the Hamiltonian matrix

which is identical to Eq. (4) except that e'(k } and

PJ (k, r ) are replaced by e~~ (k') and PJO (k, r ),
respectively. Notice that we have not required the
far stronger condition —that pjo (k, r) be an eigen-
function to Hp [cf. Eq. (2)] or that ajar (k)=ej(k)
be valid.

It is important to realize that the set Ig& (k, r ) I

which is orthogonal and an eigenstate to Ho is
unique within a unitary transformation, whereas
the set {pjq (k, r ) I of quasi bands which is orthog-
onal and merely diagonalizes the matrix of Hp is
not. In fact, there is an infinite number of choices
of quasi band functions [pjq (k, r ) I that fulfill Eqs.
(17) and (18) but not Eq. (2). 7 For example, one
can construct a finite set of M, Bloch functions
from some arbitrary local orbitals [fj(r ) J:

XJ(k, r)= ge i'f~(r R&), j=1...M, —
R
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function PJ~ ( k, r ) —+ Pj ( k, r ) if the set {fi ( r ) j
were complete. Practically all nonanalytic band-
structure calculations indeed obtain wave functions

(k, r ) that satisfy orthogonality and diagonalize
the matrix of Ho but do not satisfy Eq. (2). In this
sense, the band-structure wave functions PJ (k, r)
are only "quasi bands. " One then often attempts in
band-structure calculations to make PJ (k, r) a
better approximation to the true eigenstates

Pt (k, r) by systematically increasing the number of
basis functions jfl(r) j. One way of doing this is
to use a mixed representation':

Mb

pjo (k, r)= gb J(Jk)p J(k, r)

M

+ g a~~' ( k )XJ ( k, r ), (22)
J'l l

where the band-structure wave functions (e.g., from
a plane-wave basis) PJ ( k, r ) are augmented by
another set (e.g. , localized LCAO Bloch functions)

XJ (k, r) to make
/JAN

(k, r ) a better approximation
to the eigenstate PJ (k, r) in Eq. (2). The auxiliary
basis {f1(r)j in Eq. (20) is then chosen in band-
structure studies to have the characteristics of the
host system [e.g., identifying fj(r ) with host atomic
orbitals in LCAO expansions]. We have shown,
however, that if the defect problem is solved via a
Green's-function formalism, full convergence of the
band wave functions {PJ ( k, r ) j to the true
eigenfunctions {Pj(k, r) j is not even required
formally; the orthogonal set {PJ~ (k, r) j that spans
lb;(r) need only diagonalize the finite matrix of Ho.
Therefore, instead of seeking convergence
pJO (k, r)~ pj (k, r ) as in conventional band-
structure calculations, we take the opposite view:
We will use a manifestly incomplete (under-

converged) finite set {pJO (k, r) j of the form in Eq.
(22), but choose jfj ( r ) j of Eq. (20) [and therefore

Xi( k, r ) in Eq. (22)] to share the characteristics of
the perturbation EV(r ) rather than those of the host
potential VH(r). By the variational principle, aug-
menting the band-structure wave functions

{PJ (k, r) j by another set {XJ(k,r) j (even if it is
physically unrelated) can do no harm (in practice,
cf. Fig. 6 below, it makes almost no difference}. At
the same time, a judicious choice of jf 1 ( r ) j can
make the expansion of the defect wave function

1b;( r ) in terms of the quasi bands pj~ ( k, r ) [Eq.
(14)] converge much faster than the corresponding
expansion in terms of pure host wave functions
alone [Eq. (3)]. The coeAicients j bjj'( k );a&J-( k ) j
and the quasi' band energies {e&o (k) j in Eq. (22)
are obtained directly by diagonalizing once the ma-

trix of IIO in the nonorthogonal basis

{PJ (k, r) Xl(k, r)j [Eq. (22)].
Next we will show that the set {PJO (k, r) j of

Eq. (22) can be used to represent arbitrary localized
solutions l(;(r). To do so we first note that the
subset {XJ.(k, r) j of Eq. (22) alone is capable of
reproducing any of the localized functions f;(r ),
since

QXJ(k, r) = g pe t'fj(r R&)—
k R k

=N'r fj(r) . (23)

Therefore, fj(r)=N '~ Q-„XJ(k,r). Secondly, we

note that the set {XJ(k,r ) j is a subset in Eq. (22);
hence, if it can reproduce a localized function
fj(r), then so can {P&~ (k, r) j. This means that if
fj(r ) were to be the actual localized defect function
l(;(r), then the set {pjo (k, r) j of quasi band wave
functions will give us the exact solution and there-
fore the exact energy eigenvalue. This is demon-
strated in the next section for a simple case. If,
however, our choice of f 1 ( r ) is only an approxima-
tion for the true solution g; (r }, then sufficient
components of host wave functions jgj (k, r) j
will be introduced in Eq. (22). However, these
have to reproduce merely the difference between

f;(r } and the trial orbitals fJ(r). This is far easier
to accomplish (e.g. , if needed, iteratively) than ex-
pa'nding li;(r) in {PJ (k, r)j alone, as done in pre-
vious approaches.

We have shown thus far how the quasi band
representation overcomes the diAiculties associated
with representing the defect wave functions in
terms of unperturbed Bloch functions [Eq. (14)].
Still, one needs to independently represent the de-
fect wave functions by a local set [Eq. (7)]. This
can be done straightforwardly by including in the
local set jg, (r)j also the basis functions jfj(r)j
that are likely to reproduce the prominent
nonhost-like characteristics of the defect wave
functions. Clearly, this choice is amenable to an
iterative optimization.

To summarize the procedure, we indicate the se-
quence of steps involved: (i) select a localized basis
of N functions jg, (r) j for Eq. (7) and include in
it M, basis functions fj(r ) that are likely to repro-
duce the major features of the most localized defect
wave functions. For impurities, a natural choice of
fJ(r ) is the corresponding set of impurity atomic
orbitals, compressed into a Wigner-Seitz cell.
Many other choices are possible; e.g., symmetrized
atomic orbitals, wave functions that result from de-
fect cluster calculations, wave functions that result
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from a previous iteration in the DGF calculation,
etc. (ii) Form a set of M, Bloch functions XJ(k, r)
[Eq. (20)] from the set fj(r). (iii) Diagonalize
once the matrix of the host-crystal Hamiltonian in

a basis of Mb host band-structure functions

(k, r)j and M, local bands {XJ(k,r)j to ob-

tain M =M, +Mb quasi band wave functions

{PJO (k, r) j and energies {eJO (k)j in Eq. (22).
(iv) Solve the standard DGF problem in Eqs.
(8) —(10) by using {PP (k, r)j instead of

{P (k, r)j and {e&~ (k)j instead of {e&(k)j. The
N-component set of local orbitals {g~(r)j appear-

ing in the DGF equations includes the basis func-

tions {fj (r )j. (v) Optimize the convergence of
E;(M„Ms N) by modifying {fi(r) j; a suitable

choice will minimize the numbers (Ms, X}of other
basis functions needed. In the next section, we il-

lustrate the method with a few detailed examples.

V. ILLUSTRATIVE EXAMPLES

The power of the quasi band approach can be

simply illustrated on a case that has closed-form

analytic solutions: A parabolic (harmonic oscilla-

tor) impurity potential well b V(r)=E(r —ro) in
]

a diamond-lattice free-electron host Hp = —
2 V

discussed in Sec. III. We use as before the exact
solution [Eq. (11b)] as the localized basis {g,(r) j
in Eq. (7). For the host basis, we use in Eq. (22)

Mb band-structure wave functions of the form

( k, r )= I /O 0 e""+G ~' and M~ local Bloch
functions gj(k, r) in which the basis fj(r ) is
chosen as harmonic oscillator orbitals (i.e., exact
solutions to Ho+ hV). We diagonalize Ho
= —

2 V within the basis of Eq. (22) to obtain the

quasi band wave functions {PJO (k, r) j. Together
with the local basis {g,(r) j of harmonic oscillator
orbitals, we solve the DGF problem in Eqs.
(8)—(10), replacing {PJ(k, r) j by {PJO (k, r) j, and

{ej ( k ) j by {eiO ( k ) j . We now ask how many
host bands Mb are required to obtain the exact de-

fect energy level.
The upper part of Table I, discussed in Sec. II,

shows the poor convergence of the defect energy
levels obtained in the standard DGF approach to
the problem. The lower half of Table I shows the
results obtained in the quasi band approach. We
use M, =6 local functions fj(r) corresponding to
the three lowest defect states (nl) =(0,0), (1,1), and

(2,2); i.e., representations ai, t2, and e2, respective-

ly. It is seen that even a single band-structure wave

function (M& ——1) is sufficient to recouer the exact

results. Naturally, one also obtains the exact defect
wave functions for these states. To make the test
more severe, we solve also for the first excited a i
defect level without including a matching quasi band
wave function in the basis set It. is seen that the
convergence of its energy level to the exact result is
far better than that obtained in the conventional
DGF method. In fact, using only Mb ——10 band-
structure wave functions in the quasi band approach
produces far better results than 41 band-structure
wave functions in the conventional DGF method
(M, =0). Notice, however, that this is an extreme-

ly severe test case: In practical applications for
impurities in solids, one rarely finds more than a
single state of a given symmetry having all of its
wave function localized within an atomic sphere,
such as a

&
and a] here. If such a situation occurs,

one can easily add a new quasi band wave function
in the present formalism to represent such an excit-
ed hyperlocalized state. For example, the addition-
al quasi band wave function can be constructed
from fi(r)=QJ "(r), where PJ "(r) is an ap-
proximation to the true defect wave function ob-
tained in the conventional defect Green's-function
(CDGF) calculation.

Figure 4 compares the a ~ defect wave function
obtained in the CDGF calculation with the quasi
band approach. Clearly, the conventional DGF
method produces a poor approximation to li, (r },

even if as many as 41 host-band wave functions are
included in the representation. The quasi band ap-
proach, on the other hand, yields far smaller errors.
For the lowest defect states ai, t2, and e2, the
quasi band approach yields the exact defect wave
functions, even if only a single host band (needed
merely to define the zero of energy) is included in
the expansion of Eq. (3).

Our second example is a Cr 3d impurity in a sil-

icon free-electron host. As discussed in Sec. III, an

application of the conventional DGF method to
the problem requires an enormous number of host-
band wave functions to recover the hyperdeep im-

purity energy levels (cf. Table II). We have repeat-
ed the calculation of the Cr impurity in a silicon

empty lattice using the quasi band representation.
Both the local-orbital set {g,(r) j and the quasi
band set {p~o (k, r ) j include the orbital fJ (r ) iden-

tified here as the Cr 3d atomic wave function. This
is readily obtained from an accurate numerical in-

tegration of the Schrodinger equation for Cr in free

space using a local-density approximation for ex-

change (the exchange coefficient a is chosen as
one). Using only two quasi bands and local orbi-
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tais, we have retrieved the Cr 3d defect energy level

of —5.687 eV, compared to the exact result of
—5.643 eV (Table II). To obtain an accuracy five

times worse (0.2 eV) in the conventional DGF
method, one needs to use as many as 70000 host
bands (cf. Table II). The source of the remaining
small error of 0.04 eV in the defect energy level is
related to the particular form of the Green's-

function equation used. Thi's is discussed in Ap-
pendix B.

Finally, we demonstrate that an adequate
Green's-function approach to very deep impurity
levels needs, in fact, to accurately reproduce the
very localized atomiclike wave functions. We have

performed a self-consistent calculation for a substi-

tutional Cu impurity in silicon using the nonlocal
first-principles atomic pseudopotentials ' and the
present quasi band approach. While the detailed
results will be discussed elsewhere, we comment
here on the features pertinent to the present issues.

We find a partially occupied vacancylike t2 level
at 0.47 eV above valence-band maximum (E, );the
details of its wave function and energy are, how-

ever, dependent on the character of two resonances
of e and t2 symmetry (denoted e* and tq) at about
5.2 eV below E, . As much as 90/o of the charge
density of these hyperdeep levels is enclosed within
a sphere of radius Ro which equals the host bond
length (4.44 a.u.). Figure 5 shows the quantity

rg, (r) for the e hyperdeep levels compared with

-0.8
0 1 2 3 4 5 6

Distance (a.u. )

FIG. 4. The first excited a i defect level of a parabol-

ic defect potential perturbation in a silicon free-electron

host: (1) as obtained in the conventional defect
Green's-function method; (2) as obtained in the
quasi band method but without including an a ] quasi
band in the basis. Note that in case (1) a poor approxi-
rnation is obtained to the exact result [Eq. (11b)], even

when as many as 41 host-band wave functions are in-

cluded in the expansion [cf. Eq. (3)].
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FIG. 5. r times the radial wave function it, (
~

r
~

) of
the hyperdeep e state of substitutional Cu in silicon
(full line) compared with r times the radial atomic Cu3d
wave function (dashed line). The radial part of the t 2

state is very similar to the e* state.

r times the radial atomic 3d orbital of Cu. Clear-
ly, these defect levels are as localized as the atomic
3d orbital for r & 3 a.u. Much like the case
demonstrated in Tables II and III, a conventional
DGF approach could not reproduce the wave func-
tion of such states without using an unreasonably
high number of host wave functions. Notice fur-
ther that since these hyperdeep states are within
the valence bands and therefore hybridize with the
host states, one could not solve the problem by
simply pseudizing the Cu 3d orbitals, treating them
as a part of an inert core. This highlights the sub-
stantial difficulties associated with treating deep
impurity levels originating from localized but
chemically active orbitals.

To further illustrate the nature of the quasi
bands, Fig. 6 shows the quasi band structure of sub-

stitutional Cu in crystalline silicon in the 5 direc-
tion in the BZ, obtained by diagonalizing the self-

consistent pseudopotential host Hamiltonian in the
basis of Eq. (22). For the basis functions (()J (k, r),
we use the Mb ——14 lowest-band wave functions ob-
tained in a standard self-consistent calculation for
Si: 181 plane waves are used to expand PJ ( k, r )

and 10 special k points are employed in the self-

consistency iterations. For the localized function

XJ(k, r ), we use M, =5 Bloch sums [Eq. (20)] (cor-
responding to the sums of the dimensions of the e
and t2 representations) formed from the numerical
Cu 3d orbital obtained in a Herman-Skillman
atomic calculation. The lowest Mb bands in Fig. 6
are in fact almost pure silicon bands as obtained
from I(()J (k, r) I alone: Including the local func-
tions XJ.(k, r) results only in an extremely small
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TABLE III. The calculated 3d orbital energy of a Cr-atom impurity in an empty-lattice
host using the quasi band approach. M, =2 local-band wave functions and Mb ——14 band-

structure wave functions. By varying the nonlinear parameter Z of these Slater-type local
orbitals one is able to recover the exact energy level for Z*=12.25 to within a precision of
better than 1%. The conventional DGF method requires Mb )7X10 host-band wave func-

tions for a precision of 0.2 eV (Table II).

Exponent Z of
local Coulomb

orbitals

Defect
energy level

(eV)

Error
relative to

exact result
(eV)

10.0
11.0
11.5
12.0
12.25
12.5
13.0
14.0
15.0

—5.993
—5.729
—5.707
—5.692
—5.687
—5.690
—5.731
—5.845
—5.913

0.35
0.086
0.064
0.049
0.044
0.047
0.088
0.202
0.270

Exact —5.643 0.000

Conventional DGF,
-70000 bands

—5.409 —0.23

variational improvement (that cannot be seen on
the scale of Fig. 6) over the results obtained with

( k, r ) [ alone. The next M, bands correspond
to a mixture of local functions and band-structure
functions. All M, +Mb band wave functions are
mutually orthogonal [Eq. (18)] and by construction
diagonalize the Hamiltonian matrix [Eq. (17)] with

eigenvalues ejq (k) shown in Fig. 6.
Expanding now the defect wave functions by the

set tgjq (k, r)I,
Mb

1(,.(r) = g g ~,qj'(k)yq'(k, r)
t j=l

Mb+M~

~,'j'(k)((q'(k, r),
k j=Mb+1

(24)

we find that for the hyperdeep levels
~

i ) =e' and

t2, the quantities

M +Mb

a;= g g ~ApJ (k)
~

Mb+ l

and
(25)

Mb

P; = g Q ~
A,qP ( k )

~

k j=l

representing contributions of loca1-band wave func-
tions and host-band-structure wave functions,
respectively, amount to u -=a, ——0.72;

g

P, =-P,* ——0.28, even if Mb is as large as 30.
e —

~,
Clearly, the contribution a; missing in the conven-
tional DGF method is overwhelmingly important;
in its absence, an extremely slow convergence with
the number of host-band wave functions is ob-
served (cf. Tables I and II).

VI. SUMMARY AND CONCLUSION

The principle findings of this paper are the fol-

lowing:
(i) Whereas cluster and ligand-field-type models

for localized defects in solids require that the defect
wave function g;(r ) be effectively spanned by some
local basis [g, (r ) I, perturbative approaches require

f;( r ) to be represented by a superposition of the
host-crystal Bloch functions I PJ (-k, r ) I. In con-
trast, the conventional Green's-function approach
to defects is derivable in terms of a dual represen-
tation; f;(r ) is represented both by [g,(r ) I and,
independently, by IPJ. (k, r)].

(ii) It is shown that the requirement for a dual
representation in the DGF method often results in
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FIG. 6. The Si:Cu (substitutional) quasi band struc-
ture e~~ (k ) along the 6 direction in the Brillouin zone.
The host bands below the energy cutoff of 2 Ry were

used in this example to construct IP; (k, r)j. The in-

teger numbers indicate the number of such bands of
symmetries 5& and b2 appearing below 2 Ry (the
number of b, 34 levels is constant in this region). The
discontinuities in the local quasi bands (upper panel) re-

flect the change in the number of band-structure bands
of each symmetry to which the upper wave functions
need to be spatially orthogonal. Note the change of en-

ergy scale above 2 Ry. The bands below 2 Ry are ident-
ical within 10 3 Ry to the silicon host bands calculated
from plane waves alone. Combination of such bands
provides a poor description of localized defect wave

functions. In contrast, the quasi bands above 2 Ry are
impurity related; these are very potent in accurately
describing impurity wave functions.

practical application in a breakdown of the
method: For sufficiently localized defect-induced
perturbation potentials, an unreasonably large
number of host bands is required even for a modest
precision in the defect energies.

(iii) Calculation schemes that limit inherently the
number of host-band wave functions available for
reproducing defect levels (e.g. , tight-binding models

with 8 or 10 host bands "' '
) are likely to pro-

duce misleading results for deep traps. The
number of host-band wave functions Mb needed to
represent a defect orbital energy e; increases rapid-

ly with the localization 6 of this state. It is there-

fore unlikely that the trends e; (b„Mb ) predicted by
such methods (e.g., the trap energies e; for a series

of impurities with increasing ionization energies )

will be correct when e; is assumed to be Mb in-

dependent of all A. In the conventional DGF
method, the convergence of the defect energy levels

e; with the number M; of host wave functions [Eq.
(4)] can be exceedingly slow (cf. Table I). Conse-

quently, it may be misleading to conclude that con-
verged results have been obtained on the basis of a
few calculations with small increments in the value
of M;. It is felt that e;(M~ ) curves have to be pub-
lished in calculations of localized defect states to
demonstrate the level of convergence attained.

(iv) The fundamental limitation of the conven-
tional DGF method is rooted in the requirement
that the (orthogonal) wave functions Igz (k, r)]
needed to span g;(r) be eigenstates to the host-

crystal Hamiltonian operator. While this is a suffi-

cient condition for deriving the underlying DGF
formalism, it is shown that in fact it is not a neces-
sary condition. The far weaker condition —that an
orthogonal set If' (k, r)] ("quasi band wave func-
tions") merely diagonalizes the finite host Hamil-
tonian matrix —is shown to be sufficient. We show

how a mixed basis set If' ( k, r) ] of quasi band
w'ave functions can be constructed both from pure
host-band-structue functions and from localized or-
bitals so that the expansion of lt;( r ) in terms of

If' (k, r)] is very rapidly convergent. Using this
approach, one is free to incorporate into the
description of g;(r) in terms of Ig, (r)] and

(k, r)] whatever information is available on
the nature of P;( r ) (e.g., the chemically-relevant
impurity atomic orbitals, defect orbitals available
from previous cluster calulations, etc.).

(v) Applications of the quasi band DGF method
to two analytically solvable models: (a) a parabolic
defect potential perturbation in a silicon free-
electron host, and (b) a 3d element in the same
host crystal, show excellent results relative to those
obtained with the conventional DGF method. The
method presented is very simple and flexible. It
permits an eff'ective application of Green s-function
techniques to arbitrarily localized defects.
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the defect problem, i.e.,

[Hp+b, V(r)]g;(r}=e;P;(r), (Al)

(A2)

we may expand the impurity wave function for
state i in terms of the eigenfunctions Pz (k, r) of
the host-crystal Hamiltonian operator Ho.

MI BZ

g;(r)= Q QA,J(k)P)~(k', r),
j'=] k'

APPENDIX A: DERIVATION OF THE STANDARD
GREEN'S-FUNCTION LOCALIZED DEFECT

EQUATIONS FROM THE DUAL REPRESENTATION

with

Hpg&(k, r)=E&(k)PJ (k, r) . (A3)

In this appendix, we derive the standard defect
Green's function Eqs. (8)—(10) from the dual
representation in Eqs. (3) and (7). In order to solve

Substituting Eq. (A2) into (Al), multiplying to the
left with PJ (k, r), and integrating, we obtain the
basic impurity Eq. (4):

i sz
[ej (k)—e;]AJ(k)+ g QAJ'(k')&p~(k, r)

I
b V

I
pl'(k', r)& =0.

j'=& k'
(A4)

b, V(r) =AV(r)8(r —R, ), (A6)

where 8(r —R, ) is a step function that projects
out the subspace of the perturbation r &R, where

AV(r) is nonzero.
In the subspace of the perturbation, we can make

the expansion

As will be shown in Sec. IV, the requirement
that PJ (k, r ) and ez (k) be eigenfunctions and

eigenvalues, respectively, to the operator Hp [Eq.
(A3)] is in fact unnecessarily strong; a far weaker

requirement will be shown to be sufficient. How-

ever, in the derivation of this appendix we assume
the former, stronger requirements [to obtain Eq.
(A4)], following the standard assumptions in con-

temporary applications of Green's-function
methods to localized defects.

In order to solve the basic defect problem in Eq.
(A4), we can again make use of the expansion in

Eq. (A2) to obtain

[p (k) —e;]A~J(k)+ &p,'(k, r}
I
~V

I 4 & =o .

(A5)

If it is assumed that the perturbation potential
6V( r) is localized in the region 0& r &R„we can
write

8(r)f;(r)= gC;,g, (r), (A7)

where [g, ( r)] is some (in general nonorthogonal)
basis set with an overlap matrix S with elements

S,b = &g, Igs &. Substituting Eq. (A6) into Eq.
(A5) gives

&$1(k, r)
I
bVIg, &

e; —eq'(k)

From Eqs. (A2} and (A7) we get

(A8)

Ml gz

g gA;J(k)8(r)$1 (k, r)= gC;,g, (r), (A9)
j=& k a

so that

~i BZ

C(, ——g QA;J(k)
j=& k

X &(S-'}.,&g, Ie(r}
I
pi'(k, r)& .

b

(A10}

Thus, if we multiply Eq. (A8) by

gb (S ') s&gb I
8(r)

I
jk & and sum over all

(j,k), j=1, . . . , M„and keBZ, we get after us-

ing Eq. (A10):

&gb Ie(r) Iylp(k, r)& &yj'(k, r) I~Vlg &

e; —ei(k)
(Al 1)
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and consequently

» (gb ~8(r)
~
Pi(k, r))(P~(k, r)

~

b, v ~g, )
g (~...—g(s-'). ,, gg ' ', ' ' '

c,.=o.
a b j=1 e; —ei(k)

(A12)

It should be noted that, in contrast to a similar derivation by Bassani et al. and Jaros and Brand, we
have not assumed formal completeness of the basis set [g, (r ) ); i.e., we have not employed so far

g lg, )(S-')„(gb
I
=I

ab

(A13)

to arrive at Eq. (A12), but instead made use of the much weaker requirement in Eq. (A7). [In principle, Eq.
(A7) is satisified even by a single basis function g, (r)=t(t;(r)8(r) which, of course, does not satisfy Eq.
(A13)]. Thus, Eq. (A12) gives the exact solutions provided only that both Eqs. (A2) and (A7) are fulfilled.

It is computationally advantageous, however, to assume that we can write

(y,'(k, r)
~

8(r)aV(r) ~g. ) = g(y,'(k, r)
~

e(r)
~
g, . )(S-')b. b (gb.

~

aV(r) ~g. ),
b lib l

(A14)

where we have used the formal completeness relation and again written the impurity potential in the form
8(r)b, V(r). The effect of the assumption of completeness will be discussed in Appendix B. Substitution of
Eq. (A14) into (A12) gives

where

5„—gG (e;), b Vb, C;g ——0,
a b

(A15)

(~i )o'b g (S )a'b'G (ei )b'b"(S )b "b
blblt

=(S 'G'(e;)S '), b, (A16)

sz (g,
~

8(r)PJ(k, r))(PJ(k, r)
~

8(r)
~ gb )

G (e),b ——g g
k

~ )
+ e —e (k)J

(A17)

and V,b ——(g,
~

b V
~ gb ). Equation (A15) is the standard Green s-function expression used in conventional

applications for defects.

APPENDIX 8: THE EFFECT OF TREATING
6 (E) AND V AS TWO SEPARATE MATRICES

(Bl)
bllbt

Appendix A indicated that it is computationally advantageous to assume formal completeness of the local-
ized basis set [g,(r)] in the sense that [cf. Eq. (A14)]:

(p (k, r) ~8(r)hv(r) ~g, )= g (p (k, r) ~8(r) ~gb )(S ')b-b (gb ~hv(r) ~g, ) .

The advantage of this assumption is that the
Green's-function matrix and potential matrix can
be treated as two separate matrices [cf. Eqs. (A12)
and (A15)], so that only the potential matrix has to
be recalculated during the course of self-
consistency iterations. The price for this conveni-
ence is, however, that an additional constraint is
introduced: the set [g, (r)] needs to be complete
for Eq. (Bl) to be valid. This may be treated as a
standard convergence problem; i.e., by either in-

creasing the size of the set
I g, ( r ) ) or by nonlinear-

ly optimizing a small number of such basis func-
tions. We have chosen the latter strategy. Table
III shows the results for the Cr 3d level in an emp-
ty lattice host calculated with the quasi band DGF
method. In this calculation the localized basis set

[g, (r)] consisted of 19 Coulombic functions with
various (nuclear charge) exponents Z* (see Table
III), augmented with the exact numerical atomic
3d orbitals. Furthermore, the quasi bands were
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constructed from the same numerical Cr 3d wave

functions. This guarantees that the dual represen-
tRtloll of tile WRve fullctloll ls satlsfled so tllRt, Re-

cording to Appendix A and earlier discussions, the

only remaining approximation is that stated in Eq.
(B1). Thus, any deviation of the calculated ener-

gies from the exact numerical eigenvalues is due
solely to the assumption of completeness in Eq.
(Bl). Table III shows that the error from this
source can be made very small by optimizing Z*:
In this case, Z*=12.25 gives an error of only
0.044 eV (=0.8%).
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