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Excited s states are added to the minimal-basis tight-binding theory of covalent solids

using Louie's perturbation approach. This brings the conduction bands into better accord

with experiment without appreciably complicating the calculation of properties in the

bond-orbital approximation. Universal interatomic matrix elements are obtained by fit-

ting the free-electron bands, and then adjusted to accord with the bands of germanium.

Bands based upon these interatomic matrix elements, and upon Hartree-Fock term values,

are then compared with pseudopotential bands for Si, Ge, Sn, GaAs, InSb, ZnSe, and

CdTe. A single set of metallic, covalent, and polar energies for sp hybrids obtained from

the new matrix elements are found to predict good values for both the dielectric and elas-

tic properties; in contrast, two different sets were required for the two classes of properties

in the earlier theory.

I. INTRODUCTION

By simplifying the description of the electronic
structure of covalent and ionic solids sufficiently, it
has become possible to estimate the entire range of
dielectric and structural properties in terms of that
electronic structure. ' The procedure consisted of a
tight-binding formulation based upon a minimal-
basis set of atomic orbitals (only those occupied or
partially occupied in the free atom) and nearest-

neighbor interatomic interaction. For the diagonal
terms in the corresponding Hamiltonian matrix it
proved adequate to use atomic term values for the
free atom, and formulas for the interatomic matrix
elements were derived by requiring consistency be-

tween the tight-binding bands and nearly-free-
electron bands. The dimensionless coeAicients in

these formulas were then adjusted to fit a known

band structure and taken as universal.
The resulting description was sufficiently simple

that the bands could be calculated analytically.
Alternatively, one could make unitary transforma-
tions on the minimal basis leading to sp hybrids
and then to bond orbitals without further approxi-
mation. Then the bond-orbital approximation of
neglecting the coupling between these bond orbitals
and neighboring antibonding orbitals made the esti-

mates of total energies (as a function of atomic po-
sition) or dielectric polarizations (entering the sus-

ceptibilities and infrared couplings, for example)

quite trivial. It was even possible to correct for the
neglected coupling in perturbation theory (the
method of extended bond orbitals'} to estimate the
error or to correct the bond-orbital approximation.

There were nevertheless significant residual er-

rors arising from the use of the minimal-basis set;
these showed up as important errors in the form of
the conduction bands. This led also to significant
uncertainties in the parameters giving interatomic
matrix elements since these required fitting the
tight-binding bands to the conduction, as well as
the valence bands. It did not seem possible to re-

move these errors without expanding the basis set
and thus replacing the elementary analytical pre-
dictions by numerical procedures.

A recent approach given by Louie, however,
provides a way around this difficulty. Louie
showed that additional orbitals may be added to
the basis set as perturbations. He showed that
these can rectify the principal errors in the tight-
binding energy bands without increasing the size of
the Hamiltonian matrix which must be diagonal-
ized. They can therefore remove a major source of
error in the calculation of properties and the uncer-
tainty in the parameters, without requiring the
abandoning of analytical solutions. In the present
study we apply Louie's approach to the elementary
tight-binding theory, redetermine the universal

parameters to be used in the calculation of proper-
ties, and explore the consequences with respect to
the calculation of individual properties.

II. LOUIE PERIPHERAL STATES

Specifically, Louie added the effect of atomic d
states on the energy bands of semiconductors
without expanding the sp-LCAO (linear combina-
tion of atomic orbitals) basis. His approach
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depended upon the fact that these d states spanned
very nearly the same Hilbert space as the s and p
states. Thus while this d state might have an ener-

gy expectation value only three volts above the p
states, by the time it is suitably orthogonalized the
remanent is shifted more than ten volts above the p
states and could be incorporated by perturbation
theory.

This analysis not only provided a simple method
for doing accurate band calculations, but also made
clearer why minimal-basis tight-binding theory
works as well as it does. The one conspicuous Aaw

of minimal-basis theory had been in its failure to
give low-energy conduction bands near X as in the
real bands. (In silicon the absolute minimum is
near X.) This can, in principle, be accomplished in

tight-binding theory by including matrix elements
with sufficiently distant neighbors, but the more
natural resolution has been the expansion of the
basis. Indeed Louie included a second s state in

what he called a "minimal basis. " A basis set of
five orbitals per atom, rather than four, is not an
appreciable complication when one numerically di-

agonalizes matrices and this was appropriate.
However, in calculation of bonding and dielectric

properties it may be the difFerence between the ana-

lytic solution of a quadratic equation and a numer-

ical procedure. We therefore are motivated to in-

corporate the second s state as a "Louie peripheral
state" in perturbation theory in order to return to a
true minimal-basis set. This is justified, as is the
treatment of the d states in perturbation theory, by
the fact that the corresponding bands in the crystal
are at high energy.

Our approach then will be to add the second s
state to the tight-binding theory as a perturbation,
and proceed through the calculation of bands, the
fitting of parameters, and finally the calculation of
properties as before. %e, in fact, find that it is not
necessary in this approach to introduce the d states
which were the focus of Louie's work. If at some
later time it proves necessary to add these states
also, it will be necessary to redo the formulation
and the adjustment of parameters with the addi-
tional terms included from the beginning.

It is interesting that this approach with only a
single peripheral state does rectify the principle de-
fect in the bands obtained with minimal-basis set of
four orbitals per atom. It is also interesting that in
Louie's calculation a large part of the lowering. of
the level at X] came from peripheral d levels which
we have not included. This followed directly from
his orbitals and his procedure, but it does not mean

that our At is in error. For just the reason that
these excited-state orbitals span the same Hilbert
space, the same effects can be attributed to dif-
ferent sets of orbitals or to different orders of
orthogonalization. This arbitrariness might sug-

gest that orthogonalized plane waves be used as the
peripheral functions. This is exactly the approach
called the orbital correction method. If only wave
numbers in the first Brillouin zone are used, it
correctly gives an additional drop in the p bands
quadratic in wave number as required, but it leads
to unphysical cusps in the bands at the Brillouin
zone. It becomes necessary to include additional
waves and the method becomes more complicated
than the simple peripheral s state. The expansion
in orthogonalized plane waves (OPW) can, in prin-

ciple, be made as accurate as one likes but may not
be the most convenient approach.

III. PITTING THE BANDS

For a true minimal-basis set (a single s and thrn

p states per atom) and nearest-neighbor coupling
the tight-binding bands for k in a [100] direction
in the diamond structure can be obtained analyti-

cally; they were given by Chadi and Cohen. The
doubly degenerate bands are given by

&5——e~+ [ [—,(Vpp +2Vpp~)cosg]

+[3 (V~~ V~~ )sing—]2 J'~2,

with p=ka/4. They are una6'ected by adding the
peripheral s state since it enters as another Bloch
sum of symmetry 6& which is not coupled to states
of symmetry 65.

We incorporated the eAcct of this peripheral s
state s* through its coupling with the s state and p
state Bloch sums of symmetry 3 i. The sole effect
then is to replace the p-state energy in the Chadi-
Cohen expression for the 6& bands by

p'2

Ep =Ep+ sin P,
16 s*pc

(2)
3 (e~ —e,.)

and the s-state energy by an analogous expression
with the sine replaced by a cosine. In Eq. (2), e»

S

is the energy of the peripheral s state and V + is
S PO'

the m =0 matrix dement between it and a
nearest-neighbor p state. In the equation for e,',
e& is replaced by e, and V» by ~3V» . WeS PO' S SO'

correct the Chadi-Cohen expression for a misprint
and write it as
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[——e,'+Ep+(4V„+—, Vpp + , V—pp )cos$]/2

+ [ —,[ep —e,'+( —, Vpp~+ , Vpp—4V—)cosP] + —, V p sin P I
'~2 .

The meaning of the + notation is that four com-
binations of signs arise; they are +++, + —+,—+ —and

A. The free-electron bands

I

and Harrison were in error in associating the I &5

level with the free-electron bands at (3'~/2)R'/
(md ). We correct that error here. In addition, of
course, we have a nonzero V, / (e —e, }. Thats per & s*
fit then leads to

It is useful as a first step to match these expres-
sions to the free-electron bands, following Froyen
and Harrison. These bands are given for the [100]
direction in Fig. 1, along with sets of bands for sil-

icon to be discussed. The tight-binding bands,
Eqs. (1}and (3), give four eigenvalues at I (/=0)
and four at X (P=rr/2). They depend upon eight
parameters, es, ep, Vsse, Vspn, Vppn, V(p~, and the
combinations V', /(ep —e,, ) and V, /(e', —e,,).
In fact this last combination is not uniquely deter-

mined in the fit so we take it to vanish and are left

with seven parameters. Thus we can fit all but the
highest band at X, which is not well described by
the tight-binding fit in any case.

Mattheiss has noted that all three of the upper-
band energies at I', that is, I &s, I 2s, I 2 (and a
higher I, ), originate from the eightfold degenerate
free-electron bands at (9m /8)A /(md ); Froyen

with

VII =gg~A' /(md ),

=5.55A' /(md ),

'9ssu =

gpss
——3m. /16,

@pe
———3m /32,

ks~ = —27m'/256.

(4)

(5)

C3
K
UJ

4J -t5

-20

WITHOUT s W)TH S* TRUE BANQS FREE- ELECTRON

FIG. 1. In the first panel are the bands for silicon, obtained with the parameters proposed here but without the in-
clusion of the peripheral state s*. The second panel shows how the peripheral state lowers the conduction band at X as
in the true silicon bands, obtained from Ref. 8 and shown in the third panel. In the final panel are the free-electron
bands. The parameters for the first and second panel were Hartree-Pock term values and g coefficients fit to germani-
um; a small shift in parameters could interchange the I"2 and I [5 levels without disrupting the rest of the agreement. The
zero of energy in the third and fourth panels was selected for easy comparison.
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B. Use of atomic term values

Qf course, use of these parameters gives vanish-

ing band gaps and bands which scale directly from
one element to the other. To obtain meaningful
bands we use atomic term values for e&

—e„rather
than Eq. (6). These are rather constant for the
series C, Si, Ge, and Sn, rather than varying as
d as suggested by Eq. (6), and this gives rise to
the principal trends in the bands through this
series. %e choose also to use Hartree-Pock term
values rather than the Herman-Skillman values

which were used earlier. These are listed, for con-
venience, in Table I.

C. Adjusted coefficients

In addition it is necessary to make empirical ad-

justments of the coefficients given in Eq. (7),
though the theoretical forms, Eqs. (4) and (5), are

retained. %e do this by fitting the known energy
band. s. The use of Hartree-Pock term values elim-

inates one adjustable parameter for the fitting of a
known set of bands, but by again allowing a
nonzero V,, /(e, —e,, ) we may again fit the

same seven band energies for the homopolar sem-

iconductors. Use of atomic term values allows the
calculation of band energies also for the polar sem-
iconductors using the same coefHcients and the
generalization of Eqs. (2) and (3) to the polar case,
given by Chadi and Cohen for the points I and X.
%e have used this procedure to fit the parameters
of Eq. (7) to the band energies for Si, Ge, Sn,
GaAs, .InSb, ZnSe, and CdTe as given by Cheli-
kowsky and Cohen. For the polar semiconductors
the Xi band energies split into an X~ and an X3
and we fit to the X~. %'e shall describe qualitative-

ly the results of this fit, which led us to suggest a
universal set of parameter, and will then compare
the band energies obtained with these parameters
with Chelikowsky and Cohen's values for the seven
materials.

The values of q and q ~ as deduced from the
diAerent materials were quite independent of ma-
terial, with standard deviations of 6%%uo and 9/o,
respectively, the largest deviations being for silicon.
This suggests that these matrix elements, which
dominate the dielectric properties of semiconduc-
tors, are well given by the formula, Eq. (4). We
take the values for Ge, near the average, as univer-

sal. The parameter g~~ was found also to be quite
independent of material, except for ZnSe and

TABLE I. Hartree-Fock term values after Fischer (1972) in eV. The magnitude of e, values are given first for each
element and of ez values next. e~ values in the first two columns were obtained by extrapolation.

Be
8.41
5.79

B
13.46
8.43

19.37
11.07

N
26.22
13.84

O
34.02
16.72

F
42.78
19.86

He
24.97

Ne
52.51
23.13

Li
5.34
Na
4.95

Mg
6.88
3.84

Al
10.70
5.71

Si
14.79
7.58

p
19.22
9.54

S
24.01
11.60

Cl
29.19
13.78

Ar
34.75
16.08

K
4.01

Ca
5.32

Sc
5.72

Zn
7.96
4.02

Qa
11.55
5.67

Ge
15.15
7.33

As
18.91
8.98

Se
22.86
10.68

Br
27.00
12.43

Kr
31.37
14.26

Ag
7.06
2.61

Cd
7.21
3.99

In
10.14
5.37

Sn
13.04
6.76

Sb
16.02
8.14

Te
19.12
9.54

I
22.34
10.97

Xe
25.69
12.44

La
4.35

Au
6.98
2.67

Hg
7.10
3.95

Tl
9.82
5.23

Pb
12.48
6.53

Bi
15.19
7.79

Po
17.96
9.05

At
20.82
10.33

Rn
23.78
11.64
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CdTe, where the band energies were quite insensi-
tive to its value; again we take the Ge value as
universal. g,z was found to be independent of po-
larity in each isoelectronic sequence but was found
to increase significantly from Si to Ge to Sn, as if
Vz, rather than q,z, were independent of d.
Similarly, A,,& increased from Si to Ge to Sn and
also increased with polarity. We nevertheless re-
tain the free-electron formula Eq. (4) and germani-
um values and will see that this gives a reasonable
description of the bands and properties. It seems
likely that the origin of this different behavior is
not intrinsic to these matrix elements but is due to
the omission of other peripheral states or more
distant-neighbor matrix elements. Finally, k„was
found to vary in sign from material to material but
never to be large, so we took it to vanish as for the
free-electron fit. The resulting universal parame-
ters are given in Table II, along with the free-
electron values obtained from Eq. (7).

It is interesting that the required adjustments
from the free-electron values are not large, except
for A,,& . It is also interesting that the differences
from the earlier fit are not so large but are large
enough to make a significant difference in the pre-
dictions for a number of properties, as we shall see.

D. The resulting bands

Using the proposed parameters we have calculat-
ed the band energies for the seven semiconductors,
compared with the values from Chelikowsky and
Cohen in Table III. We have included values at L,
also. The symmetry designations are given for the
diamond and for the zinc-blende structures. The
Chelikowsky and Cohen values have been placed
on the same scale by taking the zero of energy such

that the energy (I »+ I25)/2 comes at the
Hartree-Fock energy ez and the corresponding gen-
eralization for the polar semiconductors. Except
for the adjustment of the five parameters of Table
II to germanium, the two calculations are indepen-
dent and similar agreement can be expected for the
elementary band calculation for any other tetra-
hedral semiconductor. The agreement is better for
the valence bands than for the conduction bands

but, in contrast to the earlier fit, even the conduc-
tion-band levels are rather well given. The agree-
ment is sufficiently good to suggest a considerable
improvement in predicted properties such as the
dielectric constant.

The agreement is the worst for silicon, but even
for that case the description of the bands is not
bad, as indicated in Fig. l. The improper ordering
of the degenerate (I ~5) and nondegenerate (I 2)
conduction band levels at I could be corrected by
a small adjustment of e&

—e, and that would be ap-
propriate for a study directed specifically at silicon.

IV. THE CRYSTAL PROPERTIES

We have seen that the effect of the peripheral s
states on the bands is very large, and for sensitive
properties such as the optical spectrum or the con-
ductivity of n-type material the effects will also be
large. Many other properties, such as the dielectric
or elastic constants, depend upon integrals over the
bands and should be considered separately.

A. The role of the peripheral state

The shift in the energy of a p state oriented in
the [100] direction may be generalized from Eq. (2)
to arbitrary wave number

TABLE II. Parameters obtained from the free-
electron fit (Sec. III A), the values obtained earlier from
the Chadi-Cohen fit, ' and the universal values proposed
here.

e~(k) =@~+V, g, g e '(dj„/dj )
d.

ep eg ), —

gSSO

IspcT

~JP~

gppw

~SPo'

Free electron

—1.39
0.80
1.85

—0.93
—1.04

Earlier fit

—1.40
1.84
3.24

—0.81
0

Proposal

—1.32
1.42
2.22

—0.63
—0.40

where the sum is over nearest-neighbor vectors dj.
By expanding the sum over phase factors one may
see that in the average over the Brillouin zone (or a
primitive cell in wave-number space) only the di-
agonal terms survive and

(e' ) =e~+ —,V, /(e~ —e,, ) .

'Reference 5.
Our use of perturbation theory in this form is

equivalent to assuming that e —e~ is so large that
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TABI.E III. Band values predicted from Eqs. (1) and (3) with Hartree-Pock term values, and the proposed parame-
ters of Table I. Values from Chelikomsky and Cohen' are in parentheses. All are in eV,

I1 I 1

I 2, I )

I z5 I"~s

I 15&I 1S

X),Xi

X3

X),XI

X3

Xc,xs

X3,X5
I t)

Lc

—22.08
(-21.66)

—7.50
( —5.20)
—9.35

( —9.30)
—5.81

( —5.78)
—17.66

( —16.99)

—7.67
(-8.13)

-12.82

( —12.16)
—2.34
—19.S2

( —18.85)
—16.85

( —16.26)
—11.08

( —10.53)
—8.46

( —7.07)
—4.35

( —4.96)

—21.91
( —21.52)
—8.39

(-7.96)
—8.97

(-8.96}
—5.69

(-5.71)
—17.52

( —17.51)

—12.19
( —12.15)
—2.47
—19.46

( —19.25)
—16.33

(-16.47)
—10.58

( —10.39)
—8.87

(-8.10)
—4.41

( —4.65)

—18.17
(-19.20)
—7.91

( —8.28)
—8.00

( —8. 13)
—S.52

( —5.39}
—14.76

( —15.74)

—7. 13
( —6.96)

—10.45
( —10.61)
—3.07
—16.30

( —17.30)
—13.73

(-14.46)
—9.23

( —9.30)
—8. 14

( —7.72)
—4.56

( —4.24)

—22. 88
( —22. 15)
—7.58

( —8.09)
—9.64

( —9.72)
—5.01

( —4.94)
—15.79

( —16.48)
—20.36

( —19.43)
—7,46

( —7.69}
—6.95

( —7.34)
-12.42

( —12.56)
—2.23
—21.07

( —20.20)
—15.87

( —16.43)
—10.95

(-10.91)
—8. 12

( —7.78)
—4. 15

( —4. 10)

—18.96
( —20.06)
—7.20

( —8. 10)
—8.61

( —8.62)
—4.90

( —4.90)
—13.34
(-14.78)
—17.06

( —17.SS)
—7.01

( —6.64)
—6.40

( —6.52)
—10.67

( —10.73)
—2.84
-17.60

( —18.30)
—13.35

( —14.27)
—8.57

(-9.47)
—7.51

( —7.32)
—4.32

(-3.90)

—25.43
( —23.22)
—5.39

( —8-21)
—11.06

( —11.12)
—3.64

( —3.58)
—15.66

( —1S.93)
—23.87

( —21.69)
—5.70

( —6.43)
—5.73

( —5.80)
—13.21

( —13.07)
—1.49
—24.26

( —22.05)
—1S.97

(-16.05)
—11.99

( —11.82)
—6.02

( —7.01)
—3.36

( —3.26)

-22.00
( —20.46)
—5.33

( —7.80)
—9.80

(-9.69)
—3.73

( —3.86)
—13.27
(14.44)
—19.85

( —18.51)
—5.56

( —5.91)
—5.34

( —5.44)
—11.36

( —11.24)
—2. 17
-20.14

( —19.03)
—13.47

( —14.12)
—10.47

( —10.22)
—5.75

( —6.57)
—3.61

( —3.10)

'Reference 8.

we may neglect the variation of the energy of the
bands in comparison to it; our band calculation us-

lllg Eq. (2) also llllpllcltly makes tllls assulllptloll.
In that band calculation the peripheral state had
two effects; one was the shift in the average energy

(e& ), and the other was a coupling between second-
neighboring p states through the intervening peri-
pheral state. [This coupling is the origin of the k
dependence, or P dependence, of Eq. (2).] This
latter efFect was quite large because the coupled p
states were degenerate or nearly so. Thus it contri-
butes to the splitting between the valence and con-
duction bands and an average of the energy E(k)
over the valence bands is not equal to an average
over the bands obtained with e& replaced by
(ez ), even to lowest order in V, . We are not

S P0
able to solve the eight-by-eight matrix to obtain
E(k) analytically for arbitrary k in any case, but

must resort to numerical methods or approximate
methods such as the bond-orbital approximation in
order to obtain analytical results. %e may ask
how the peripheral states aAect this procedure.

Once we have transformed to bonding and anti-
bonding orbitals in terms of the minimal-basis set
we may note that these are coupled to the peri-
pheral states. This again has the effect of shifting
the average energy (e~ ) and coupling the neigh-
boring bond orbitals with each other and with the
antibonding orbitals. However, we neglect the cou-
pling between bonding and antibonding orbitals,
the bond-orbital approximation, and the coupling
between neighboring bond orbitals does not afFect
the total energy nor the sum of the expectation
value of any one-electron operator over the valence
bands. Thus within the bond-orbital approxima-
tion the eA'ect of the peripheral orbitals can be in-
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corporated by simply modifying the term values

(e~ becomes (e~ }) which enter the theory.
Note in particular that shifts in the individual

atomic term values ez may be calculated individu-

ally in perturbation theory. In the perfect crystal,
with each p state coupled to four neighboring peri-
pheral s states by V, /~3, we obtain directly Eq.
(9). This shift is small, less than a volt for silicon.

Thus there are just two effects on the calculation
of properties in the bond-orbital approximation due
to the addition of peripheral s states: the modified
parameters shown in Table I and the corrected p-
states energies ez calculated atom by atom. We
see first how this affects the metallic, covalent, and
polar energies.

V2 is negative.
These are the hybrid polar, metallic, and co-

valent energies modified by the addition of peri-
pheral states. In Ref. 1 the corresponding energies
were used directly in the study of elasticity in the
covalent solids. However, in the calculation of
dielectric properties it was recognized that the
dielectric constant was dominated by p states and a
different set of polar and covalent energies, based
upon p-state parameters, was introduced. In the
present study we shall use only the single set, Eqs.
(10)—(12). We then have the option of correcting
the results by using extended bond orbitals, as
mentioned in the introduction.

B. Bond-orbital parameters

V3 ——(es —es )/2 (10)

and the e~ values are obtained from the atomic
term values of Table II directly.

The metallic energy V&, which is the matrix ele-
ment between two hybrids on the same atom, is af-
fected. It becomes

Vi ——(e, —(e )~}/4

=(e, —e~)/4 A,,~ iri /(3md ) —.
We have changed the sign convention from Ref. 1

so that V& is negative and its magnitude is de-
creased by the presence of the peripheral state, but
only 10% or so.

The covalent energy, which is the matrix ele-
ment between two hybrids into the same bond, is
modified by the use of new interatomic matrix ele-
ments,

V2 = ( V„2~3V,p 3'„)/—4—
= —3.22ii /md (12)

Again we have changed the sign convention so that

The first step in the formation of bond orbitals is
the construction of sp hybrids, of energy
(e, +3e~ }/4, oriented in the direction of each
nearest-neighbor atom. The addition of the peri-
pheral s state shifts the energy ez to (e~ ) as in Eq.
(9). This has the effect of lowering every hybrid
energy by A,»~A' /md . Note that in a polar sem-
iconductor the same shift applies to hybrids on
both atoms so that the polar energy, obtained from
the difference between the two hybrid energies is
not modified,

C. The dielectric susceptibility

The dielectric susceptibility is easily derived in
terms of the polarizability of individual bonds and
is given by'

pQ 2pg 2
' 3/2

2

V2+ V2
(13)

N is the electron density and y is a scale factor
which is unity in the direct derivation. A con-
venient way of presenting the results is to deduce
the value of y required to bring the theory into
agreement with experiment; it is then the ratio of
the experimental to the simplest theoretical value.

For the series C, Si, Ge, and Sn we obtain y
equal to 1.91, 2.93, 3.85, and 5.14, respectively.
These are somewhat larger than the values ob-
tained earlier (1.28, 1.96, 2.56, and 3.39, respective-
ly), but not greatly so. Ren and Harrison indicated
that the increase of the error factor with atomic
number arises from the decrease in the energy of
the s-like conduction band in comparison to the p-
like conduction band, an effect left out of the two-
level formula, Eq. (13}. Even when they used the
full LCAO bands (but of course without peripheral
states) and oscillator strengths, they found the
predicted susceptibility too small by a factor of or-
der 2. The only additional approximation required
to obtain Eq. (13) is the bond-orbital approxima-
tion.

We conclude that Eq. (13) may be a good first
estimate of the susceptibility; and that one might
systematically add corrections to the bond-orbital
approximation. The first is from the coupling
Vi /2 of the bond orbitals to the nearest-neighbor
antibonding orbitals. This gives correction factors
which increase with atomic number but only in-
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crease to 1.25 for tin. There are also considerably
larger corrections due to coupling with neighboring
antibonding orbitals arising from interatomic ma-
trix elements and arising from intervening peri-
pheral states. These have not been explored in de-

tail. However, we note that though the coupling
V + transfer charge to sites neighboring upon the

S Po
bond orbital, our assumption that V, is veryS PCT

small in comparison to e,—ez implies that this

charge transfer is negligible compared to othe'
terms even if V, /(e, —e ) is comparable to V~s*po s*
and V2. Thus the leading effects of the peripheral
states enter as modifications of the parameters in
the minimal-basis theory, not as additional inter-
band contributions, as suggested in Sec. IV A.

We may also consider the prediction of Eq. (13)
concerning polar semiconductors. It essentially

says that X should vary as a, =[V2/( V2+ Vq )]
in an isoelectronic series such as Ge, GaAs, ZnSe,
CuBr, where a, is called the hybrid covalency; the
other factors in Eq. (13) do not vary appreciably.
This is well confirmed for the germanium isoelec-
tronic series. Evaluating Eq. (13}for this series,
and dividing by the germanium value (all with the
same y ) gives ratios 1, 0.69, 0.32, and 0.16 in
comparison to the experimental ratios 1, 0.66, 0.33,
and 0.23. The CuBr discrepancy presumably
comes from the presence of d states on the copper,
an effect which could also be estimated.

This success is quite important since such agree-
ment was not obtained with the hybrid covalency
based upon the earlier parameters. Success was ob-
tained only with covalencies based upon p state
parameters so that different covalent'and polar en-

ergies were required for different sets of properties.
The use of a single set here is a considerable sim-

plification. The similarity of the covalencies ob-
tained here for hybrids and the values obtained ear-
lier with p states indicates that these will be suit-
able for other dielectric properties such as the
transverse charge and piezoelectric charge.

D. Elastic properties

It is also possible to calculate the energy change
of the lattice under distortion in the bond-orbital
approximation. ' The simplest calculation is for a
pure shear, e& ———e2. This distortion misaligns the
two hybrids forming a bond (in such a way that
the hybrids cannot be realigned if they are to be
kept orthogonal}. The angle of misalignment 8 is

given by 8 =2@
~ /3. The change in energy of each

bond orbital is then readily calculated as

with

5mb
———A, V2a, 8

—~3Vspn 3 Vppu+ 3 Vpp~

~»n 2~~ ~spcr 3 ~ppn

(14)

=0.85 . (15)

c]]—c)2 =~3i4x~ V2/d (16)

For the homopolar semiconductors this is a
universal constant divided by d and for diamond,
silicon, germanium, and tin gives 67.1, 8.1, 6.7,
and 3.4 ergs/cm, to be compared with the experi-
mental 95.1, 10.2, 8.0, and 4.5 ergs/cm . As noted
earlier, the d dependence is well confirmed by
experiment, but our predictions are systematically
over 20% too small. This discrepancy is larger
than that obtained with the earlier parameters, but
would seem to be within the anticipated uncertain-
ties.

The variation as a, among an isoelectronic
series is the same as predicted for the susceptibili-

ty. The ratio of the elastic constant to that for ger-
manium is predicted to be 0.69 and 0.32 for GaAs
and ZnSe, to be compared with the experimental
0.81 and 0.42.

V. SUMMARY

The addition of peripheral states to the mini-
mal-basis set using Louie's approach very consider-
ably improves the accuracy of the conduction
bands, and therefore allows a more unambiguous

(The value differs from the 0.88 given in Ref. 1 be-

cause of the change in matrix elements. A typo-
graphical error in one of the matrix element sub-

scripts has also been corrected. )

The elastic constant c~~ —c~2 associated with this
shear can readily be calculated and is proportional
to the shift given in Eq. (14). An analysis of a
one-dimensional analog to the tetrahedral structure,
a treatment of corrections to the bond-orbital ap-
proximation using extended bond orbitals by Sok-
el, and a treatment of the polar limit in terms of
chemical grips, all indicate that though Eq. (14) is

appropriate to homopolar semiconductors, the co-
valency a, should be replaced by e, for polar sem-

iconductors. ' This is a correction to the bond-
orbital approximation. Then the elastic constant
becomes
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determination of parameters for the theory. This
improvement does not seriously complicate the ele-

mentary computation of bonding and dielectric
properties. The form of the simple theory remains
the same with modified parameters and it again
predicts the principal trends from material to ma-
terial. The absolute accuracy of the predictions us-

ing the new parameters appears to be slightly de-

creased, but there is a very considerable simplifica-
tion in that a single set of parameters based upon
hybrids determines both the bonding and the
dielectric properties. This appears only to be true
in the approximate theory; Yin and Cohen" find

that the pseudopotentials which describe the bond-

ing properties do not give good excited states (con-
duction bands). This distinction is lost in our
cruder theory. There is also a significant advance
in use of hybrid parameters for the dielectric prop-
erties in allowing one to systematically improve the
results by corrections to the bond-orbital approxi-
mation as Sokel was able to do for elastic con-
stants.
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