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Field effect in chalcogenide glasses

Robert C. Frye* and David Adler
Department of Electrical Engineering and Computer Science

and Center for Materials Science and Engineering,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02l39
(Received 25 November 1980)

It is generally believed that chalcogenide glasses contain large densities of defect centers
characterized by a negative effective correlation energy. If so, the Fermi level should be

pinned and at most a small field effect should be observed. Nevertheless, there have been

several reports of significant field effects in chalcogenide glasses. In this work, we~ report
the results of new field-effect measurements on amorphous Te39As36Sil7Ge7Pl. We find

that the response is dominated by very slow transients which take several hours to reach

steady state at room temperature. The steady-state field effect is consistent with the con-

cept of defects characterized by a negative effective correlation energy, but the transient

response is difficult to understand. We show that first-order kinetic model of carrier

trapping by valence alternation pairs explains the transient effects observed in a natural

way. %'e also demonstrate that field-effect measurements as a function of time and tem-

perature can be used to evaluate qualitatively both the defect densities and energies. This

analysis further enables us to understand apparent inconsistencies in the previously re-

ported results. The defects investigated appear to be characteristic of all Te-As based

glasses.

I. INTRODUCTION

There has been a great deal of progress recently
in understanding the unique properties of chal-
cogenide glasses. These materials are characterized
by a pinned Fermi energy together with the ab-
sence of a significant unpaired spin density. An-
derson' suggested that these two observations
would be compatible if electrons near the Fermi
energy possessed a negative effective correlation en-

ergy, U,A. Mott et al. ' proposed that this nega-
tive U,~ characterized electrons localized on defect
centers such as chalcogen dangling bonds, and
showed how such a model could also be used to
understand the photoconductivity and photo-
luminescence results. Kastner et al. showed how
these concepts follow naturally from the particular
electronic structure of chalcogen atoms which are
capable of forming charged defect centers with a
very low creation energy. In a pure chalcogen
such as Se, these are positively charged threefold-
coordinated atoms (C3+ ) and negatively charged,
singly-coordinated atoms (Ct ), a combination
called a valence alternation pair (VAP). In chal-
cogenide alloys such as As2Se3, other VAP's such
as C3+-P2 pairs are likely. The low creation en-

ergy of such VAP's ensures that there are always
large densities frozen in as the material is quenched
below the glass transition temperature. The nega-
tive effective correlation energy arises because the
two different types of defect structures, e.g., C3 and

C&, have coordination numbers which differ by
two. Consequently, a structural transformation in-

volving only a bond breaking or bond formation
together with a small atomic relaxation is sufficient
to transform from one type of defect to the other.

II. PREDICTED BEHAVIOR OF THE FIELD
EFFECT IN AMORPHOUS SEMICONDUCTORS

Field-effect studies of amorphous semiconductors
have been a very active area of interest for many
years, because they directly probe the localized
states in the gap which control the electronic prop-
erties of the material. Ordinarily, a thin-film-
transistor (TFT) structure such as the one shown in

Fig. 1(a) is used. The actual geometry may vary
depending on the details of the fabrication process,
but the basic elements are common to all. The
TFT consists of two parallel source and drain elec-
trodes and a gate electrode which is isolated from
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where e; is the dielectric permittivity of the insula-
tor. This total charge consists of two components,
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FIG. 1. (a) Cross section of basic thin-film-transistor
structure. (b) Typical energy bands versus distance per-
pendicular to the gate electrode.

the semiconductor by an insulating layer. The
gate, insulator, and semiconductor form a parallel-
plate capacitor. When a voltage is applied across
this capitator, charges are induced in the semicon-
ductor. The band diagram for a typical bias condi-
tion is shown in Fig. 1(b). The charges induced in
the semiconductor are not located directly at the
semiconductor-insulator interface, but are instead
distributed spatially in the bulk of the semiconduc-
tor. It is this feature which gives rise to the field
efFect.

The charge induced in the semiconductor con-
sists of two major components. One component is
the immobile trapped charge residing in the defect
states. The other is a mobile charge which is in-

duced beyond the conduction- or valence-band mo-

bility edge. In the experiment, a small bias is ap-
plied between the source and drain electrodes, and
the resulting change in the conductance is mea-

sured. The experiment thus observes the change in
the mobile-charge component induced by an ap-
plied gate voltage VG.

If the distribution of charge in the semiconduc-
tor occurs in a region which is narrow compared
to the insulator thickness t;, then to a good ap-
proximation the total induced charge per unit area

Q is given by

VGe;

~G =VQ~ —,Z
L

(3)

where p is the mobility of the free charge. Thus,
for a constant applied source-to-drain voltage VDq,
the change in current LU can be written as

M =(b,G) VDs pQF V——Ds-Z
L

pQF Z &i

Q Q I DS 6 (4)

where we have used Eqs. (1)—(3). The quantity in
parentheses in Eq. (4) is the effective mobility,
which is often called the trap-limited mobility. It
is this quantity which is measured in field-effect
experiments. The dependence of the trap-limited
mobility on applied bias and temperature provides
information about the nature of the free as well as
the trapped charge.

Thus far, we have not made use of the fact that
chalcogenide glasses contain defects which are
characterized by a negative effective correlation en-

ergy. This is important because of the breakdown
of ordinary Fermi statistics when electronic corre-
lations cannot be neglected. A careful statistical
analysis shows that the average occupancy per de-
fect site n for the case of a negative U,p obeys the
relation (for kT «

~
U,ff ~

)

n = —,[1+tanh(EF —AMO)/kT], (5)

where EF is the position of the Fermi energy and

pp is the average energy to add two electrons to a
positively charged defect (thereby converting it to a
negatively charged defect).

Equation (5) resembles the behavior of a system
that obeys Fermi statistics, but one in which all the
defects are located at pp. Thus, negatively correlat-
ed defects such as VAP's strongly pin the Fermi
energy. (Of course, the explanation of the observed
strong Fermi-energy pinning is one of the major
successes of the YAP model. ) We shall subse-

quently analyze the behavior of n in detail. How-
ever, the important point to emphasize here is that
the Fermi-energy pinning suggested by Eq. (5)
should manifest itself in a field-eAect experiment
by the observation of very small values of QF and

Q =Q~+Qr

where Q~ is the free charge and QT is the trapped
charge. If the distance between the source and
drain electrodes is L and the width of the conduct-
ing path is Z, then the change in conductance EG
is
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hence of EI. Consequently, the VAP model
predicts that chalcogenide glasses should exhibit, at
most, an extremely weak field effect.

III. PREVIOUS FIELD-EFFECT STUDIES
OF CHALCOGENIDE GLASSES

The earliest reported attempt to measure the
field effect in chalcogenide glasses was by Fritzsche
and Ovshinsky, who found no measurable effect
and concluded that the density of states at the Fer-
mi energy was larger than 10' cm eV '. Later
measurements by Egerton and Levy et al. showed
that a step voltage applied to the gate yielded a
transient modulation which decayed to an im-

measurably small value. Tick and Watson' ob-
served a field effect in Te2AsSi, but their results
varied widely between samples prepared under
identical conditions.

The entire situation was changed when Marshall
and Owen" obtained reliable results on films of
both As2Te3 and As3O Te48Si&2Ge&o. These results,
shown in Figs. 2 and 3, show enhanced conduc-
tance when positive charge is induced into the
glasses, indicating the predominance of free-hole
transport. Marshall and Owen concluded that the
density of states of both glasses had the form
sketched in Fig. 4. For negative values of VG,
states are pulled up with respect to EF, thus induc-

ing positive charge in the defect levels below EF
and in the valence band. In this model, the in-

duced mobile charge is less than the induced

trapped charge by a multiple of the appropriate
Boltzmann factor, and therefore the trap-limited
mobility pq is proportional to

(volts)
400

I I I

FIG. 3. TFT characteristics of As3OTe4qSi~2Geto (after
Marshall and Owen, Ref. 11).

the observed activated behavior in Figs. 2 and 3.
For positive values of V~ the current saturates,
suggesting the presence of trapping levels above

The results of Mahan and Bube' showed gen-
erally similar behavior at room temperature, but
differed from those of Marshall and Owen at
higher temperatures. Mahan and Bube suggested
that at high temperatures the mobile carriers
screen the induced charge efficiently, although this
explanation requires a very low hole mobility,
about 5X10 cm V ' sec '. Very recently,
Radjy and Green' found behavior similar to that
of Marshall and Owen, but also observed that the
field-effect modulation decays to a negligibly small
value with time. They proposed that this behavior
results from the effects of trapping by localized
states in the vicinity of the Fermi energy.

From our present point of view, the most impor-

cc eXP[ —(E„EI)/kT], —

where Ei is the energy of the trap. This explains

:=~N2

E„
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FIG. 2. TFT characteristics of As2Te3 (after Marshall
and Owen, Ref. 11).

0.44 eV

0.55ev

FIG. 4. Proposed density of states for As2Te3 and

As3oTe~sSi~&Ge~o. Ev &
is the position of valence band

edge for As30Te~8Si~2Ge~o, E~2 is the position of valence
band edge for As2Te3. Nt ——10' —10 cm'. N& is of
suitable energy and density to fix Ef at the position indi-
cated (after Marshall and Owen, Ref. 11).
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tant point is not the origin of the time dependence
or even the temperature dependence of the field ef-

fect, but rather why the field effect is measurable at
all. If chalcogenide glasses necessarily possess
large densities of negatively correlated defects, then
the analysis given in Sec. II indicates that the
field-effect response should be negligibly small, Rnd

this prediction is in apparent disagreement with all
of the recently reported results. "-" It is the pur-
pose of this paper to report new experimental re-
sults on the field effect of a multicomponent chal-
cogenide glass (Sec. IV), analyze in great detail the
steady-state reponse which would be expected from
our current understanding of this class of materi-
als, quantitatively confirming the discrepancy be-
tween theory and experiment (Sec. V), analyze the
trQllsl811t flcld effec (Scc VI),.alld thcrchy 1csolv'c

the apparent dilemma in a natural way, without
the introduction of any new types of defect oI other
ad III' assumptions.

IV. FIELD-'EFFECT CHARACTERISTICS
OF AMORPHOUS Te3yAs36Si)7Ge7P)

In order to investigate the field effect in chal-
cogenide glasses experimentally, we chose a mul-

ticomponent alloy Tc39AS36Si&7GC7P&, which had
previously been intensively studied at both low and
high fields. ' A cross section of the basic device
structure is shown in Fig. 5. The devices were fa-

bricated by first thermally oxidizing a heavily
doped crystalline silicon substrate to form a layer
of Si02 approximately 5000 A thick. These sam-

ples were subsequently given a very light phos-
phorus difFusion to convert the upper surface to a
phospho-silicate glass to retard dielectric break-
down and to prevent subsequent sodium contam-
ination. Mo source-drain electrodes were then
sputter deposited and patterned to form an interdi-

gitated structure with a channel length of 160 pm
and a channel width of 9 mm to give a width-to-
length ratio of -50. Glass films 2000 A thick
were sputter deposited at 15 mTorr pressure in
pure Ar after sputter etching to ensure a clean in-
terface. This particular method has several advan-
tages. Thermally grown SiGq provides a very reli-
able thin insulator and avoids many of the leakage
and contam~nation problems encountered with
dcpos1tcd 1nsulRtoi's. Since thc glRss 1s deposited as
the last step in the process, we can avoid subjecting
it to any subsequent heating. It is also advanta-
geous to have the glass at the top of the structure
because this allows optical measurements to be
made on the same device. In the initial stages of
the investigation, it was unclear whether or not
passivation of the top surface of the glass would be
necessary. As it turned out, measurement of the
characteristics in a dry nitrogen ambient eliminated
undesired efFects from this top layer.

To obtain the field-effect modulation, the source
was biased at 10 V and the resulting drain current
was monitored using a Keithley 610C electrome-
ter. Measurements made in air proved to be un-

reliable, probably because of leakage. However,
w1th thc dry nitrogcIl ambient, currents coUld bc
reliably measured down to pA levels. For our
measurements, two gate-voltage wave forms were
Used, shown in F1g. 6. To obtMQ thc dfMQ currcIit
as a function of gate voltage, a linear ramp with
variable period I' was used. Time-varying gate vol-
tages couple to the drain through the gate-to-drain
capacitance and, therefore, give rise to an Un-

desired current signal. By using a linear ramp, this
curlcI1t 1s a constRnt which. changes sign depending
on whether the gate voltage is increasing or de-
creasing. This constant current can be easily iden-
tified in the final data and subtracted out. For
transient decay measurements, a simple gate-
voltagc step was Used.

Figure 7 shows the experimental bulk drain

39 56 l7 7sooi'c e di'Qi A
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FIG. 5. TFT device structure used in this work.
time

FIG. 6. Gate-voltage wave forms.
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FIG. 7. Bulk current versus temperature for the con-
ditions described in the text.

current as a function of temperature with the gate
at zero and the source at 10 V. These results cor-
respond to a room-temperature conductivity of
10 Q ' cm ' and show a mell™defined activation
energy of 0.49 eV, both in excellent agreement with

previous results. The fact that these results
match those obtained on sandwich structures indi-

cates that we do not have significant carrier accu-
mulation or depletion occuring at either the
semiconductor-insulator interface or at the top sur-

face of our glass.
The form of a typical ID versus VG measurement

is shown in Fig. 8. For a ramp period of 1 min,
considerable hysteresis occurs. To facilitate presen-
tation and analysis of the data, we shall subse-

quently indicate the average current as shown by
the dashed line. The hysteresis was most pro-
nounced at low temperatures and high sweep rates,
as expected in a strongly trapped system.

Figure 9 shows the total drain current as a func-
tion of gate voltage at several temperatures for a
sweep period of 1 min. In Fig. 10 we show the
same results with the zero gate-voltage current sub-
tracted out. These results are very similar to those
of Marshall and Owen, "which were obtained in a
comparable time. %hen we vary the sweep period
at room temperature, we obtain the data shown in

Fig. 11. These results closely resemble those of
Radjy and Green. ' The astonishing feature is that
in our case the field eftect persists for times on the
order of hours, whereas theirs decays in a few
seconds. This result provides a clue as to the
reason why field eA'ects are sometimes seen at "dc"
and sometimes not. It would appear that the time
to reach equilibrium can be extremely long in some
materials. We find that the field effect continues to
decay, tending toward an immeasurably small
value for times up to 10 h.

Figure 12 shows the result of a transient decay
experiment at room temperature. The gate voltage
was switched from zero to a negative voltage, at
which point the field-eAect modulation is large.
For both 20- and 40-V pulses, the behavior is the
same. After a relatively fast initial decay, the

FIG. 8. Typical source-to-drain current versus gate
voltage.

I I, l

-40 -20 0 20 40
VG (volts)

FIG. 9. Total source-to-drain current versus gate vol-

tage at various temperatures.
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FIG. 10. Change in source-to-drain current versus

gate voltage at various temperatures.
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FIG. 12. Transient decay of the field-effect current.

current shows a long time decay constant of about
130 min. We shall defer a more detailed examina-
tion of the temperature behavior of this decay until
the next section.

This result, together with the results of Radjy
and Green' suggests that al/ field-effect results

previously reported in these materials are transient.
Furthermore, the similarity of our results at short
times to those of Marshall and Owen" indicates
that we are measuring the same basic process that
they observed, particularly since it is diAicult to
identify the slower decay after the fast initial tran-
sient. In view of all of the field-eAect results thus
far reported on chalcogenide glasses, it appears
reasonable to conclude that the ability to observe
the effect is a function of the time constant rather
than of the trap density.

V. ANALYSIS OF THE EQUILIBRIUM FIELD
EPPECT IN CHALCOGENIDE GLASSES

Since the characteristics of thin-film transistors
depend critically on the nature of the defect states

P(m)n)

IO

IOO

0.5

vG (volts)
I I )

-40 - 20 0 20 40
FIG. 11. Room-temperature source-to-drain current

versus gate voltage for various sweep periods.

in the gap, it is vital to analyze these states very
carefully. This is especially true when the predom-
inant defects are characterized by a negative efkc-
tive correlation energy, as is expected to be the ease
in chalcogenide glasses. In this section we first
discuss the nature of the major defects in amor-
phous As-Te alloys and analyze their behavior at
equilibrium. We shall then consider the kinetics of
the transient field eAeet.

A. Defects in amorphous As-Te alloys

For simplicity, let us first consider a stoichio-
metric alloy such as AS2Te3. In the ideal network,
each As atom bonds to three neighboring Te
atoms. This situation is sketched in Fig. 13(a).
Departures from stoichiometry and material inho-
mogeneities will alter this picture to some degree,
but we will take this as our prototypical ideal
glass. Local geometry constraints and thermo-
dynamic considerations imposed by material
preparation can give rise to a variety of bonding
defects within this ideal framework. ' ' However,
we mould expect that one type of defect would
have the lowest creation energy and thus dominate.
For As2Te3, a VAP such as C3 J 2 is most like-
ly the predominant defect. ' (We are using the no-
tation of Kastner et al. in which C denotes a chal-
cogen center, P a pnictide center, the subscript the
coordination number, and the subscript the charge
state. ) A threefold-coordinated Te atom is
sketched in Fig. 13(b) and a twofold-coordinated
As atom is sketched in Fig. 13(c). It is clear that
the latter can be created from the former by a sim-
ple bond breaking and relaxation. This is one of
the requirements for a negative U,~. The other is
that the reaction
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creation energy than a C3+-P2 pair. ' However,
even if this is not the case, the analysis presented
in this section remains applicable provided only
that one particular type of VAP predominates.

(a) perfect random network

B. Generalized statistics of negatively
correlated defects

(b) C& defect (donor)

(c) P& defect (acceptor)

FIG. 13. Possible bonding configurations in As2TC3.

2(C, '+~, ')-(C, ++~,o)+(I',-+C,o), (6)

is exothermic. But since C3+ and P2 are op-
timally bonded centers for their electronic confi-
gurations, it is reasonable to expect that (6) is
indeed exothermic. Thus a C3+-P2 pair acts like
a VAP, and has the properties discussed by
Kastncr et al. ' The C3 center acts like a donor
while the P2 center acts like an aeeeptor. Because
the two neutral centers involve different atoms, it is
not clear which has the lower energy, but this is
ulllnlportallt fol' our gcllclal dlscussloll. [Tllc pal'-

ticular form used in (6) assumes that CI has lower
energy than P2, but the term on the left could just
as well be 2(Cz +PI ).] In fact, the neutral defect
is better envisioned as a defective bond which
could be centered on either the chalcogen (as an
overcoordination) or the pnictide (as a dangling
bond).

Note that a P4+-CI VAP is also possible and
is likely to have a negative effective correlation en-
ergy. Since P4 centers require an s-p promotion,
wc feel that this VAP probably has a larger

%'e shall assume that our chalcogenide glass is
characterized by three major features: (1) a valence

band wltll RI1 cffcctlvc dcllslty of states Xv, (2) R

conduction band with an enective density of states
N„and (3) a density X of VAP's. We further as-
sume that the effect of other gap states are negligi-
ble and that band tailing is not important. Actual-
ly, this later assuInption is not too stringent be-
cause we can generally include the effects of nar-
row band tails by simply redefining the mobility to
account for the fraction of immobile carriers below
the Inobility edges.

Since the detailed nature of the VAP's is not
critical, we shall simply recognize that one center
is donorlike and ihe other acceptorlike. Thus, we
consider that a single defect can exist in one of
four states,

d+, d', u', a-.
The state d+ is that of an unoccupied defect
(n =0), and can be taken to be the zero of energy.
I.ct To be thc cncI'gy of thc neutral donor and
To+ 8' be the energy of the neutral acceptor.
These are the two possible configurations for the
singly occupied defect (n =1), and both are doub-
ley degenerate because of two spin possibilities. If
the acceptor is the lower-energy neutral defect, 8'
is negative. Finally, the negatively, charged accep-
tor represents the doubly occupied defect (n =2)
and it has energy 2TO —U, where U is the magni-
tude of the negative effective correlation energy.
Then, the grand partition function is given by

Z =1+2(e
—(To —p)/kT —(To+ 8 —p)lkT+e '

)

—(2TO —U —2p)lkT+e
aIld thc avclagc occupation by

( To —P )/kT —( To+ 8' —
lM )fkT —(2TO —U —2& )/kT

I,T I) (1Z) 2[(e ' +e ' )+e '
]

Bp z
At equilibrium n =1, and Eq. (8) shows that the



24 FIELD EFFECT IN CHALCOGENIDE CLASSES 5819

Fermi energy is simply

U
po= To—

2
(9)

for the field effect, we must consider the conse-

quences of an applied electrostatic potential P.
Then, the electrochemical potential becomes

p =EF qP— (10)

Since we are interested in deriving an expression and the average charge pT is given by

N(e po —qP)/kT (EF—po —qP)/kT
)+e

~~F I o &~~/~r —U/2kT —(U/2+W)/kT ~ F 10
e +2(e +e j+e

(12)

where we have taken pr ——0 when /=0 and

EF=po. However, since there can be some charge
in the valence and conduction bands, we must
modify this condition. The charge in the conduc-
tion band is

p„=—N, exp[ (E, E~—)/kT]—,

For U»2kT and (W+U/2) »kT, Eq. (11}
becomes

pr N tanh——[(Ep —po —qP)/kT],

ND ——NA
——N . (16)

Because of the possibility of interconversion of the
neutral donors and acceptors, at equilibrium we
can write

—( U/2+ 8'—EF)/kT——NA 1+2e

As expected, ND donor states are at an energy U/2
above the equilibrium Fermi energy and NA accep-
tors are at an energy 8'+ U/2 below the equilibri-
um Fermi energy. In addition, we must have

while that in the valence band is
ND= ~

NA (17)

and

N +=N 1
D D —( U/2 —EF)/kT1+2e

(14)

pq N„exp[——(EF E„)/—kT] .—

Thus, EF is determined from the relation

—(EF E„)/kT
N tanh[(EF po)/kT]+N—,e

—(E,—E~)/kT—N, e ' ' =0. (13)

Generally, N is of the order of 10' cm, whereas at
room temperature p„and pz are only of the order

of 10' cm . Thus, to a very good approximation

EF——po, i.e., the position of the Fermi level is

determined by the VAP's at equilibrium.

However, we have not yet taken into account the

important fact that the donors and acceptors can
interconvert by either the breaking or the forma-

tion of a bond. In order to analyze this, we note
that the density of ionized donors is given by

+ 1

(T, „)/kT1+2e

while the density of ionized acceptors is

1
jy =NAA

1+2e t To —(8'+ U) —p)/kT

For /=0, we can use Eq. (9) for lu to obtain

This leads to the relationships

ND I 1+tanh[—(EF—qP)/kT] j
N
2

and

(19)Nq ——
( 1 —tanh[(EF —qP)/kT] J .N

2

Thus, the densities of donor and acceptor states
vary with applied electrostatic potential. This is
the effect that gives rise to the strong pinning of
the Fermi energy in chalcogenide glasses. The pro-
cess is sketched in Fig. 14. At equilibrium, the
donor and acceptor densities are equal, as indicated
in Fig. 14(a). If the Fermi energy is increased by a
process such as an applied potential or electron in-

jection, the initial effect is to neutralize some of the
ionized donor states and ionize some of the neutral

acceptor states, as shown in Fig. 14(b). But this
leads to an imbalance in Eq. (17), so that neutral

donors begin to convert to neutral acceptors and
eventually ionized acceptors. As the acceptor den-

sity increases, the Fermi energy is pulled back
down to very near its original position, as indicated
in Fig. 14(c}.

This result has several important consequences.
Consider the behavior of the charge as given in Eq.
(12). This function can be interpreted in terms of
conventional Fermi statistics, indicating that the
charge responds to application of a potential as if
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metal insu — semiconductor
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—Np

W Ef

gate

(a ) equil ib r ium
. 'p4n

EG

—ND

Ev

(b) transient

FIG. 15. Energy bands versus distance for MIS
structure; P„and P~ are the electron and hole quasi-
Fermi levels, respectively.

«ND
of the bands for a metal-insulator —semiconductor
(MIS) structure. Since no current can flow across
the insulator, we can immediately write down
Poisson's equation in the semiconductor as

p2p =—[ N tanhpp +pc(e—~~ 1)—
E'~

no(e+— 1)],— (20)
(c) equilibrium

FIG. 14. Fermi-energy pinning by VAP's.

there were a large density of one-electron states at
the Fermi energy. However, as is clear from Fig.
14(a), in reality there are no one-electron states at
EF. This is reflected in the donor and acceptor oc-
cupation relations, Eqs. (14) and (15). Thus, the
overall behavior of the charge does not obey the
same statistics as the donor and acceptor levels.
This is a key point that is generally disregarded in
the analysis of the field effect in materials contain-

ing negatively correlated defects. The relative den-

sities of donors and acceptors are not independent
but depend sensitively on the potential.

where e, is the dielectric susceptibility, pp and n p

the equilibrium bulk concentration of holes and
electrons, and p=qlkT. We want to solve this
equation subject to the boundary conditions im-

posed by the applied gate voltage. We ignore the
metal-to-semiconductor work-function difference
and the effects of trapped charge at the interface.
Since we are dealing with p-type materials, we

neglect the contribution of free electrons to the last
term of Eq. (20). Thus, we must solve

d (() q=—[—X tanhPP+Po(e ~~ 1)] . —
dx

(21)

We solve Eq. (21) in Appendix A. For small sur-
face potential, the field-effect current is [Eq. (A6)]

C. Equilibrium field-effect characteristics

We shall now derive the field-effect characteris-
tics at equilibrium. Figure 15 shows the behavior

po &i Z
Ias =+ Pp ~DS ~t.-——

Pp+A' t; I.

so that the trap-limited mobility is given by

(22)



Po
Pr =Pp (23)

Note that since po is activated, the trap-limited
mobility will be activated for E &gpo, and will,
furthermore, show the same activation as the bulk
conductivity. An activated mobility is a major
characteristic of a trap-limited conduction process.

When typical values are inserted for the parame-
ters, N-10' cm and VG/I;; —10 V/cm, Eq.
(A5) indicates that the small PP, approximation is
valid and thus Eq. (22) applies. However, the ex-

perimental results discussed in Sec. III are in coro-
plete disagreement with this prediction with regard
to not only the shape and magnitude of the Geld-

effect current but also its temperature behavior. In
all reported measurements, the Geld-effect mobility
has a much lower activation energy than does the
bulk conductivity. Figure 16 compares the predic-
tions of Eq. (22) with the experimental results"'
at room temperature. It is clear that the theory is
in much better agreement with studies that fail to
detect any field-eAect modulation at all. '9

Note also that the density of states inferred by
Marshall and Owen" shown in Fig. 4 is very simi-
lar to the predicted density of states sketched in

Fig. 14(a); however, Marshall and Owen do not ob-
serve the effects of interconversion of donors and
acceptors. A similar conclusion follows from the
low-temperature results of Mahan and Bube' and
the short-time results of Radjy and Green. ' If all
of the previously reported results are to be con-
sistent with the same basic behavior, we must
reconcile the facts that (1) in some cases, no field
effect is detectable, (2) stable dc field effects have
been observed and are consistent with the density

of states sketched in Fig. 14(a), (3) unstable field ef-

fects have been observed which initially are con-
sistent with the stable results but which decay to a
very small value, and (4) stable dc results have
been obtained which change their behavior at high
temperatures. We shall show in the next section
that a careful analysis of the effects of time and
temperature on the measurements indeed can
reconcile all these results.

VI. ANALYSIS OF TRANSIENT FIELD EFFECT
IN CHALCOGENIDE GLASSES

In our model a defect can exist in any one of
four states, and transitions between these occur via
charge transfer and/or atomic relaxations. The sit-
uation is simplified, however, since not all states
are connected by a single-step process. Rather, the
transitions occur via the sequence

pfD+~pfa +-+3(~ ~Qg

This means that we need not consider processes
such as, for example, Nq ~S~, since this cannot
occur in a single step. The rates that describe the
above transitions fall into two categories, viz. , car-
rier exchange between traps and the valence or
conduction band and configurational changes. We
shall neglect direct charge transfer from trap to
trap. The transitions are illustrated in Fig. 17.
Let us consider first the charge-transfer rates. We
can analyze these rates in the same manner as
trap-assisted recombination in crystalline semicon-
ductors. ' Consider, for example, the reaction,

Xg)++n~la
This reaction involves capture of a free electron by

rrP»,
conducti

bond

Rn

Rn

olenc
bond

FIG. 16. Experimental and theoretical TFT charac-
teristics.

FIG. 17. Schematic illustration of single-step transi-
tions. Solid lines indicate charge transfer from donors
(ND) and acceptors (pf„) to the conduction and valence
band. Dashed line indicates configurational changes.
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a positively charged donor and the inverse process
of emission of an electron by a neutral donor. This
rate can be written as

free electrons and holes by neutral centers. We
shall denote the capture cross sections for these
processes by s„' and sp, respectively. We then find
that for the process

0 2 —U/2kTN +
D

——e D

=—uDXD+ (25)

where n is the free-electron density, nT is the ther-
mal velocity of the electron, and s„ is the capture
cross section. The product s„vT represents the cap-
ture volume swept out by the carrier per unit time.
By the principle of detailed balance, this rate must
be identically zero at thermal equilibrium. From
our previous analysis, Eqs. (14)—(19), at equilibri-
ulI1,

we obtain

Rn' = 1

7n

1
Osn Vn

7n

Similarly, for the process

n

n0
(30)

and

n =n0. we obtain

Substituting these relations into Eq. (24) with

Rn =0, we obtain C„. The final result is

0

Rn = n0s„vT —ND+nsnvT .

In cases where the mean free path of a free carrier
becomes small compared to the capture radius, it is
more appropriate in the above equation to use the
carrier diffusion velocity rather than the thermal
velocity. To circumvent this problem, we shall
use a phenomenological relaxation time 7„defined

where v„ is the appropriate velocity. We then ob-
tain

In an entirely analogous manner, the rate for the
process

can be written

R,'= ', --N- -N-
7p Po

I
0Sp Vp

7p

In the rates given by Eqs. (28) —(31), it is itnpor-
tant to keep in mind the distinction between
charged and neutral capture centers. Generally,
the capture cross section for a charged defect is ex-
pected to be several orders of magnitude larger
than that for a neutral defect. Since the other
parameters, viz. , the equilibrium free-carrier con-
centrations and velocities are comparable for all
four processes, we can safely assume that

p 7n 7p

In order to keep this distinction clear, in the
remainder of the analysis all neutral capture
processes will be indicated by primed variables.

The remaining rate to consider is that of confi-
gurational change, i.e., the rate at which donors be-
eonlc aeecptors and vlcc versa. This change most
likely occurs only when the defects are neutral; i.e.,
a reaction such as

Rp ——

7p CXg

—Ng
Po

(29)

~here ~& =2 exp[ —(lY+ U/2)kT] and s&

The two remaining charge-transfer rates are
similar, except that they now involve the capture of

Ng

is extremely unlikely to occur. Tight-binding esti-
mates indicate that the final state in such a pro-
cess is a very high-energy defect and is not statisti-
cally favored. We need only, therefore, consider
ihe reaction
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N

g (N 0 —w jkTN 0)
7

o a~ o
ND

7 ag)
(32)

where v is the relaxation time. For a simple tran-

In this process, the neutral acceptor is at an energy
8' above the neutral donor. We can write the cor-
responding rate to first order from mass-action
considerations as

sition between these two states, we might expect ~
to be of the order of a phonon time, but for the
present we shall not make any assumptions about
its magnitude. It is important to recognize that S'
may be negative in which case

1 aD p p
Ng —ND

7 ag

This possibility, however, can simply be incor-
porated into our definition of ~. Using Eqs.
(29)—(32), we can write the total rates of change of
the defects as

—N +=d
dt

1 ND ~n—ND+
&n aD np

1 ~ p
aDND —N

'r Pp
(33)

d—N
dt "

&p aA
—Ng

Pp

1 p n
agNg —Ng

~H np (34)

and

(ND ~ND—+)=——(Ng +Ng )p d p

dt dt

1 p aa p
ND

aD
(35)

The first equality in (35) results from the require-
ment that the total number of defects is conserved,
i.e.,

densities. Equations (33)—(35) relate the change in
defect populations to changes in the free-carrier
densities. It is more convenient for the purposes of
the field-effect analysis to express them, instead, in
terms of the potential. We do this by introducing
the electron and hole quasi-Fermi levels, P„and
Pz, which are defined by the relationships

j%$—p„)
n =npe

and

Ng) +Ng)++Ng +Ng ——N . (36) p =Foe P
—p(p —p )

Thus, we have four independent equations. In ad-
dition, we must also consider the rate of change of
the free carriers:

Equations (33)—(36) then become

N+ 1 ND + ey-y„)
dt

dp
dt ~p az Pp

1 p
—P(4' —4»)

(aDND+ ND e —), (39)
fp

+ aDND —ND
1 ol

7p Po

1——VJ (37)P d—N
dt " 1 N~ -p(4 —y„)

0
—Ng e

'Tp ag

and

dn

dt ~p a~
n—ND

np

+, a~Nq Nq +——VJ„, (38)
1 p n 1

+n np q

where Jp and J„are the hole and electron current

and

1 p P(P—Pp)
, (agNg —Ng & ),

~1l
(40)

Ng — ND . (41)
1 p aA p

aD

(N +N +)= ——(N +N )—p d p
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Let us examine, for a moment, the two remain-

ing rates, Eqs. (37) and (38). The final term in

both equations represents the change in the free-
carrier density which arises from charging currents
in the bulk. The current densities in these terms
are proportional to the gradients of the respective
quasi-Fermi levels. The terms force the quasi-
Fermi levels for both carrier types to zero within
the dielectric relaxation time

—1
+D —B~~s ~

As discussed previously, ~„&&~& and rz &&~„'. In
addition, both aD and o,z are small by definition.
Thus, the lifetimes appearing in the last terms of
Eqs. (48) and {49)are independent of P provided
the bands are not bent sufficiently that the Fermi
energy reaches the donor or acceptor levels

—( W+ U/2) « qP « U/2 .

If this is the case, Boltzmann statistics are applica-
ble, and Eqs. (42) —{44) become

where o.B is the bulk conductivity. From our pre-
vious measurements, we calculate this time to be
10 sec [taking the dielectric constant e, equal to
9 (Ref. 13)]. Thus, on a time scale of minutes it is
clearly safe to assume that P„=Pz ——0. For the
purposes of the field-effect analysis, we start with
the six basic equations:

E1 D + py

Np+—= (Np apNp—e )p +
dt Ag) 7"g)

d p 1

dt eA wp

—(N +N +)= ——(N +N -)p d p

dt dt

p &w p 1
&D

AD 'T

(51)

(apNp Np e +—),1 0

~p

1
e

(42)

1
(agog Eg e~~),

~7l

(Np +Np —)= ——(Ng +Ng )
d p + d p

dt

(43)

p &W p
&D

7 QD
(44)

d—Np+ —(Np apNp+e+)—
dt

(48)

r

—N~ ——(Ng —ag Ng e ~)d o p
dt Ag

(49)

ND +XD++Xg +Kg

p=ppe ~
n =n,e.

The time-dependent Poisson's equation now fol-
lows from Eqs. (42) —(47). We can rewrite Eqs.
(42) and (43) as

In each of the above rate equations, the expres-
sion in parentheses is comparable, being of the or-
der of a neutral trap density. Thus, the relative
magnitudes of the three time constants ~, ez~&,
and maw„are critical. The value of any one of
these may vary over a range of several orders of
magnitude, and at different temperatures any one
of them could be very small or very large com-
pared to the others. It would, in fact, require very

special circumstances for two of these time con-
stants to be comparable. Charge transfer occurs by
a three-step process. For example, when negative
charge is trapped, the process is

NB+~ED ~Kg ~Kg

In this three-step process, it is reasonable to as-
sume that the overall transfer rate X~+~Xq is
controlled by the slowest step. We shall solve Eqs.
(50)—(52) by assuming that the two fast rates
quasistatically follow the slow changes arising from
the third rate.

It is important to identify which one of the three
steps is the rate-limiting one. If we use typical
values for the capture cross section and velocity of
the carriers to estimate w„and ~z, we find that
these are much too small to explain the very slow
transient response that we observe. Consequently,
only z, which results from the configurational
change, can be suAicently large, and Eq. (52)
represents the rate-limiting process. Because ma~„
and aqwz are small compared to ~, a small imbal-
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ance in the two terms on the right of Eq. (50) or
(51) leads to a very large rate of change of ND+ or
N~, thus restoring the balance. Therefore, we
must solve the set of approximate equations

0=(ND a—DND+e), (53)
di

—(ND+ —Na )+(ND N—a ))
dt

=d o o o ~~ o=—(pT —(ND —N~ ))= Nq — ND
dt CXD 7

(56)

and

Ng —0=(Ng agN—g e @'), (54)
1

dt Qg 7&

e+
1+

Qg

o
e-+

+ND 1+

where pz is the trapped charge density.
Conservation of defects requires

(ND —+Ng)+)= ——(Ng +Ng )
0 " O

dt dt

Ng — Nn —. (55)o &a o 1

'r

and

,e-@'
o e&

pT
——ND —Ng

QD

We can rewrite Eq. (55) as
Solving these two equations for Nz and ND and
substituting into Eq. (56), we find

(aDe+) aqe—+)N+pT(aDe++aqe +2a~aD)—PT+ a~e-+++De++2

2a~ N (e e+) pT—(e +—+e++a~ +aD )

az e ++De~&+2

(57)

In the Boltzmann limit, Eq. (57) becomes

(pT+N—/2(aDe+ a~e +)—)
dt

2az cosh'
( N tanhPP —pT ) . (58—)

Equation (58) is the basic relation between the
trapped charge and perturbations in the potential.
If the system is initially at rest with pz. ——0 and
/=0, and we perturb P for a time 0 & t « r, the
time integral of the right-hand side of Eq. (58) is
negligible, and

pr(r =0+)=(aDe+'

,—age +—)+K,
2

where E is a constant determined by the trapped
charge when / =0. In the present case,

N
2

K can be incorporated inside the time derivative in

Eq. (58), resulting in

—[p +—aDN(e+ —1) a&N(e —1)]-—d 1

dt

2aq cosh'
( —N tanhPP —pT) . (59)

Equation (59) is of the form

d
dt [pT po(4)] =v—(P)[p, (P) pT], —

where v(p) is an appropriate frequency, po(p) is the
initial (high-frequency) response, and p, (p) is the
equilibrium (steady-state) response. In the steady
state,

pT ——p, (P)= —N tanhPP,
the same result obtained from the statistical
analysis of the last section [see Eq. (12)]. However,
for times small compared to ~,

1

pr po(P) =
&

a&N(e——+ 1) , a—DN(e+ 1)—.——
In the Boltzmann limit, this is the trapped charge
density that arises from N/2 acceptors located at
an energy W+ U/2 below the equilibrium Fermi
energy and N/2 donors located at an energy U/2
above Ez. This is consistent with our short-time
results as well as those of Radjy and Green, ' and
is also in agreement with the data of Marshall and
Owen. " But more important, Eq. (59) explains the
unusual decay of the field effect with time observed
by Radjy and Green' and by us.

It is important to evaluate the response at inter-
mediate times, in order to analyze the observed de-
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cay curves. This is carried out in Appendix B.
We find that the initial decay is given by Eq.
(B24},

—(b,I)+—b,I=O,2

dt
(60)

so that the field effect initially decays with a time
constant of i/2. However, at later times, the solu-

tion is given by Eq. (B25):

d 4ag—AI+ I 0,
dt (ag +aD )r

(61)

so that for large times and small currents, the rate
of decay is

O'w +&D

2 2'
For 8'& o, &D » z ~ so that the final rate of decay
is actually much slower. This behavior is illustrat-
ed in Fig. 18. The asymptotic behavior is in good
agreement with the experimental results shown in

Fig. 12.
Let us briefly consider the reason for this dual

time-constant behavior. The limiting rate is given

by Eq. (35):

ing length. This means that holes trapped deep in
the bulk must be reemitted and moved nearer to
the surface. The process occurs as a sequence of
two events. As the potential collapses, some
donors give up their holes, leading to excess ND,'

these decay with a time constant ~+Diaz. The
resulting neutral acceptors quickly give up another
hole to become negatively charged. The two holes
emitted in this overall process then move to the
surface and become trapped, again converting ac-
ceptors to donors. The overall rate for the sum of
two processes is given by

(1/r)(a~ /a~r) 1 a„
(1/r)+. (ag/aDr) r ag+aD

(We find two factors of 2 that must enter into the
above rate. One factor enters because the overall

process involves two carriers as before, the other
because for very small values of (t we begin to get
an additional equal contribution from electrons as
well as holes. }

Our results suggest that 8' can be determined
from field-effect experiments. According to the
model ri, the short-time decay rate, is related to
v2, the long-time decay rate, by the simple relation-
ship

d d 1 p &a p—(ND ) = (Ng )=———Eg — ND
dt dt CXg)

The sequence of events in a transient experiment is

indicated in Fig. 19. Initially, free holes flood the
space-charge region and are trapped very quickly

by the negatively charged acceptors. This causes

Nz to be too large, and the excess neutral accep-
tors decay with a time constant r (the factor of 2

enters because we have effectively made a transi-
tion from N„ to ND+, capturing two holes). This
process, in turn, leads to an increase in the charge
density and a corresponding decrease in the screen-

2Qg
7 i—

CXg +CXD CXg

(o) t =0

2e
—w/k Te 'T2 ~ (62)

(b) fast decay, A D

O

time (min)

FIG. 18. Asymptotic behavior of field-effect current
transient decay.

(c) slaw decay, D~A, charges move to
surface, A D

FIG. 19. Sequence of events for transient decay ex-

periment.
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Thus, we can obtain 8' from the ratio of r& and ~2.
In Fig. 20 we show the results of transient decay

measurements at various temperatures. The table
in the inset shows the time constants and the in-

ferred values of fK The values can be seen to give
a consistent result over the entire temperature
range. In addition, these data give us an explana-
tion for the high-temperature anomalies observed

by Mahan and Bube. ' This is because the curves
extrapolate to a value such that the t =0 current
always increases with increasing temperature. At
t =20 min, however, this behavior is completely re-
versed. Depending on the time scale of the mea-

surement, it is possible to be led to the conclusion
either that the field-effect current increases or de-
creases with increasing temperature. The physical
origin of this is the fact that at higher temperatures
the transient current decays at a much faster rate.
This effect is illustrated dramatically by a plot of
the transconduetance in the high-current region as
a function of temperature, shown in Fig. 21. From
ihe short-term analysis we expect this to behave as

PPo Z(bI) =g
d VG pa+(&~N/2) I. t;

—(E —U/2 —W) tkT
ace

where E is the activation energy of the bulk con-
ductivity (pp) The data fit an activated curve
quite well at low temperature, but g~ begins to fall
off dramatically at high temperature. This is be-

cause field-effect current decays significantly within
the 1-min time in which it is measured. This
clearly demonstrates the need to account for time-
constant effects carefully when choosing a particu-
lar measurement procedure.

From the activation energy of the transconduc-
tance, we can conclude that (U/2) —W=0.25
+0.05 eV. Furthermore, we have found 8'
=0.043+00.02 eV. %e can, therefore, com-

pletely determine the effective density of states in
the gap of our films. The transconductance is
given by

PpPo Z
p p+ (a„N/2) I. t;

and the bulk dark current is

z
Ia =Qpr po Vasd .

L

Fol AgX/2 &&po the ratio of Iz to g~ is

Qg X ted

I

T(K) z)(n ln) &2(min) e(ev)
a 294 ) 5 150 0.044
o 307 4.1 46 0.046

322 1.5 13 0.048

Thus, At can be evaluated as

-10"em',2e;IB

gmt;daz

Note that the above expression is independent of
either the mobility or the free-carrier density, and
is expressed entirely in terms of measurable quanti-
ties. However, it is quite sensitive to errors in
determining the values of the energies U and 8'

~

lying k~g ~wa

k

0

VDS =10V

QvG =4ov

E

O

C&

I

40 60

time�(min)

FIG. 20. Transient current decay at various tempera-
tures. Table shows values of asymptotic time constants
and inferred value of 8'.

FIG, 21. Transconductance in the high-current re-
gion versus temperature.



582S ROBERT C. FRYE AND DAVAVID ADLER 24

which enter into a . Th
d

s a eshe effective density of t t

im o
ur analysis is shown in F 22.

portant to bear in mind th t h
ur

'
ig. . It is

o
' '

a t e indicated e ual
ensities of ionized donors and

q
e

'
nors an acceptors applies

on y to the equilibrium situation. An shi
Fermi enerenergy produces net concentration chan es.

donor transition. %e ' '
e

' '
n. e still have not explained the

origin of the unus ually long time constant tha
observe. The situ

at we

7 and 7

'
uation becomes clearer 'f 1

72 versus temperature. This is sh

u i wepot

ear y, both ~& and ~2 are activated.
is leads us to conclude
us, the transition from acce"t tor to onor and

q
'

e thermal assistance in eithack appears to re uire
irection. This su e

'
some inuggests the existence of some kind

of energy barrier between the two stat
' d's a es, as indicat-

e energy-configuration diagram Fig. 24.
Acceptors decay with a rate given bn y

1 (2~ ]OS)e —0.65/kT&

100—

O
lA

O" ~o-
E

I

3.I

I

3.2 3.3 3.4
io3iT(K )

FIG. 23. Ini
''tial decay time constant w an

cay time constant
an ~I and final de-

s an ~2 versus temperature.

The attem t-to-pt-to-escape frequency of 2&&20

somewhat lo
sec is

~, but this extrapolated value is ex-

tremely sensitive to error
'

hrs in t e activation ener
and leads us to suspect th t

' h' ex
tal error the higher values o

a wit in our ex

bl

e ig er values of activation are prob-
a y more realistic.

The anal sisy
'

presented here provides a strai h-
forward ex lana

'
p tion of not only our own dat b

a s raig t-

also the lar e varia
'

n aa, ut
ge variations in experimental field-effect

behavior that have been re rt d N epo e . early all of the
successful measurements h b

la
s ave een made using

g asses containing a relatively hi "g" percentage of
s an e. As is clear from oour transient analysis,

depends critically on the time co t fe constants for carrier

trapping. These two facts stron 1rong y in icate that
the long time-constant b h ye avior is ver clo

so lends considerables an Te. It al

support to our previous suggestion of the existen

ot er chalcogenide glasses such as selenides, we
would certainly expect a difference in t
tion ener of
8

gy o the acceptor-to-donor t
ut even a small change in the

o - - nor ransition.
e in e energy barrier can

cause orders-of-magnitude differen
s an . his may account for the inabilit to o-

s2 e3 and Se. OurOur analysis suggests that it ma
s

owever, the tra in kinpp' g inetics may then involv
time constants w

'
w ich are smaller than the dielec-

vo ve

Ec

20 "3
ND IO cm

0.21+0.05 eV
EF-——-- ——

0.25+ 0.05 eV

0 49eV
E

NA-IO
20 -3

density of states

FIG. 22.2. Effective one-electron densit
o ained from transient analysis.

configuration

FIG. 24. Ener gy-configuration diagram for the n
tral acceptor-to-dono tor ransition.

or e neu-



FIELD EFFECT IN CHALCOGENIDE CLASSES 5829

tric relaxation time, in which case the field effect
would effectively be damped out.

An important conclusion of our study is that the
neutral donor has lower total energy than the neu-
tral acceptor. If the predominant VAP is a C3+-
P2 pair, then we can conclude that the energy of
the C3 center is lower than that of the P2 center.
On the other hand, if the predominant VAP is a
P4+-C& pair, then the P4 center has lower ener-

gy than the C& . In any event, the existence of two
neutral defects is consistent with the observation of
two EPR signals at low temperatures in optically
excited amorphous arsenic chalcogenides ' and
with the analysis of recent switching experiments
involving the same composition used in the present
work.

are populated upon the trapping of excess free car-
riers. The activation energies determined from
field-effect decay curves can be used to evaluate
both the energies of the defect centers and the den-

sity of VAP's. The model explains the previously
puzzling wide dispersion of field-effect results re-
ported in chalcogenide glasses. In particular, it
also suggests that the failure to observe a field ef-
fect to date in Se-based glasses is due to very short
time constants for the decay. Most important of
all, the analysis emphasizes the dangers of inter-
preting the electronic structure of a system con-
taining states with a negative U,~ in terms of a
conventional one-electron density-of-states diagram.
If this is done, it must be recognized that the effec-
tive density of states can change drastically with
time.

VII. CONCLUSIONS

We have shown that the steady-state field effect
for a material with a significant density of defects
characterized by a negative effective correlation en-

ergy should be extremely small. If a field-effect
response is observed, it is just a transient which
should decay away' with increasing time. We have
associated this transient with the existence of a po-
tential barrier between the two neutral centers that
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APPENDIX A: CALCULATION OF THE EQUILIBRIUM FIELD EFFECT

q= —f 2—[ X tanhPP+p0—(e +—1)]dg
e,

In this appendix we solve Eq. (21) for the field-effect characteristics at equilibrium. Multiplying both
sides of Eq. (21) by 2dg/dx and integrating, we obtain

x=0
dP
4x

ln cosh'+ (e ++PP )
2q N Po

e,kT N /=0

where p, is the surface potential. Since the electric field at x = ~ must be zero, we find

dP 2= + ln cosh', + (e '+PP, —1)
Po —pp,

N

1/2

(Al)

where

e,kT
2qN

Ordinarily po «E and the s~ond te~ on the right 1n Eq. (20) 1s also negligible. AT1s the screening.
length arising from the trapped charge. The gate voltage is then given by

(A2)
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dd)
VG

——p, +—e,
dx 0

=p, +—— In cosh', + — (e *+p(tt, —1)
tI. ~S 2 Po

e; piT
1/2

where t; is the insulator thickness and e; is the dielectric permittivity of the insulator. The sign of the + in

Eq. (A3) is just the sign of P, .
%e must now relate the gate voltage to the source-drain current. %e shall assume that the source-drain

voltage VDs, is small. For a device having channel length L and width Z and for a hole mobility pp, the
change 1n cuffent dens1ty is

~OS
dLJ~ =quip Zp~(x) .P P

Integrating, we obtain

Z " Z &=o p~(p)
~4s=qprp IDs J pp(x)dx =qpJP VDs J

Z P—0 po(e &—1)dy

(2/pA7-)[lncoshpy+(po/X)(e &+py 1)j'~2 '

where the sign takes on the same value as the gate
voltage. Equation (A4) can be integrated numeri-

cally to give the change in source-drain current as
a function of the surface potential, and this togeth-
er with Eq. (Al) relates the current to the gate vol-

tage. It is important to recognize that there will be
an additional background current arising from bulk

conduction 1n the semiconductor, which 1s

popd

~~ Z+ p& Po+& t L
' (A6)

where d is the semiconductor thickness.
It is instructive to examine Eqs. (Al) and (A4)

in the linut of small PP, . We can then approxi-
mate them as

Equation (A6) is identical to Eq. (4), with the
trap-limited mobility given by

Po
PT=Pp

Po+

26'g tI- Po
(A5)

APPENDIX 8: CALCULATION OF
THE TRANSIENT FIELD EFFECT

AT INTERMEDIATE TIMES

In th1s appendix, we solve fof the f1eld-effect
response at intermediate times. In order to do this,
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some simplifying approximations are essential. VVe

shall begin with a linear analysis, which is relative-

ly straightforward and will enable us to understand
the physical processes involved. %ith the insights
resulting from this solution, we shall be able to ap-
proximate the real situation.

The rate of charge trapping is given by

o.'DX o,'g N

dt 2 2
—pr+ (e&—1)— (e ~—1)

2az cosh'
( N tan—hPP pr ) .—(81)

For small PP, Eq. (Bl) becomes

that t =0 trapped-charge screening length

1 q S O'D

kT

and the equilibrium trapped-charge screening
length

1 qN
&skT

Note that in most cases ~F ))~TO and ~T~.
With these definitions, Eq. (85) becomes

1 s 2&A 1
2+ 2+ 2gF /TO V $7~

2

2Qg
( NPP pr )—. (82—)

Taking the Laplace transform of Eq. (82), we find

or

ag)X ngX 2m~2+2 '+
(83)

where pz and p are the Laplace transforms of pz
and P. In addition, we have the free charge density

pF =pe(e +—1),
which yields

Furthermore, we shall define the frequency-
dependent screening length A, by

1 s 2n
2 + 2 +

/TO

A, (s) 2Qgs+
Poisson's equation is then simply given by

V
/t, ~(s)

which has the simple solution

j(0 )e -x/A, (

The boundary condition for t; && A,(s) is

y(0,.)
(x =O,s)=

so that

(86)

pF poPO -——

Taking the transform of Poisson s equation, we
find

&'(t =—(pF+pr)
&s

Gg) CKg 2Qg
@0+3( + s+

(84)
Voe;

P(x,s) = A, (s)e (89)
&st&

Unfortunately, we cannot obtain an analytical form
for the inverse transform of Eq. (89). However, we
can evaluate the field-eAect characteristics,

M= —qp —
VDs Jpo13$dx

Z 2
qp Vns VG —@pod,—(s)I. et;

(85)
We can simp1ify Eq. (85) by introducing several

new paraxneters, the free-carrier screening length

1 9Po
e,kT '

A (s) Z ~r
p —

VDg
—

VG .I t;
(810)

Consider, for example, the field-efI'ect response to
an applied step voltage on the gate. In this case
VG ——6VG/s. Taking the inverse transform of Eq.
(810) we find
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2
Z &~ ~To

AI(t) = —p —
VDz E—VG 2 exp

L
2&3 ~To~ ~Te

2

+ 2 1 —CXp (811)

Equation (811) describes a simple decaying exponential with a time constant given by

(812)

Experimentally, we observe an exponentially decaying field-efFect mobility. It is clear from the above
analysis that this is a very real efFect. As more and more free carriers become trapped, the ratio of free to
trapped charges decreases. The decay of both the field-effect mobility and the screening length arise from
the same fundamental process of charge trapping, and are really two equivalent manifestations of a single
kind of behavior.

Thc obscIvcd decay, shown 1n F1g. 12, 1s actUally not a simple cxponcntlal, reflecting a dcf1clcncy of thc
linear analysis. However, using the physical insight obtained from the linearization, we can approximate the
real situation. Integrating Eq. (59) directly, we obtain

+DE
dt 0 2PT+ e+—l—Ag N o 2'

(e ~~ 1) dx =—f cosh'( N tanhf3—$ pr)dx .—
2 0

But Poisson s cqUatlon shows

00 00 VGf pTdx+ f po(e ~~ 1)dx = ——
0 e,q t;

and since the field-effect current is

f po(e +—1)dx = AI

qp —
VDsL

Z
Io =qV —

~astro~L
(817)

f p,dx=— AI
Io

oo AI
(e &—1)dx =

0 Io

%~X AgX
pa+ t + f (e~~ 1)dx—

0

AI —f (e@'—1)dx —f —coshPPp Tdx .
0 0

F11st, wc must cxplcss thc function
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g(dd, VG)= J (e+—1)dx

in terms of the known function

oo

f(dd, VG)= J (e +—1)dx= t; .
Ip

For small PP we can expand the exponentials, yielding g = f. Fu—rthermore, for large positive PP, g ))f,
while large negative PP requires g «f. We shall consider the rate of current decay within these limits.
Equation (819) becomes

d
dt

e; VG ~ @AN ng)N
Po+ t. + gtq Ip 2 ' 2

a&N ~ ~ 2a~
t.—g coshPfp rdx

Ip 0
(820)

The remaining problem is to approximate the last term in Eq. (820). To do this, we need only consider the
conditions under which it becomes important. The current, as we have seen, reflects the magnitude of the
screening length which, in turn, directly reflects pz. When EI is large, pz is small, and vice versa. Similar-

ly, when pz is large, P is necessarily small for practical values of applied field across the gate insulator.
Therefore, the only case in which the last term of Eq. (820) becomes important is when pr is large and PP
is small. Thus, we can neglect the P dependence, yielding the result

e VG ~ +AN ag)N ugN
Po+ t;+ g t —gt q Ip 2 ' 2 v. Ip

e;VG
Po&i

&;q
(821)

st

e;VG I @AN

I Po+

AI
t; (N+po)+

T 0

2az e; VG

t;q

(822)

At t =0, the left-hand side of Eq. (86) indicates

Let us now consider the response to a negative
voltage step applied to the gate. For a suAiciently
large step, b,I is initially large and PP « 0, so that

f))g. The field effect will then decay via the rate
equation

d 2 2
(b,I)+ AI—= I =—0 . —

dt 00 (824)

Thus, the field effect initially decays with a time
constant of ~/2.

As the current decays, P becomes small and
eventually g begins to be comparable to f. For
small bI,

AIg= f=-
Ip

and Eq. (821) becomes

and assume that a&N/2g&pp, then I„(&EI and
Eq. (822) becomes

Ip
bI(t =0)=

pp+czgN/2

e; VG

t;q

+AN aDN

r, ~'+2+2
AI 20.&

t; (2N+po)+i 0

e; VG

t;q

PJPo Z &i Vo—
VDs

pp+ ag N/2 L t;

Pro Z
pp+N L t)

(823)

Note the similarity of this expression to the linear
case. Since VG is a constant for t )0, we can elim-
inate it inside the derivative. If we define

or

4a, 40.~—AI+ I= I 0.
dt (a~+aD)r (aq+aD)r

(825)

Thus, for very large times and small currents, the
rate of decay is (r/2)[(aq +aD)/2aq j. Note that
this is the same result obtained from the linear

analysis.
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