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Four-wave mixing and phase conjugation near the band edge
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We discuss degenerate four-wave mixing and phase conjugation near the band edge of
direct-gap semiconductors and show that the reflectivity for conjugate waves is enhanced

in the vicinity of the band edge. We also compare the quantum-mechanical results with

the classical Drude model.

I. INTRODUCTION

There is at present a considerable body of work
on phase conjugation via degenerate four-wave

mixing in semiconductors. ' lt has been motivat-
ed partly by the availability of a variety of frequen-

cy ranges, and partly by the relatively high efficien-
cies observed in these materials. This paper, too, is
concerned with degenerate four-wave mixing. We
consider a direct-gap semiconductor and calculate
the contribution of interband transitions near the
band edge to the third-order susceptibility
X' '(to=to+to —co). We also consider the absorp-
tion coefficient a in the semiconductor in order to
obtain a realistic expression for the conjugate wave
reflectivity g.

There are two reasons for the interest in a band-

edge mechanism for four-wave mixing. First, g' '

is enhanced as Ace increases to EG, the band gap.
As a result, g is also enhanced despite increased
absorption (which adversely affects phase conjuga-
tion '). Second, a band-edge mechanism offers a
greater potential for frequency tunability, since in

many semiconductor compounds such as
Ga& „(InAs)„,Cd& „(HgTe)„,Pb, „(SnSe)„,etc.
EG can be continuously varied by changing compo-
sition.

A number of authors have discussed band-edge
mechanisms for four-wave mixing. ' ' Among
these, Jain et a/. ' have considered a mechanism
which is similar to what we have in mind. They
imagine creation of an electron-hole plasma in the
semiconductor and use a Drude model to calculate

In this paper, however, we perform a density
matrix calculation to provide a more precise pic-
ture of the frequency dependence of 7' ' and q.
Also, our results apply to frequencies that are

lower than EG. A detailed comparison of our re-
sults with those of Ref. 1 is given in Sec. V. Final-

ly, we also note that Khan et al. have studied a
case in which 7' ' is resonant for fico-EG because
of a nonparabolic band structure. This nonlinear
process is quite different than the one discussed
here. ' Here, we are concerned with an ordinary
and direct electron-field coupling via interband
transitions.

In Sec. II, we describe the band structure used in

the calculation. It is a simplified version of the
band structure of III-V compounds, chosen with

the phase conjugation of iodine laser beams in
mind. In Sec. III we give the general results for a
two-component plasma in the semiconductor. In
Sec. IV, the general results are specialized to small

perturbations from thermal equilibrium. Finally,
in Sec. VI, we discuss the reflectivity of a specific
direct-gap semiconductor, Ga~ „(InAs)„.

The main result of our work is that the reflec-
tivity of conjugate waves has a peak in the vicinity
of the band edge„and below the band gap, the re-

flectivity scales as the absorption coefficient when
the frequency is varied. The precise position of the
peak depends parametrically on the sample thick-
ness. The peak shifts to lower frequencies for
thicker samples, as one might expect from the de-

pletion of the pump waves. If the depletion of the
pump waves is negligible, as when the semiconduc-
tor is saturated, then the reflectivity is nearly con-
stant above the band edge and decreases rapidly
below it, independently of the sample thickness.

II. BAND MODEL

To be definite, we assume a band structure as
shown in Fig. 1, which is typical of III-V com-
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FIG. 1. Model band structure.

E,(k)=(EG/2)+(A' k /2m,*)

E„(k)= —(EG/2) —(i' k /2m, ')
(la)

(ib)

where the m~'s are the appropriate effective masses
near the center of the Brillouin zone (BZ). For the
calculation one also needs the dipole matrix ele-
ment for the interband transitions. It is related to
the more familiar interband momentum matrix ele-
ment by the following relations:

p= —imoA' '[x,Ho],

pcu ~ —™o&~ (Ee Ev ) —pcs ~

Here e is the high-frequency dielectric constant,

pounds. It has one light-hole band, two heavy-hole
bands which are degenerate, and one conduction
band. To simplify the calculation we also assume
that the bands are parabolic:

mo is the bare electron mass, and Ho is the one-
electron crystal Hamiltonian. The factor e„' in
(2a) comes from high-frequency screening of elec-
trons and renormalizes the bare electronic charge.
Since our concern is with the band edge, the right-
hand side of (2c) need be evaluated only at k =0.
p,„canbe taken as constant.

We are interested in those situations in which
the semiconductor is either at rooIn temperature or
at a temperature which is not too low relative to
room temperature. At these temperatures the ab-
sorptloIl cdgc is smoothly bioadcncd to flcqucncics
which are considerably below the band edge, due to
phonons and the presence of excitonic states. At
room temperatures, individual excitonic states are
not observable as they are smeared into a continu-
um. To take into account this broadening as well
as the relaxation of the carriers, we assign average
linewidths y, and y„to electron and hole states,
respectively. Although y, and y„areenergy
dependent, this procedure should be valid as long
as most of the carriers are confined to near the
band edge. Another parameter at one*s disposal to
model correctly the Coulombic CAects on the band
edge is the band gap. If need be, one may use an
effective gap in the final results. Finally, one can
justify the whole procedure by looking at the ab-
sorption coefficient calculated from the model. In
all the cases we considered, the calculated coeAi-
cient reproduces the overall features of the experi-
mentally observed curves with reasonable
linewidths at room temperatures. For lower tem-
peratures, there are well-defined discrete excitonic
peaks and one must take the discrete nature of
these peaks into account. This requires consider-
able modification of the calculation and is reserved
for another publication.

III. THIRD-ORDER SUSCEPTIBILITY, ABSORPTION, AND REPLECTIVITY

The geometry of degenerate four-wave mixing is shown in Fig. 2. We assume that all four waves'are
hnearly polarized in the z direction and actually calculate X' '(co =co+ co —co). Since absorption is important
for phase conjugation, we also calculate the frequency-dependent absorption coefHcient a(co) under the same
assumptions. A density matrix calculation gives the following expressions for X' ' and a (see Refs. 8 and
11):

X' '= g I dk(2ir)
~ p,'„~ Q(E„) /(E,)]—

+(4fico+i y, +iy„)(2fico+iy, ) '(2irico+ iy„) '(L,„I~ )], —
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~=«~'(c+EG) ' g y,. IS',. I' f„~kNE.} —YE.}](I~-i'+ Il- I'» (3b)

where n =~a„is the index of refraction, and

L„„=[trina) —E„(k )+E„(k )+iy„„]

Kane's two-band model' diverge if one lets the
upper limit of k go to infinity; therefore, they must
be evaluated for a finite Brillouin zone.

and a consist of two types of terms,

y„„=(y„+y,)/2,

/(E„)=(1+exp I P[E„(k ) —Ep„]I )

P=(kgT}

(4b)

(4c)

3

a = g (A„+A„'),
v=1

(Sb)

FN E for g U

In (4c) and (4d) E~„areFermi energies for elec-

trons and holes, assumed to be distinct in order to
include those situations in which absorption at Lo
significantly affects band populations. '

One can let the upper limit of k go to infinity to
simplify the integrals. We do not expect much er-

ror resulting from this procedure since as k —+ oo,
the integrands decrease rapidly for parabolic bands.
However, the situation is quite different for non-

parabolic bands. For instance, the integrals for

where K„andA, are temperature independent, and
K„andA„aretemperature dependent. This
separation is effected by writing the population fac-
tor as

g(E„)—/(E, )

=1—[1—/'(E. )+j'(E, )]

= 1 —( I 1+exp[P( E„E„)—]I—
+ I 1+exp[P(E, EF, )) ] ') .—

The integrals for E, and A„canbe evaluated by
contour integration (see the Appendix) and one

finds

&u'=(2~) '& '~u'"IV'I'I[2''u(Xcy. ~&~ } ']

+[(& +iy„)(&V'4 ) '][y„(b y, y„) '+(4fico+2iy, ) '+(4fico+2iy, } ']

(7a)

+ [(&+ &y,„)(&—+gh+ ) '][y,„(b+y,y„) ' (4fico+2i y,—) ' (4fuu+2i y, ) —']
—[2y,'„(y,y„r QZ, )-']I

A, =4nco'm„' '
~ p,'„~'(A2cEG) '[b, +2(%co—EG)]'~', (7b)

and

1th„=Pl~Nl„(NT +ill„)
0+ [(EG+fuo)——+y,„]'i

(7c}

5+ 0++(EG+fico) . —— (7e)

The temperature-dependent terms cannot be evaluated explicitly for arbitrary temperature. We write them

in terms of Fermi-Dirac integrals of the dimensionless form

I'"(j;a)= f dyy"(y +a) [1+cJexp(biy )] (&)

Let us define
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g=(EG+ (y,„)/fico,

c, =exp[P(EG/2 Ez—,)],
c2 exp——[P(EG/2 E~—)],
b ) (m„——/m,' }Pfico,

b, =(m„/m,*)Peo .

&„'and p,' are then given by

(9a)

(9b)

(9c)

(9d)

(9e)

A4

A2

(
I
I

I

I
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I
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FIG. 2. Geometry of four-wave mixing. A3 and A4
are the amplitudes of the conjugate and signal waves,
respectively. A

&
and A2 are the amplitudes of the pump

waves.

It„'=(m'A'y, y„) '(2m. )'"(~)'"
I v:. I

'
2

)( y Ilm[F](j;g—I) +F|(j;p + I)]+ i(yv/~)[F2(j'~ I} F2(J ~+I)]

+(y,„/~)Re[i(g 1)F—) (j;g—1)+i (g" +1)F,(j;g'+ 1)]

+ (y, y„/2fico)[(2fico+i y, ) '+ (2fico+iyu ) ][F2 (J ~0+ 1 }

and

2
g„'=4am

I p,'y I
(2m„(0/I) (ncEG) ' g im[F)(j;g —1)+F,(j;/+1)] . (10b)

Finally, the reflectivity for conjugate waves in
degenerate four-wave mixing is given by '

I

is independent of position.
I
a

I
becomes

16/~c-'~-„'(Ii12}'"
I

X"'
I
exp( —al/2) .

ri = I
a sin/1

I I

g' cosg'1 +a sin/1
I

(1 la)
(1 lg)

where

I
~

I
=166(oc e„'(I)Ig)' IX' '

I

and

(1 lb)

g=( Is-I -a ) (1 lc)

A, (x)=A, (l)exp[ —(l —x)a/2],

A2(x) =32(0)exp( —ax/2),

and thus the product

(1 le)

2
&
(x)A2(x) =3~(l)A2(0)exp( —al/2)

In Eq. (1 la), l is the length of the nonlinear mixing
region, and Ii and I2 are the intensities of the two
counterpropagating pump waves. We note that
(1 la) is derived under the assumption that the con-

jugate and signal waves are depleted but the pump
waves are not. When the depletion of the pump
waves is also taken into account, as seen from Fig.
2, the constant pump amplitudes 31 and A2 are re-
placed by

Above the band edge, a is usually on the order of
10 cm '. All four waves can be severely depleted
and one should use (1 lg). The use of (1 lb} should
be restricted to frequencies that are lower than the
band edge. There is still significant absorption at
these frequencies, however, due to the broadening
of the absorption edge, and the depletion of the sig-
nal and conjugate waves should be taken into ac-
count even when the depletion of the pump waves
is not.

IV. MODERATE EXCITATIONS

In order to obtain efficient phase conjugation,
one would naturally seek a situation in which ab-
sorption at fico is as low as possible. We now take
this to be the case and assume that electron and
hole populations are not perturbed significantly
from their equilibrium forms. We note in passing
that this assumption contrasts with the premise of
Ref. 1 in which Jain and Klein imagine creation of
a dense electron-hole plasma in the semiconductor.
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In their case, it would be more appropriate to as-

sign a separate Fermi energy to each component of
the plasma, since each thermalizes separately be-
fore the interband transitions can take over and
bring the two components into a common thermal
equilibrium. '

At the thermal equilibrium, there is one com-
mon Fermi energy:

and

a, = 4—n (2irh') ' (cEg y) 'co exp( PE—g /2)

X g ~ p,'„~ [(m,')'/+(m„')'/~] .

To compare the temperature-dependent and
-independent terms, note that

(16e}

EF EFc EFh

(kz T/2)ln 1+ g (m„*/m,*)

One can therefore set

(12) and

l
&i/&p I

(2n')(kii T/iry) exp( PEg—/2)

(17a)

~
a, /ap

~

—(2ir)(fmo/2n. y) / exp( PEg/2) —.
(17b}

ci c2 exp(PEg/2) && 1

for band gaps on the order of 0.5 —1 eV and for
room temperatures. Also, the integrand in (8) con-
tributes mostly in the vicinity of y =0 and

pn (
.

) (2 )
—I —m5 —(n+i)/21 n +n 1

(14)

Owing to the exponential terms, the temperature-
dependent terms are clearly negligible either for
room temperatures under thermal equilibrium con-
ditions, or for small perturbations from thermal
equilibrium. For lower temperatures they decrease
further, exponentially. Thus, for all intents and

purposes, X' ' and a are given by the temperature-
independent terms under moderate excitations as
long as the band gap is not too small:

To simplify the following discussion, we further as-
sume that y, =y„=yand focus our attention on
the vicinity of the band edge, by which we mean

~

Eg —fico
~
/Eg && 1. In the vicinity of the band

edge (7a), (7b), and (14) yield

g I~„'=Xp[i+5+(1+5')'"]

X [5+(1 + 52)i/2] 3/2( I +52)—I/2

(15a)

X"'=Xp[i + 5+ (1+5') ' "]
X[5+(1+5 )'n] 'n(1+5 )

'n

a —a [(1+5 )' —5]'

Finally one needs
~

X' '
~

for the reflectivity:

~

X"'
~

=v'2xp(1+5') ' '[(1+5')' '+5]

(18a)

(18b)

(19)

and

g E„'=X,(5+ 1)(5+i)(1+5')-',

„=a[(1+5 )' 2 —5]

gA,'=a, (1+5 )

(15b)

(15c)

(15d)

Figure 3 shows
~

X' '
~

/(v 2Ip) as a function of 5,
the frequency detuning per linewidth.

Equations (18) and (19) predict an interesting
behavior for the reflectivity. Let us ignore the
pump depletion for a moment. Under usual
operating conditions g of Eq. (11c) is imaginary
and (1 la) simplifies to

where

5= (Eg fico)/y, —

ap ——(2M y' ) 'gm ~p'
~

(16a)

(16b)

X, =2(i —1)(2irP) / fi y exp( 13Eg/2)—
X g ~ p,'. ~

'[(m,')'/'+(m„')'/'], (16c)

/

ir
f

2(2a) —~ ~
[

g't&&
/

2a —2

Below the band gap, 5&&1 and

~

X"'
~
=2Xp(25)

a ap(25)

and thus

(20a)

(20b)

(20c}

(20d)
ap 4nco y' (fi cEg)——'gm„~p,'„~,(16d)

As a result, below the band gap, the reflectivity
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~~2x.]-' i
x~'&

~

to the absorption coeAicient, having the same func-
tional dependence on the frequency detuning
(Eo —%co) as a. This is consistent with having at
least one real transition occur.

To compare g~ ' and Reg' ], we make the fol-
lowing approximations. The ratio of the sums over
the dipole moments can be estimated as

Xm'" l(M:. I'

(23)

2-
i

q0
—2 ~ i ~ i ~ i i i ~ i

—6.0 -4.0 -2.0 0 2.0 4.0 6.0

FIQ. 3.
~

X(3'(co=~+ro co) —
~

as a function of the

frequency detuning per linewidth.

scales as the absorption coefficient. On the other
hand, above the band gap, 5 & 0,

~

5
~

&& 1, and

X(')
~

=2Xo(25)'~2

a=ac(25)'i,

(20e)

(20f)

and g is constant as long as the conditions under
which (20a) is true hold.

V. COMPARISON WITH THE DRUDE MODEL

%e now compare our expression for g' ' with
that of Jain and Klein. ' Their expression for g' ',

obtained from a Drude model, is

XD
' nce rrt*a~(——8am,'q~ )

ImX"'=(2Xo/ao)a . (22)

Thus, above the band edge, Img' ' is proportional

Here r is the lifetime for electrons and holes, a* is

the total absorption coericient, q'a* designates

the fraction of the absorption which corresponds to
an actual electron-hole pair creation (i.e., rt*a*
corresponds to our a), and m,'I, is the reduced mass

of an electron and a hole: m s m~ mf, (m-—
+mt', ) '. XD' is real and describes an adiabatic
response of the system. It corresponds to our
Re+' '. Our expression for 7' ' has an additional
part which is imaginary. Img' ' describes those
processes in which at least one real transition oc-
curs. Note that above the band edge, 5 ~0 and

i
5

i
»1. One therefore has a»ao, and

Using (2c), one has

/(M,'t f
=e At fP,', /2(mon2EG) (24)

The momentum matrix element is related to the
electron and hole masses near the band edge (see
Ref. 12):

iI",t i (moEG) '=(2m,'s)

With these approximations and also using
y=(A/r), one finds

(25)

ReX' '=(Aco/2)[(fuo —E ) +y ] ' n X' '

X I bqexp[i ( kx. x —coqt) ]

b t„exp—[ i ( kt„—x toqt )]—],

with the photon current density given by

jr c(E )„(——4vrfxo )n
For complex Geld amplitudes,

jr ——c(E E~)„(8nkam)

(27)

This expression for j& difFers from the correspond-

Thus, as far as thc frcqucncy dcpcndcncc is coIl-
cerned, thc two expressions differ only by the
square root of a Lorentz factor. The other factor
n arises froIn two sources. One is that we are
taking into account the short-wavelength screening
and treating electrons as particles each with an ef-
fective charge e /~e„= e/n, as in (2a). This con-
tributes a factor n in (26). The remaining n

factor comes from the difference between the way
we count the number of photons and the way it is
done in Ref. 1. We use the standard expansion for
the electric field operator such that (see Ref. 14)

E( x, t) = g i (2~rfauq/V)'~ et„
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ing one in Ref. 1 in that (29) has an extra n fac-
tor. Finally, if we write out n

n "XD ' (c—/—'n)(e /e„)(ri)~a*)(8irm,'sligo )

(30)

we see that n factor helps to renormalize both
the charge and the speed of light. It is interesting
that the presence of n somewhat compensates
for the Lorentz factor in (26) and makes ReX' '

and P~ ' comparable, since usually n —10—20 for
semiconductors.

VI. REFLECTIVITY FOR Ga~ „(InAs)„

We now consider a specific semiconductor
Gai „(InAs)„withx 0.4 for which the band gap
is EG 0.95 eV. This choice is motivated by the
fact that A.p

——2~EG ' 1.3 pm, which coincides
with the wavelength of high-energy iodine lasers.
There has been a practical interest in obtaining
phase conjugation at the iodine wavelength. To
the authors knowledge there is no gaseous or atom-
ic system which matches this wavelength and
which might be used for resonant enhancement of
the conjugation process. Neutral iodine itself can-
not be used, since the lasting transition is a mag-
netic dipole transition. A semiconductor such as
Gai (InAs)„ is, therefore, a natural choice for
phase conjugation at A,p

——1.3 pm.
The remaining parameters for our sample are

10 m —m3 0 1Plp and m~& ——mz 0.6mp
(see Ref. 15). A typical lifetime is r =A'/y=10
sec '. Thus,

(32)

Thus, if the pump waves are not depleted and
r=10 " sec ', one has from (32) and (lib) that

0.22=22%%uo, which is a reasonably eAicient

phase conjugation.
The frequency-detuning dependence of g as

given by (32) can be written out as

i) (1+$2)—1/2[(1+ $2)1/2 g]

exp [ p [( 1 +$2 )
1 /2 $] 1 /i

(33a)

where

rio
—2n' EG( iir'co' c'y'n ')—'

X
—2

Q m„~p,'„~ I)Ii

(33b)

and

pp
——apl . (33c)

Thus, when the pump waves are undepleted, q has

We used (1 lg) to obtain (33a). The parameter po
may be called the optical thickness of the sample.
If one wants to ignore the pump depletion, one can
do so by letting po~ 0 in (33a), which would then
revert to the form that is obtained from (lib). Fig-
ure 4 shows g/gp versus 5 for various pp. Above
the band edge,

il lrlo-2[1 —(46 ) ']exp[ —po(2
~

5
~

)'/ ] .

(34a)

and

m,'s ——m,*m
i (m,*+m

&
) '=0.09mo

~ p,'~ ~
=eR(2m,'se„EG) '=10 D,

(31a)

(31b)

10x1

p =0

—1
Y/ Q

where we used (24) and (25). Setting EG—fico in

(16b) and (16d) yields XO=3X10 esu and
ap-1.2&(10 cm '. The value of ap, which corre-
sponds to the value of a at the exact band edge
5=0, is in reasonable agreement with the experi-
mentally observed value for GaAs (see page 61 of
Ref. 15). Further, let I& ——Ii ——1 MW/cm, then
from (1 lb),

~

s
~

=1.1)& 10' cm ', which is com-
parable to but less than a. Note that

~

X"'
~

and
hence

~

a
~

are quite sensitive to the Iinewidth. For
example, for &=10 ' sec ', one finds ap-4&& 10
cm ', Xo-10 esu, and ~a

~

=36 cm '. As
mentioned earlier the parameter g' is usually an im-

aginary quantity, and

10 1x1
8

10—2 ~~ ~ & s ) ~ I ~ l ~ (XI
—6.0 —4.0 —2.0 0 2.0 4.0 6.0

FIG. 4. Reflectivity of conjugate waves as a function
of the frequency detuning for various optical thicknesses.
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an upper limit which is 2go for frequency detun-

ings that are large relative to the linewidth. For
the specific semiconductor above and for II ——I2 ——1

MW/cm and v=10 " sec, 2go 0.44=44%.
Similarly, below the band edge,

rilrio-(25 ) 'exp( —po/~25), (34b)

which decreases rapidly with increasing 5.
It is clear that the optimum place for phase con-

jugation is in the vicinity of the band edge. When
the pump depletion is taken into account, there is
more structure in the reAectivity as a function of
the frequency detuning. Also, the reflectivity de-

creases as flu —EG increases above the band edge.
The reflectivity generally peaks in the vicinity of
the band edge. The position of the peak is given

by a fifth-order equation which is obtained by set-
ting the derivative of g/go with respect to 5 equal
to zero:

I2(A, B)= f dyy'(y'+A) '(y'+B)

X(y +B')

(A3)

y 2(y 2+A )
—

2(y 2+A g )
—1

=A (A —A ~) (y 2+A)

A4(A A4) —2( 2+AS)
—1

—(A —A~) 'y (y2+A)

An integration by parts gives
+ 00 + CX1

f d 2( 2+A) —2 2
—tf d ( 2+A) —1

I3(A)= f dyy (y +A)

I4(A,B)= f dyy [(y +A) +B ] '. (A4)

The integrand of II can be written as

y'+y —4/po=0, (35a)

Ii(A)=2 '(A —A*)

(A6)

[(1+52)1/2 5]1/2

Since y +y is a monotomically increasing func-
tion, there is only one real root and there is only
one peak in the rdlectivity. As po increases, the
peak shifts to larger 5. It follows that if the sem-
iconductor is saturated, the optimum place for
phase conjugation is slightly above the band edge,
and if there is significant absorption at co, the place
to be is slightly below the band edge.
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APPENDIX

For the convenience of the reader, we explicitly
display the contour integrations which yield (7a)
and (7b). After the angular integrations are per-
formed, one obtains four types of integrals which
can be written as

Ii(A)= f dyy (y +A) (y +A*)

(Al)

x (A+A*) f dy(y'+A) '

—2A~ f dy(y +A~)

Using (AS) in (A7), one finds that

(AS)

I i(A) =(m/4a )(1+ s2c$o) 'exp( i/)—
=(~/2)(1+A*/[A [)(2[A [+A+A*)-'".

The integrand of I2 can be written as

Let A =a e '~, where a is real and positive and
—m. /2 & P & n./2. There are two distinct roots for
y2+A =0, which are yo ——a exp[i(P+ n./2)] and

yi ——a exp[i (p+ 3n/2)] .Closi. ng the contour in
the upper half,

f dy(y +A) '=(1r/a)exp( —ip)

=1r(i+A'/~A
~

)

X(2~A ~+A+A~)-'/2.

y'(y'+A) '(y'+B) '(y'+B') '= A(A —B) '(A —B'—) '(y'+A) ' —B(B—A) '(B —B') '(y'+B) '

Blj(Blg A)
—1(By B)—1( 2+BI/) —1 (A10)
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Now use (AS):

I,{A,B)=—~[A(1+A*/[A
~

)(A —8) '(A —8') '(2[A ~+A+A')

+8(1+8*/)8
(
)(8 —A)-'(8 —8*)-'(2)8 (+8+8*)-'"

+8'(1+8/I, B I){8'—A) '&8' —8) '{2IBI+8'+8) '"]
=~(A —» '&A —8') '[{A+ IB I){2181+8+8*)'"—&A+ IA I)(2IA I+A+A*) '"].

(A 1 1)

In {A3), an integration by parts yields

I3(A)=2 ' f dy(y'+A) '=(m/2)(1+A'/iA i)(2iA i+A+A*)

(A12)

Finally, the integrand of (A4) can be written as

y [(y +A) +8 ] '=(i/28)[(A iB)(y—+A —iB) ' —(A+iB)(y +A+iB) '],
where A and 8 are real. Now using (AS) yields

I (A 8) (~/Bv/2)(A 2+82)1/4[(A 2+82)l/2 A]l/2

Let go (4n ) '(2——m, /fi )
/ . Using (A7), (Al 1), (A12), and (A14), one finds

f dk(2m) L (co)
~

L„(co)
~

=gol~(ftco+EG+iy„),

f dk(2~)-'L, „(~)~L„,(~) I'=sol, (E, r iy,„),— —

f dk(2n. ) 'L„,(c0) I,L,„(co)
~
'=IOI2(EG+~+iy, „,EG ~+iy,.),

f dk(2~) 'L.u(~) IL-(~)
I
'=s(A(EG ~ ir- —EG+~+ircu»

f dk(2m) '[L„,(~)]'=goI3(EG+~+iy„),

f dk(2m. ) '[L,„(co)]'=~OI3(EG ~ ~'y,.),
6 k 2& Leg@ ~ g 4 EG ~%/+11

f dk(2~) '~L„(~)
I

=s44(EG+~ y-)

Collecting all of these together gives (7a) and (7b).
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