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Theoretical study of the electronic structure of SiO,
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A theoretical study of the electronic structure of amorphous SiO„ is performed. The calculation is done using a
realistic tight-binding Hamiltonian for a cluster-Bethe-lattice model. Results of the calculations are in good
agreement with optical-absorption measurements for the entire range of concentrations and with photoemission

spectra for x = 0, 1, and 2. The nonlinear variation of the optical gap with concentration that takes place at x = 1.5
is related to the break of Si chains and to the percolation threshold. Comparison with photoemission data shows that
the Si—0—Si bond angle is —125' in agreement with chemical shift analysis. Our study indicates that the distribution

is Si and 0 atoms in a-SiO„ is random with no 0—0 bonds. It is found that intermediate range order plays a
fundamental role in the electronic structure of a-SiO„.

I. INTRODUCTION

The oxidation of Si to form a Si-SiO, interface
is an open problem in solid-state physics. ' The
electronic structure of both the Si surface and

bulk SiO, are well understood, but the only well-
established feature of the Si-SiO, interface is that
oxygen saturates the Si surface dangling bonds.
Whether the removal of states from the Si gap is
complete or not is still controversial.

From the experimental point of view it seems
that there is evidence for the existence of an inter-
mediate transition region at the Si-SiO, interface.
The width and stoichiometry of this region is not
well established. We can then visualize the Si-
SiO, system as being formed by Si-SiO„-SiO„
where the interface alloy SiO„ is to be character-
ized. The local atomic structure at the Si-SiO, in-
terface has been investigated using high-resolution
x-ray photoelectron spectroscopy by Grunthaner
et pl.' This study is based on the variation of the
chemical shift with the bridging Si-0-Si bond

angle. A simple interpolation scheme based on a
tight-binding calculation indicates that the Si-0-Si
bond angle at the interface is mostly 125' in-
stead of being 144 as in bulk SiO, . This estima-
ted bond angle allows the characterization of the
ring statistics at the interface.

Hollinger, using ultraviolet photoemission (UPS)
techniques, has been able to conclude that the
electronic structure of SiO for x =1 and the Si-
SiO, interface are very similar. ' We then think
that it is worthwhil. e studying the electronic struc-
ture of SiO„ itself before making a detailed study
of the Si-SiO, interface. The available experimen-
tal information on SiO reveals important differ-
ences with respect to SiO, and Si. UPS experi-
ments4 on SiO show that its spectrum cannot be re-
produced by taking the average of the Si and SiO,
spectra. Optical-absorption measurements of
SiO„ for the entire range of concentrations' ' indi-

cate a nonsmooth variation of the optical gap with
the concentration showing an abrupt change of the
gap at about x=1.5. Also, an analysis of the
form of the optical-absorption curves near thresh-
old indicate a change in the localization of the
states at the top of the valence band near x=1.5.
A detailed study of these experiments can contrib-
ute to the understanding of both the Si-0 bond and
the atomic structure of the alloy.

In this work we have developed a model aimed at
describing the electronic structure of SiO„. A
theory of the electronic structure of SiO„has to
answer the following points: (i) Which is the local
bonding in the SiO alloy? (ii) Which is the atomic
structure of the alloy and, in particular, which is
the bond angle Si-0-Si? (iii) Which are the bond-
ing statistics so that we can distinguish between
the random-bonding model and the mixture mod-
el?' ' (iv) Why does the optical absorption have
a very nonlinear variation with concentration and

why does the slope of the absorption coefficient
vary with x?

This work is organized as follows. In Sec. II
we made an extension of the cluster-Bethe-lattice
method to study alloys where the chemical bonding
is different at the two extreme concentrations.
The tight-binding Hamiltonian used in this work is
also discussed in this section. The electronic
density of states of the SiO alloy for different
concentrations is presented. In Sec. III a de-
tailed comparison with the available experimental
data is made. Based on this comparison we dis-
cuss the bonding statistics in the alloy and its
atomic structure. In Sec. IV the conclusions of
our work are summarized.

II. STUDY OF THE ELECTRONIC STRUCTURE
OF SiO„

Before we discuss the method of calculations,
we will describe briefly the tight-binding Hamil-
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TABLE I. Hamiltonian parameters (in eV) for both
the Si-Si and the Si-0 interactions in the SiO„alloy.
The self-energies of the s and p orbitals at an Si atom
depend on the number of oxygen atoms attached to it.
This is due to the fact that we are dealing with orthogo-
nal orbitals and to the charge transfer in the Si-0 bond
(Ref. 11). The values shown in the table for the Si-Si
and Si—0 bonds refer to an Si atom surrounded by four
silicon atoIns and by four oxygen atoms, respectively.
In the other cases the values are linearly scaled.

Si-Si bond

(Si, f Hl Si, ) = —1.8
&St, I HI st, &

= 5.2
( Si, f

H
f Si,') = -1.7

(SI~IHlsi', &
=-2.95

(Si& fHl SIP = 3.5

( Si& f H l Si&)„=—1.0

Si-0 bond

&st fHfsi &= 1.7
(Sip fHf Sip) = 8.1

&o, lHfo, &
=-18.5

&o, fHfo& = -18

& st. IHI o.&
=-8 9

& SI, f H f o,) =-e.oe

&sz, lHlo, &
=-4.48

(Sip fH f Op)~ =-5.5

tonian used to study the electronic structure of
Si (Ref. 8) and SiO, .' In the case of the Si—Si
bond we take all possible interactions between sp'
orbitals in nearest-neighbor atoms; on the other
hand, the Si-0 bond is described by including only
the o interactions between the Si sp' orbitals and

the 2s and 2p 0 orbitals. The Hamiltonian para-
meters are shown in Table I. The relative posi-
tion of the energy of the Si sp orbital (U„) in Si
with respect to its value in SiO, is fitted to opti-
cal-absorption data in the Si-SiO, interface. ' The
value of this parameter for SiO is linearly inter-
polated" between the extreme concentration values
according to the number of oxygen atoms nearest
neighbor of the Si atom we are dealing with.

To simulate the atomic structure of SiO„we as-
sume that the distribution of Si and 0 is such that:
(i) We assume perfect tetrahedral coordination of
the Si atoms irrespective of the kind of their near-
est-neighbor atoms, since in all the different
crystalline SiO, structures" and in amorphous
SiO„(0 & x ~ 2) films, "x-ray and electron diffrac-
tion measurements indicate that the tetrahedral
coordination of the Si atoms is kept, indicating sp'
hybridization. (ii) No oxygen bonds are allowed in
the structure. (iii) The Si-0-Si bond angle is as-
sumed fixed and we first take it to be 8=144' as
in n-quartz Si02 (Ref. 12) and the most probable
value in amorphous SiO, ." (iv) The continuous
random network of atoms forms a Bethe lattice
with no closed rings of bonds.

In order to calculate the electronic structure,
we first use the Kittler and Falivov (KF) meth-
od" "based on the cluster-Bethe-lattice approxi-
mation. ' In this method the local configuration
around the atom in which one is interested, is
treated exactly and the rest of the system is sim-
ulated by an effective Beth lattice. In this Bethe
lattice the SiO„alloy is characterized by the bond
probabilities and valence saturation. In this alloy,
since there are no oxygen-oxygen bonds, we are
restricted to the branch of the binary compound
sequence" where Si is the majority species.

The calculation of the density of states for the
above-described Hamiltonian involves dealing
with four-by-four matrices. In particular one has
to solve two different four-by-four transfer ma-
trices (T, and T,) related to the direct Si-Si and
to the oxygen-mediated Si—Si bonds, respectively.
The equations that give these transfer matrices
have the following form:

T1= +0
$8~-81 U ' M1 T1 ' U

)=2
4 -1

—Z, , pU;. W ~ T . U W, , (la)
1=2

M —g, U'. M, T, U;
1=2

4 -1
-Z„, U', g, T, U, M, . 1b

4=2

The subindex distinguishes between the four
different sp' hybrid directions. The matrices
W,. (M, ) (i = 1, 4) refer to the direct (oxygen-medi-
ated) interaction between nearest-neighbor silicon
atoms, whereas W' (M') refers to the silicon self-
energy when its parent is Si (oxygen). The ma-
trices U, are matrices corresponding to the tetra. —

hedral symmetry operations. As in the original
paper by Kittler and Falicov, "Z~e (r„a) is the
probability that an o. atom with a P parent has a
like (unlike) descendant. Once the transfer ma-
trices are solved numerically by an iterative pro-
cedure, the density of states is immediately ob-
tained in the usual way.

The calculated densities of states for different
concentrations and for a one-atom cluster are
shown in Fig. 1. In this figure we notice the fol-
lowing points; Firstly, the p-bonding and p-non-
bonding peaks characteristic of SiO, at -6 and -2
eV, respectively, are already present at x&1.
Secondly, the conduction-band edge has a smooth
variation with concentration. Thirdly, the top of
the valence band (at 3 eV at x =0) has a striking
behavior; its energy increases with the concentra-
tion and there is a p-bonding-like Si split-off band
at the Si-gap energies. This behavior combined
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FIG. 1. Density of states of amorphous SiO„calculated
using the Kittler-Falicov method in the one-atom cluster
approximation. A small (0.1 eV) imaginary contribution
to the energy has been introduced for computational con-
venience.
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FIG. 2. Density of states of amorphous SiO„calculated
using the Kittler-Falicov method in the 17-atom cluster
approximation. The distribution of oxygens in the cluster
is assumed to be random. A small (0.1 eV) imaginary
contribution to the energy has been introduced for com-
putational convenience.

E= Uq+ V —~, (2)

with the variation at the bottom of the conduction
band makes the gap smaller as the oxygen con-
centration increases in open contradiction with
optical-absorption experiments. ' In the spirit
of the cluster-Bethe-lattice method we increase
the size of the central cluster of atoms to get a
better description of the density of states. In
Fig. 2 we show the densities of states calculated
for a cluster which includes exactly the Si next-
nearest-neighbor of the central atom; the oxygen
atoms compatible with each concentration are ran-
domly distributed in the cluster. For each con-
centration sufficient clusters were calculated to
simulate randomness (the total weight of the clus-
ters considered was 0.98). The results shown in

Fig. 2 represent the average densities of states.
As we notice immediately in this figure, the re-
sults are very similar to those corresponding to
the one-atom cluster except for the split-off band
which is essentially suppressed. This indicates
that the effective medium in the Bethe lattice in-
duces a spurious band at the Si-gap energies.

A simple way to understand the origin of this
spurious band is by working with a simplified
Hamiltonian like that described in the Appendix.
In this Hamiltonian, the top of the Si valence band
is represented by a twofold-degenerate 5-function
which position in energy is given by

where U„, V, and ~ are defined in the Appendix.
In the KF approximation the interaction in the
effective medium is taken to be pV where p is the
probability that the nearest neighbor of an Si atom
be also Si. It is clear that if p &1 (as in the case
of SiO„with v& 0), Eq. (2) indicates that the SiP
bonding peak merges into the gap. This is indeed
what happens for our more realistic Hamiltonian
(see Fig. I) where the 5 function of the simplified
Hamiltonian is broadened into a band by the pre-
sence of the ppm interaction. '

From the previous discussion we conclude that
a mean-field approximation is not appropriate for
discussing the SiO, alloy because the top of the
valence band is governed by the Si-Si interaction
alone. On the other hand, the bottom of both the
valence and conduction band are well described
by the KF method since the corresponding states
are a mixture of Si and 0 orbitals.

In order to overcome the inadequacy of mean-
field approximation, one is faced with two possi-
bilities; on the one hand, one could increase the
size of the cluster and on the other hand, one
could go beyond the mean-field approximation in

the Bethe lattice, keeping the local cluster small
enough. We have ruled out the first possibility for
practical reasons since the computation time in-
creases very rapidly with the size of the cluster.
We then take the second approach. We deal with
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exact Bethe lattices where the lattice sites are
occupied by real atoms such that the interactions
between them are not treated probabilistically.
These Bethe lattices are formed by the most prob-
able Si-(Si -O~ ) unit in a random-bonding mod-
el' ' compatible with the concentration. In this
way we can only treat the concentrations z =0,
0.5, 1.0, 1.5, and 2. The Bethe lattices for x
=0.5, 1.0, and 1.5 are such that each Si atom is
surrounded by one oxygen and three silicons, two
silicons and two oxygens, and three oxygens and
one silicon, respectively (see Fig. 3). To calcu-
late the densities of states associated with these
Bethe lattices we deal with four different transfer
matrices for each concentration. , Results of the
calculated densities of states are aI.so drawn in

Fig. 3. As we can see, the behavior of the top of
the valence band, in this approach and using the
KF method (Fig. 1), is very different.

As shown in the Appendix, the presence of an
oxygen atom forbids the propagation of the Si
states near the top of the Si valence band. This
effect means that, as far as the Si states near the

gap are concerned, the Bethe lattice for x =0.5,
1.0, and 1.5 are like the threefold coordinated
Si Bethe lattice, the twofold coordinated Si Bethe
lattice, and a Bethe lattice decoupled into pairs
of sp'Si hybrids, respectively. Our calculation
shows that even for a realistic tight-binding Ham-
iltonian the position of the top of the valence band
for SiO„ is essentially fixed in energy as long as
there are infinite Si chains in the Bethe lattice
(see the Appendix).

We have repeated the described cluster-Bethe-

lattice calculation using these Bethe lattices as
boundary conditions. Results of our calculation
are shown in Fig. 4. The main features of the
densities of states that we can notice are the fol-
lowing: (i) The bottom of the valence band changes
abruptly from the pure Si value to the pure SiO,
value from x=0 to x=0.5. (ii) The p-bonding
peak at --7 eV, which is related to the presence
of Si-0 chains in the alloy, indeed appears for
z ~ 1, since for x =1 the probability of the pre-
sence of these chains is nonzero. (iii) The P-
nonbonding peak at --1.5 eV, which is related to
the oxygen lone orbital, is present for x&0. (iv)
The top of the valence band, indicated by an arrow,
varies smoothly with concentrations changing
abruptly to the SiO, position for x~ 1.5. (v) The
bottom of the conduction band varies smoothly
with the concentration.

It should be noted that all the above-discussed
features, with the exception of the behavior of the
top of the valence band, are also reproduced by the
calculation using the KF method. It is worthwhile
indicating that when we refer to the presence of
infinite Si or Si-0 chains we mean /arge enough
chains. As indicated in the Appendix, a chain of
about ten Si atoms or an even-membered ring of
Si-Si bonds already reproduces the top of the
valence band corresponding to an infinite chain.

X=2P '~
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FIG. 3. Density of states corresponding to the exact
Bethe lattices of SiO„ formed by the most probable
Si(Si -04 ) units. (a) SiO~&, (b) SiO, and (c) Si005. A

portion of the Bethe lattices is also drawn. A small
(0.1 eV) imaginary contribution to the energy has been
introduced for computational convenience.
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FIG. 4. Density of states of amorphous SiO„ in the 17-
atom cluster-Bethe-lattice approximation. The clusters
are embedded in the Bethe lattices of Fig. 3, compatible
with each concentration. The arrows indicate the posi-
tion of the highest valence-band energy level. A small
(0.1 eV) imaginary contribution to the energy has been
introduced for computational convenience.
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This result emphasizes the importance of inter-
mediate-range order; the toP of the valence band
is governed by intermediate-range o~der.

III. COMPARISON WITH EXPERIMENTS
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FIG. 5. Variation of the optical gap with concentration
in the SiO„alloy. The experimental data (Ref. 6) are
indicated by a continuous curve and the calculated values
are indicated by squares. The theoretical results are
shifted for a better comparison with the experimental
data.

In this section we compare the results of our
calculation with different available experimental
data. Optical-absorption experiments on SiO„
for the entire range of concentrations indicate a
very nonlinear variation of the optical gap with
concentration. The experimental results' are
drawn in Fig. 5. We observe that the gap varies
linearly between x =0 and x=1.5 where it changes
abruptly to the SiO, value. Our calculated gap
(see Fig. 4) is also indicated in Fig. 5. As we

see, there is a reasonable agreement between
theory and experiments. From the discussion of
the previous section, we interpret the break in
the variation of the gap with concentration at x
= 1.4 as being due to the breaking of Si chains due
to the increase of oxygen in the alloy. The con-
centration at which the discontinuity takes place
corresponds to the percolation" threshold in the
Bethe lattice, i.e. , at x, =1.33. It should be no-
ticed that this value of x, is lower bound s ince the
top of the valence band is governed by inter-
mediate-range order (see the above discussion).
The simple break of the infinite chains of Si is not
enough to shift appreciably the position of the
valence-band edge, since it remains essentially
unchanged when finite Si chains about only ten
atoms long are present in the alloy. Also it
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FIG. 6. (a) Experimental UPS data (Ref, 4) and (b)
calculated valence-band density of states for Si02. The
theoretical data have been convoluted with a Gaussian
of 0.45 eV half-width at half maximum.

should be noticed that in a real alloy the presence
of even-membered rings of bonds fixes the posi-
tion of the top of the valence band (see the Appen-
dix).

The slope of the experimental optical-absorp-
tion curves' ' near threshoM change from aburpt
near x =0 and 2 to smooth near x = 1.5. This be-
havior is consistent with our results since an
abrupt slope indicates optical absorption due to
delocalized states, whereas a smooth slope is re-
lated to optical absorption involving localized
states. A comparison between Figs. 3 and 4 in-
dicates that the states at the top of the valence
band for x=0, 0.5, 1.0, and 2 are del. ocalized.
On the other hand, the top of the valence band for
x=1.5 is formed by localized states.

There are available ultraviolet photoemission
data for x =0, 1.0, and 2.0. For x = 0, the cal-
culated density of states is in good agreement with
experiments. ' ' The experimental results and the
calculated density of states for SiO, are drawn in
Fig. 6. The main features of the experimental
spectrum are well reproduced by our calculation,
the main discrepancy being the width of the non-
bonding band centered around -2 eV which is nar-
rower and is shifted in the calculation with re-
spect to the experiments. This behavior is due
to the absence of the ppp interaction in the Si—O
bond in our Hamiltonian.

In Fig. 7(a, ) we present the IIPS data' for an SiO
film. A comparison of this figure with Fig. 6(a)
reveals several differences between the SiO, and
the SiO UPS spectra. First, the bottom of the
valence band at --10.5 eV in SiO, is shifted up-
wards by -1 eV in SiO. Second, the p-bonding
peak is also shifted by -0.5 eV and is weaker in
SiO than in SiO, . Third, there is a tendency in
SiO to fill up the dip between the p-bonding and the
P-nonbonding peaks. Fourth, the p-nonbonding
peak at --2 eV is narrower in SiO than in SiO,
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since there are fewer oxygen atoms. Fifth, in
SiO there is a new band above the p-nonbonding
peak. In Fig. 7(b) we present the broadened den-
sity of states for SiO (see Fig. 4 for x = 1.0).
There is an overall agreement between theory and
experiments. The p-bonding peak at --6.8 eV is
weaker in SiO than in SiO, since there are fewer
Si-0 bonds in SiO than in SiO, . There is, in our
calculation, a tendency to fill up the dip between
p-bonding and P-nonbonding peaks owing to the ap-
pearance of localized states associated with the
disorder in the alloy. The band above the p-non-
bonding peak is due to the presence of Si-Si bonds.
It is important to notice that the calculated bonding
band is shifted W. 6 eV with respect to experi-
ments.

So far we have assumed no bond-length and no
bond-angle variation when alloying. In a recent
work based on a chemical-shift analysis, Grun-
thaner et gl.' have proposed that near the Si-Si02
interface the most probable Si-0-Si bond angle is
125 . This result is in addition to the fact that
Hollinger' has found that the UPS spectra of SiO
and of the Si-SiO, interface are very similar, in-
dicating that the discrepancy between theory and
experiment in Fig. 7 may be due to the fact that
we have taken an inappropriate bond angle. We
have repeated our calculation taking i25 for the
Si-0-Si bond angle. The results are shown in
Fig. 7(c). We now get a much better agreement
with Ho1.linger's UPS data. There are two main
effects due to the bond-angle variation. First,
the bonding band is shifted to the right position and
there is more tendency to fill the dip between the

ta)

bonding a,nd nonbonding bands. It can be shown"
that the variation of the position of the bonding
band with the Si-0-Si bond angle goes like

Eb db, T sin 8/2 q

where T is defined in the Appendix. On the other
hand, the nonbonding band behaves like

~nonbondillg ~ cos ~/2 ~ (4)

On the other hand, in the ideal-mixture model
there is a tendency to form Si-Si4 and Si-04 ted-
trahedra. Then

(6a)

and

|P,(x)], ,=1-x/2. (6b)

In our calculation we have assumed a distribu-
tion of Si and 0 atoms corresponding to the ran-
dom-bonding model. We have also calculated
densities of states for distributions of atoms other
than the random one. We have not found very sig-
nificant differences with respect to the above-
reported results. This suggests that it is very
difficult to infer the bonding statistics of an SiO„
system using UPS spectra. However, the perco-
lation threshold is very sensitive to the bonding
statistics. The critical concentration x, for the
random model is smaller than for the mixture
model since, in this case, there is a higher prob-
ability of having long Si-Si chains in the system.

This explains the two main effects of the bond
angle variation.

It is generally accepted that the distribution of
the silicon and oxygen atoms in SiO„depends on the
preparation of the sample. Each SiO, composition
is described by a set of distribution probabilities
P,(x) for the five elemental tetrahedral units
Si-(Si -Od, ) (y =1,4).' In the random-bonding
model, P (x) represents the binomial distribution

I
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50

-12 -8 -L 0
ENERGY(eVj

FIG. 7. (a) Experimental UPS data (Ref. 4) for SiO.
(b) Calculated valence-band density of states (see Fig. 4)
for SiO with an Si—0-Si bond angle of 144 . (c) The same
calculation performed with an Si—O-Si bond angle of
125 . The theoretical data have been convoluted with a
Gaussian of 0.45 eV half-width at half maximum.

IV. CONCLUDING REMARKS

We have presented in this paper a realistic cal-
culation of the electronic structure of amorphous
SiO„. The ingredients of our model are the fol-
lowing: (i) We have taken a realistic tight-binding
Hamiltonian which describes properly the elec-
tronic structure of both Si and SiO, . Once the
Hamiltonian parameters for Si and SiO, are fixed,
the only new parameter in the theory is the rela-
tive position of the Si sp' orbitals in Si and in SiO,
which is fixed fitting optical-absorption data in
Si-SiO, . (ii) The Si and 0 atoms are distributed
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APPENDIX

In this Appendix we study, using a simplified
Hamiltonian, the behavior of the top of the valence
band of SiO„. Let us take a simple tight-binding
Hamiltonian for SiO, including the following inter-
actions:

&a, ilH ft, i&=n„

&a, ilHII, i&= U„,

(s, n lHl s, n&= U, ,

&p, n fHfp, n&=U, ,

&h, i l H f s, n& = t,
&t, ifH fp, n&=T,

(Ala)

(Al b)

(Alc)

(Ald)

(Ale)

(Al f)

where fh, i & stands for the sP' hybrid of the sili-
con atom, i pointing to the nearest-neighbor ox-
ygen atom labeled n. l s, n& represents the 2s
orbital of the oxygen atom n and fp, n) is the 2p
orbital of this oxygen atom oriented in the Si-0
bond direction. The SiO, lattice can be reduced to
an effective Si lattice"" described by a Weaire-
Thorpe Hamiltonian" such that the effective Si-Si
interactions are now energy dependent:

&t, ilH jf, i&=~ (A2a)

in a Bethe lattice such that there are no 0-0
bonds. 'The calculation of the densities of states
are made using the cluster-Bethe lattice method.
(iii) Given the inadequacy of previous mean-field
theories to deal with SiO„& we have used a bound-

ary conditions of finite clusters exact Bethe lat-
tices. In these Bethe lattices, the distribution of
the Si and 0 atoms is fixed for each concentration.

Results of our calculations allow us to conclude:
(a) There is no evidence for deviations of random
distribution in the SiO„samples corresponding to
the experiment with which we have compared. The
distribution of Si and 0 atoms is random with no
0-0 bonds. (b) The bond a,ngl. e Si-0-Si in SiO
is close to 125' instead of being 144' as in z-
quartz. (c) The behavior of the SiO gap is essen-
tially due to the fact that chains and even-mem-
bered rings of Si atoms in the alloy fix the posi-
tion of the valence-band edge. (d) The electronic
structure of a-SiO„ is governed by intermediate-
range order. Long-range order is lost and short-
range order alone cannot properly describe a-SiO„.

T2 t2
&t, i fH'

f t, i& = U„+ +
S

= U„'"(Z),

&h, ifH'fh, i &= ""+
jeff(@)

(A2b)

(A2c)

E '=U~+ V —6, (A2)

this energy being well above F., '. One can easily
prove that the spectral bounds of the Si-like sub-
lattice at (A3) and at

gsi U V+ 3g (A4)

are in the energy region where the decoupling is
almost complete. This shows that if there are no

defects in the SiO, system the Si band gap is a for-
bidden region.

We have to find under which conditions the spec-
tral bounds are saturated. We will show that the
valence-band edge (A3) is kept fixed as long as
there are infinite Si-Si chains or even-membered
rings of Si-Si bonds in the SiO„system. In other
words, when the Si-like sublattice forms a contin-

where 8 is the Si-0-Si bond angle of the original
SiO, lattice.

This scheme can be easily extended to an SiO„
system. In this case, the hybrids of an Si atom
can have two different self-energies: U„'" if the
hybrid is pointing towards an oxygen atom or if

U„ is pointing towards a silicon atom. The inter-
action between hybrids of nearest-neighbor Si
atoms would be V'" is there is an oxygen atom be-
tween them, and otherwise V.

For any reasonable set of Hamiltonian param-
eters, U„'" —U„ is one order of magnitude
greater than 4 in the Si-gap energy region. This
shows that in this energy region two hybrids at the
same silicon atom, such that one points towards
an oxygen atom and the other towards a silicon
atom, are essentially noninteracting. Therefore,
the SiO„system can be visualized, for energies
in the Si-gap region, as being formed by two in-
dependent subl. attices: one sublattice includes
all hybrids of the Si—0-Si bonds (SiO, -like sub-
lattice); the other sublattice includes all the hy-
brids of the Si-Si bonds (Si-like sublattice).
These two sublattices can be studied separately as
Si lattices so that in the Si0,-like sublattice the
interactions are effective interactions (A2).

The top of the valence band of the Si0,-like sub-
lattice is always at the lone-orbital energy, i.e. ,
at E ' '= U~. On the other hand, if the Si-like
sublattice were perfectly tetrahedrally coordina-
ted, its valence-band edge would be at"
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uous network.
Let the eigenfunctions of the Si-like sublattice be

written as

I y(E)& =g c„'(E)II, f&, (A5)

A solution of (A6) is
„(g)

C'„, =0 for all i ~ (A8a)

where i indicates the Si atoms and 5 the sp' orbi-
tals. The subindex 8 runs from 1 to n(i), n(i)
representing the coordination of the atom i in the
Si-like sublattice ~ We can now write the eigen-
value equation

fflit(E)&=El&(E)&.

For any nearest-neighbor pair of Si atoms labeled
i and i' we can write

n( )

(E + n —U )Cq(E) =b Cq. (E) + VC~ (E) . (A7)
h'

C„'(E)= C„'(E) (A8b)

if there are infinite coupled equations (A7) (i.e. ,
if there are infinite chains of Si-Si bonds) or if
the atoms form an even-membered closed ring.

The solution (A8) gives the eigenvalue E = U„+ V
—b as in (A3). Then the spectral bound is satur-
ated, A question we ask ourselves is how long the
Si chains have to be, in order to be close to the
spectral bound. For an Si one-dimensional chain
and a given set of parameters we get 2.0, 2.9,
3.1, and 3.2 eV for the position of the valence
band for two, six, ten, and infinite bonds, respec-
tively. From the above discussion we conclude
that the top of the valence band of an SiO„system
is close to the pure Si value as long as there are
sufficiently long chains of Si bonds.

Finally we would like to remark that the de-
coupling approximation is also valid for a more
realistic tight-binding Hamiltonian as that de-
scribed in Sec. II. The 6 function of E„becomes
a band centered at E„(Ref. 8) with a width depen-
ding on the coordination of the Si-like sublattice.
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