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Retarded edge modes of a parabolic wedge
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Thc dispcision of thc retarded cdgc Inodcs of a frcc-clcctron —metal parabolic wcdgc is

determined. It is shown that, although the modes are decoupled within the electrostatic ap-

proximation. , decoupling does not occur when the full set of Maxwell s equations is used.

This feature is considered in detail and a novel solution is given, together with some nu-

merical examples. It is shown that the dispersion equation is in the form of an infinite

determinant that can be arranged in block diagonal form. The method depends upon cer-

tain expansion coefficients that, through a completely new mathematical result concerning

Hermite functions, are shown to have a closed form. The validity of labeling the eigen-

modes is discussed, and the convergence of the solution scheme is carefully examined. It is

found that the retarded modes are quite close to the electrostatic modes, even as the light

line is approached, with maximum disparity arising for the odd mode numbers.

I. INTRODUCTION

IQ principle, 8 diclcctllc wedge shoUM permit thc
cxlstcncc of electromagnetic waves thRt Rrc locallzcd
within the vicinity of the sharp edge Rnd propagat-
ing freely along it. In 8 prcv1ous study Dobrzynskl
and Maradudin' showed that electrostatic modes of
this type indeed exist but have frequencies that are
1ndcpcndcnt of %'Rvc numbcl Rnd dcpcnd contlnu"
ously on the Laplace-equation separation constant.
Davis has considered the electrostatic modes of a
hyperbolic cylinder Rnd has concluded that the
Dobrzynski Rnd Maradudin' results are associated
w1th thc sharpncss of the cdgc of thc %'cdgc.

The use of 8 hyperbolic cylinder is quite a good
idea since the sharp-edged wedge is its natural limit.
An effect equivalent to the rounding of the edge of
thc wcdgc can also bc Rch1cvcd by US1ng 8 QonlocR1

d1clcctrlc function. An Rltcrnatlvc systcIIl that sup-
ports edge modes, but does Qot have the sharp edge
as a limit, is the parabolic cylinder. This was first
studied, within the electrostatic approximation„by
Egulluz and MaradUd1n,

For an electrostatic approximation, the modes are
decoupled, leading to a considerable simpliAcation

in their treatment. Retarded modes, however, in-

volve the full set of Max%ell's equations with the
result that such a decoupling does not occur. This
fcatulc 1s cons1dcrcd 1Q some dctall 1Q th1s paper
and a novel solution is given together with some nu-

1Tlcf1cal examples. It ls shown that the d1spcrs1on

equation is in the form of a product of two infinite
determinants and that although the solutions of each
onc RI'c, strictly spcaklng, coupled togcthcl, they can
be precisely labeled.

In Scc. II thc field cqUat1ons 81c dcrivcd Rnd the
totR1 field 1s cxprcsscd 1Q tcATls of 11ncar combIQR-

tions of electric (E) waves and magnetic (8) waves.
In Sec. III it is shown, by an expansion techinquc,
that scparatc d1spclslon rclat1ons fol" cvcn- Rnd odd-
order coupled modes can be produced. Section IV
contains dctNls of thc numerical method of solution
and the relationship of the results to the electrostatic
modes. Thc Appendix contains whRt %'c bc11cvc to
be a completely new mathematical result concerning
haITflonlc osc111atoI' c1gcnfunct1ons.

II. FIELD EQUATIONS

%c consider the parabolic cylinder shown in Rg.
I and use the standard coordinates (g,g,z) where the
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]ty 2 2 2
~D, V = &D, V + 9' (4)

$&o

Q2 2+ g2

Equation (3), through the introduction of a separa-
tion constant I, is equivalent to the two equations

)o a Ez
+ (I —Fn, vg )Ez = 0

an'
(6)

a E, 2 2—(I + FD vg )E, = 0 .

CO

~=)~9 -X

z =-z

FIG. 1. Parabolic cylinder coordinates. The z axis is
perpendicular to the figure. The boundary between
dielectric and vacuum is given by lgl = lgol. The
dielectric occupies the region

l g l
&

l gp l.

Equation (6) has a solution A „(FD vrt), which is the
familiar eigenfunction of the harmonic oscillator,
i.e., the Hermite function.

2/
~&(FD,vrt) = e ' II, (FD,vr))l(2"tt '~n)'

where H„ is a Hermite polynomial and
I = (2n + 1)FD ~. If we take X = g(2FD y)

'

then Eq. (7) can be written as

y2
n+ —+ Ez=0

2 4

CO

D, V ~D, V (2
C2

and the subscripts D and V denote dielectric and
vacuum, respectively. The edge-mode field solu-
tions are of the form f(g, rt) exp[i (qz —cot)], where
q is the axial wave vector. Hence Eq. (1), in para-
bolic cylinder coordinates, is

a'E, a'E, —FD vh Ez ——0,
an

(3)

where

z axis is normal to the plane of the figure. The
dielectric, in this case a free-electron plasma
representing a metal with dielectric function eD, oc-
cupies the region l pl & lgo l

and the vacuum with

the dielectric function ev ——1 occupies the region

14 I
& lkol.

As expected from studies of the circular
cylinder, ' the total field does not decouple into E-
and 8-wave solutions but is a linear combination of
both. For an E-wave solution B, = 0 and the axial
electric field component satisfies

(V —aDy)E =0, (1)

where

whose solutions are the parabolic cylinder
functions "V(n + , , (2FD )'~ g) for —g & gc and
U(n + —,,(2Fq)' g) for g & gc, chosen to have the
correct behavior as $~0, 0c. The general form of
E, is therefore

A„A „(Fg) ) V„(XD ), g & gc
& C„~„(r,)U„(X,), g&g, "0)

where FD v
—FD yg, XD t

—(2FD y)'1/2

V„(Xn) = V(n+ —,, XD), and U„(X~)
= U(n + —,,Xt.).

The axial magnetic field required to construct the
8-wave solutions is, by similar reasoning,

B„A „(FD) V„(XD ), g & go

D„~„(r,)U„(X,), g& g

From Maxwell's equations, after suppressing the z
and t dependence since it is common to all com-
ponents, the relevant field components of the two
field types are

A„A „(FD)V„(XD)
E, = ' „C„A„(Fy)U„Xy

for E waves

0 for B waves,



A„Fg) 4 „(YD ) V„(XD )

F —3/p~&
( Y ) U (X )

for E waves

B„FD A „( YD) V„(XD)
for 8 waves,

r

0 for E waves

B„A „(YD)V„(XD)
for 8 waves,& 'D„~„(Y,)U„(X,)

(l2)

/I „aDFD A „(YD ) V„(XD )

3/p~ ( Y. ) U (X )
for E waves

&nFD "'~n(YD)V. (XD)
for 8 waves,

where the prime denotes differentiation with respect to the argument. The actual total field components are
obtained by adding together the E- and 8-wave contributions.

III. THE EDGE-MODE DISPERSION EQUATION

Since spatial dispersion is being neglected, only four boundary conditions are required involving the con-
tinuity of tangential electric and magnetic fields. These can be written as

X'„]g,=0 [&.]g, =0 [&„]g,=0 P4]g, =0

where [C]g represents the change in a quantity C on the boundary g' = (0. Canceling common factors and

writing V„= V(n + —,,(2FD)'/ go}, U„= U(n + —,,(2Fv)' go}, and R = (FDiFv)'/ we obtain the equa-

tions

y [ e[/I ~.(—YD)V, —C,~.(YV)U.'~]+ ~&rd[B„A „(Y )V„' —D„Pt„(Y )U„'R]I =0, (I

+ [A„A „(YD)V„—C„P „(Yv)U„]= 0,

[~.~D~. (YD) V.
' —C.av~„( Yv) U„'] q[B„~„'(Y,) V—„' D„~„'(Y,) U„'—Z] = 0,

g [B„M„(YD )V„—D„A „(Yv )U„]= 0 .

At this stage it can be seen that this problem is somewhat unusual, because the equations still retain both g
and q dependence. One or the other of these variables would play the role of the angular term in the circular
cyl1ndcr case Rnd would bc cl1m1natcd when the boundary condlt1ons arc applied. Thc wRy out of this dlfHcul-
ty is to expand M„(YD ) in terms of 4 „(Yv). We write this expansion as

~n(YD) = g&n~m(Yv) , .

Hence using the orthogonality relationship

j Pt ( Yv)A (Yv)dYv = 5
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we have
+ OQ

= f ~m(&) )~„(&D)d&y .

The Hermite functions also satisfy the recurrence relationship

1/2 1/2

P „(F)= — A „)(F)— A „+)(F) .
2 " 2

(20)

(21)

Equation (14), after using Eqs. (18), (19), and (21), becomes

I, —l()l (n + ) I, +15l ]+ B V al, ~l,
n I g

= R g C„U„[(n + 1)'/5 n+) —n'/ 5 „,]+ D„U„5„.(22)
n

Equations (15) to (17) are dealt with in the exactly the same way. Hence the set of equations obtained through
the application of the boundary conditions can be expressed as

= R m' Cm )Um )
—(m + 1)' Cm+)U +( + D U, (23)

0 0
Cm Um g /ln Vn amn, (24)

g I 2a Al)Vnn a„—coqBn V„[n' am n ) —(n + 1)' a „+(]I

D U =QB„V„a
= R I 2a) C U + coq[m '/ D ) Um )

—(m + 1)'/ D + I U +, ] I,
(26)

The use of Eqs. (24) and (26) to substitute for C and D in Eqs. (23) and (25) yields coupled equations of the
form

+[A, „A„+8 „B„]=0,

g[P „A„+A, „B„]=0,
(27)

where

„=I (n+ 1)' a „+)—n' a „,+R[(m + 1)' a +, „—m' am ) „]J,
pl pl

2a) Vn U
a —Rm, n Vp UO

n m

(28)

2&m, n
pt OI

2 Vn 2 Un
(AD —lx yR

Vn Un

Note that am 1„——0 for m = 0 and am „=0 if m and n have opposite parity. am „ is shown in the Appen-
dix to have the closed form

&m, n
=

' 1/2
1/3

( —1)(m — 2n)p/(n —m)/2 2R
~n+m» +

1/2

Fy + Fg)
(29)
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where P& is an associated Legendre function. This result simplifies 1, „ to

Equation (7) in matrix form is

(100 41
0 0

0 0

~10 011

~2P ~21

020

0 0

40 Ai

Oo2

41 (t'02

~11 ~12

Ag 0

0 Ag

0 013

Ap

41 62
~31 ~32

0

0 033

42 A3

0 0 A, 12 $13 0

0 0 022 A23 0 A2

where use has been made of the fact that a „=0 if m and n have opposite parity. The infinite matrix of Eqs.
(31) can be simplified further by noting that interchanging selected rows and columns in its determinant brings
it into block diagonal form. The determinant of this diagonal matrix is the product of two infinite deter-

minants, i.e.,

(('00 41 002 03 000 41 902 43
~10 ~11 ~12 ( 13 ~10 011 ~12 ((13

Ao ~21 022 ~23 ' ' ' ()20 ~21 ~22 ~23

40 ~31 42 ()33 40 Ai 42 A3

The first determinant yields modes which, as will be shown later, correspond to the even-order modes
described in the electrostatic limit by Eguiluz and Maradudin. The second determinant yields modes which
correspond to the odd-order modes in that limit. The electrostatic result is recovered in the limit c ~ ~
which in Eq. (2) leads to aD3 ~0. Thus FD v~q, R~1, a „~5 „and A. „~0. Equation (32) reduces
to the result

8 iI1 (c~ ao) = Um
(33)

In fact it is the second parenthesis that yields the
nontrivial electrostatic result. It turns out that the

terms in Eqs. (32) are dominant and can be
used to label the roots of this equation despite the
fact that the solutions of each determinant are strict-

ly speaking coupled together. (34)

l

elements of Eq. (32) have rapidly decreasing magni-
tudes away from the diagonal. This has useful

consequences for the solution of these determinants.
Firstly, it might be expected that a reasonable ap-

proximation is given by the dominant terms

mm =0

IV. NUMERICAL CALCULATIONS

In the electrostatic limit, I' = 1, and a „=5m „.
If the electrostatic condition is relaxed then

although I" p 1 but a „=0 for values of m and n

differing by more than a few orders. That is, the

which would be expected to behave in a similar
fashion to the decoupled electrostatic modes, except
for small values of q.

The exact solution of Eq. (32) cannot be separated
into decoupled modes because of the finite ofII'-

diagonal elements. However, because of the proper-
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0.8—
q

~ =1,%o=0.5( ~ ) )

q —=1,5o = 0.5
(dp

'
Qp

M
NU

0.70—

MODE NUMBER

0,0) (0,2) (0,4) (0,6) {0,8) (0,10) {0,12) (0,14) {0,'l6)

(min row number, max. row number )

FIG. 2. Convergence of the even-mode solutions of
the dispersion equation as function of minimum and
maximum row number.

0,0) (0,2) (0,4) (0,6) (0,8) (0,10) (0,12) {0,14) (016)

(min row number, max. row number)

FIG. 3. Convergence of the odd-mode solutions of the
dispersion equation as a function of minimum and max-
imum row number.

ties of a „, solutions can be found to any desired

degree of accuracy by treating modes as being per-
turbed from the decoupled solutions by the small
OA'-diagonal terms. That is, each solution can be
found independently by finding the roots of a deter-
minant containing the P~~ term of interest but of
increasing magnitude until the result converges. Qf
course, every second increase in the order of the
determinant leads to an additional root due to intro-
duction of a new P~~ term. The modes that have
the dispersion shown in Figs. 4 and 5 converge sa-
tisfactorily for determinants of order 6 to 8 or less.

Thc convergence pfopcftics of thc modes is of
some interest at this point and these are displayed in

Figs. 2 and 3. Even- and odd-mode frcquencics arc
shown for q = 1 and go

——0,5 (focal length of 18 A
for aluminium) measured in units of «0&/c and
(c/«oz)', as a function of the minimum and max-
imum row number. Thus (0,3), for example, means
the solutions for a 4 g 4 determinant using rows
0—3. This means that the solution of the deter-
minant starts at the top left-hand corner and the fol-
lowing sort of progression could be used:

000 41 (('02

( 00 0 ~ ~10 ~11 ~12

Ao ~21 422

22
a ~ ~ ~ O ~ ~ e O

22

(35)

(0,0) (0,2) (0,4)

The figures show clearly that a new root emerges as each new p~~ is introduced. The following alternative
progression could also be used:

000 41 =0,
022

(36)
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It is clear that either progression will lead to conver-

gence but the adoption of both results in a zig-zag

approach to the convergent result. The modes that
have the dispersion shown in Figs. 4 and 5 converge
satisfactorily for determinants of order 6 to 8 or
less.

Figures 4 and 5 contain the dispersion curves for
the first few modes of a free-electron —metal para-
bolic cylinder with ED ——1 —mzco (to& is the plas-
ma frequency) and for two values of go given by
0 1(c/. co&)'/ and 0 5(c./co&)'/ . The eigenfrequency
is not plotted as a function of the quantity go(2q)
as was done by Eguiluz and Maradudin since, with

the introduction of retardation, this quantity is no
longer a universal parameter of the system. The
more conventional dimensionless quantity qc/mz is
used instead. Although the exact solutions are cou-

pled modes we label them for convenience in accor-
dance with the dominant P ~ terms in Eq. (32).

In Fig. 4, for the more open structure

gn
——0.5(c/co& )'/, the m = 0 and 1 modes obtained

from the electrostatic Eq. (33) are shown, together

with the solutions that include retardation obtained
by the approximate and exact methods described
above. All higher modes lie between these modes

and, for increasing m, the retarded solutions ap-

proach the expected semi-infinite result

&D+v+~D =0

This result makes obvious physical sense, and can
be seen analytically from the increasing validity of
the approximation (34) as m increases. Since, in the

(2FD)' and (2FV)', respectively, Eq. (36) foHows

directly.
Figure 4 shows that the approximate solutions

suggest that retardation has a stronger effect than it

does have in reality. The exact solution tends to
remain close to the electrostatic result right down to
near the light line, co = qc, before curving down to a
limit asymptotic to this line (note that all electrostat-

ic modes cross the light line and approach co = 0 or
~ = u& for even and odd modes, respectively, as

q ~0).

BL=l.o Xo =05 QC

0.9

0.8
0.9

"P 06

0.5

0.8

0.7

0.4

0.2

04

0,1

1.0 q—
G)p

3.0

0.2
ti(;

erm
d)

FIG. 4. Dispersion curves for m = 0 and m = 1 edge
modes of a metal parabolic cylinder in vacuum with

go
——0.5(c/co~)'~'. The curve labeled diagonal uses only

the first approximation to the eigenvalues. The exact
coupled solutions are labeled for convenience by the
dominant mode number in their solution.

1.0 3.0

FIG. 5. Dispersion curves for the m = 0 to 3 edge
modes of a metal parabolic cylinder in vacuum with

go
——0.1(e/co&}' . Diagonal is the first approximation to

the eigenvalues.
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Similar results are obtained for the much sharper
structure go

——0.1(c/co~)'i shown in Fig. 5. As ex-
pected, the modes separate in frequency as go is de-
creased but once again the electrostatic result is a
rcasonablc approximation to thc exact retarded
result even quite close to the light line.
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APPENDIX

Equation {20) using (8) is

(Al)

If we introduce

2
p =x

+ PD

' 1/2

&m, n = 2

~V+ +D

(
(2hl QN i)ii2 ( 1 f2

' 1/2 i~
%f

I{m,n, a,b) = e "H (ax)H„(bx)dx .

Now the generating function for the Hermite polynomials is

e = g —H„(x).2xA —A

n on f
(A4)

og Qm 5
e2cxx i+2bxP—Pg g— P H (ax)H (bx)

m=on=o ~'! !

Integrating both sides of Eq. (A5) gives

oo ao Qm +N

,
I(m, n, a,b) = exp[(a —1}A, + (b —1)p + 2abip] .

om! n!

If the exponential on the right-hand side of (A6) is expanded, it becomes

(a' —1) (b' —1)' (2ab)" ~gk+, 2(+„
k-oh-o -o y!

(A6)

(A7}

(AS)

Hence comparing the coefncients of iL IJ,
" in Eq. (A6} and (Ag) gives, after doing the sum over r

where since 1/k! = 0 if k & 0 all sums can be extended from —00 to ao. This step simplifies the manipula-

tion of the sums. The introduction of Kronecker delta functions to (A7) changes 6 to

(a —1)" (b —1) (2ab)"6=g
y t 1

~ I ~m, 2k+r~n, 2I+r
k, l,r p!

(a' —1)' (b' —1)' (2ab}"-"
I(m, n, a,b) = m! n!g 4 2k 2i+n ~—k! l! (n —2I)!

(A9)
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where

~l, k+(n —m)/2, n —m even
~m, 2k —2l —n

0, n —m odd.

This is true since the equation rn = 2k —21 + n cannot be satisfied if (n —m) is odd. Therefore

I(m, n,a,b) = 0 if (n —m) is odd. The sum over 1 can now be immediately performed. Requiring that the

argument of the factorial is non-negative gives the limits of the final sum over k as

[m /2]

k =max(0, (n —m)/2)

where [ ] denotes the integral part. Now, for n & m,

m.
(m —2k)!

so that

m

k

m 1—+-
k

n!
I(m, n, a, b) = '

(b —1)'" '/ (2ab) 2F~ ——,——+ —; + 1;x
[(n —m)/2]! 2

'
2 2

'
2

(A10)

where x = [(a —1)(b —1)]/a b and 2F~(ot, P;y;x) is a generalized hypergeometric series but is equivalent
to F(a,P;y;x) the hypergeometric series. '"' An analogous result holds for m ) n by interchanging m and n

and a and b.
We now let a = [2/(1+ f )]'/ and b =f[2/(1+ f )]'/ so that a —1 = (1 —f )/(1+ f2),

b —1 = (f —1)/(1 +f ), and x = —[(f —1) /4f ]. Since x is negative it is possible to transform the
result to one in terms of an associated Legendre function by noting that ' '

—m —m 1 n —m
1

(f' —1)'—
2

'
2 2' 2 4f

= 2'" '/2p +
2

2f
1 —f

(n —m)/2 (n +m)/2
1 + f Plm —n)/2 2f (All)

2f (m+n)/2
1 + f2

Therefore,

n!
m!

1/2

(m —n)/2 2f
~(m +n)/2 1+f m)n (A12a)

m!
n!

' 1/2

( 1)(m —n)/2P (n —m)/2 f2,~
(n+m)/2 1+ (A12b)

These formulas are actually equivalent since P„(x)= [(n —m)!]/[(n + m)!](—1) P„(x).
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