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Off-diagonal disorder in one-dimensional systems
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We examine the nature of the zero-energy state in a one-dimensional tight-binding sys-

tem with only nearest-neighbor off-diagonal disorder. We find that, although the localiza-

tion length diverges at this energy, the state must nevertheless be considered as localized be-

cause the mean values of the transmission coefficient (which is directly related with the dc
conductance) approach zero as the size of the system L goes to infinity. In particular, we

find that the geometric and harmonic mean values of the transmission coefficient behave as

exp( —y&L ), while the arithmetic mean value follows the power law L with 6 0.50.
This is in contrast with the usual case of only diagonal disorder, where all three means

behave as exp( —AL).

The question of the localization of the eigenstates
in one-dimensional (1D) disordered systems has
been extensively studied both numerically' and

analytically. ' The Anderson model for a disordered
lattice defined by the tight-binding Hamiltonian
H = X„e„~n )(n

~

+ X„' V„~n )(m ~, where
the sites n form a regular lattice, is employed in

most of the studies. Disorder has been introduced

by assuming that the diagonal matrix elements e„
are random variables. Although some questions
have been raised recently regarding the localization
of states in 1D random systems, it seems that the
questions have been answered '" satisfactorily and
thus all eigenstates in a disordered (diagonal disor-
der only) 1D system are always localized. The role
of randomness in the off-diagonal matrix elements

V„~ has not been studied until recently, ' the
underlying assumption being that the off-diagonal
disorder is somehow similar to the diagonal one. A
first indication that this may not be so was provided

by Theodorou and Cohen, who suggested that in a
1D system the eigenstate at the rniddle of the band
remains extended in the presence of pure off-

diagonal disorder. They based their argument on
the fact that the usual definition of the localization
length diverges on the band center and so they ar-

gued that the. state is extended. Their claim was
questioned by Fleishman and Licciardello who
found that, although the localization length diverges
at this energy, the state is nevertheless localized due
to fluctuations.

An unambiguous way of deciding whether or not
an infinite localization length does imply localiza-
tion is to study the transmission coefficient T of the
system at this energy (E = 0). The transmission

coeAicient is a very important physical quantity in

Vn n+1Cn+1 + Vn, n —1Cn —1
= ECn

where c„are the amplitudes of the states at energy
E and each V„ is a random variable characterized

by a probability distribution. (The specific form of
the distribution will be given below. ) When E = 0,
iterating Eq. (1) we obtain

C2~ ~ V2~ 1 2n 2—= x =(—1)"
CO V2n, 2n —1

X
2n —3,2n —4

V2n —2,2n —3

V1,0

( V2, i

its own right in deciding about the extended or lo-
calized nature of an eigenstate and most significantly
since it is directly related ' to the dc conductance G
of the system, which determines whether or not the
states are localized.

In this paper we present results for the transmis-

sion coefficient of a 1D disordered system with only
on'-diagonal disorder at the center of the band. We
find that this state is a localized one (although the

localization length is infinite), independently of the

probability distribution of off-diagonal disorder, be-

cause the mean values of the transmission coefficient

approach zero as L ~ oo.
We consider here a tight-binding Hamiltonian

with nearest-neighbor interaction only, with constant
diagonal and random off-diagonal matrix elements.

Shifting the origin of energy to eliminate the con-
stant diagonal matrix elements we have that the

Schrodinger equation in the site representation is
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Considering the quantity

y =in(x
)
= gy,

where

P(y)dy = (2m.no )
'j exp( y /—2no )dy. (3)

Defining the localization the usual way, I/l, (E = 0)
= —limn „y/2n, where y = ln

~
c2„/co ~, we ob-

tain from Eq. (3) that I/l, (E = 0) = 0. Therefore
Theodorou and Cohen argue that this state is ex-

tended regardless of the probability distribution of
V„~, except when the probability for V = 0 is finite,

in which case the chain is broken and of course the

state is localized. Fleishman and Licciardello ques-

tioned this claim and argued that Auctuations, previ-

ously ignored, localized the E = 0 state, and that

the envelope of the wave function has the asymptot-

ic behavior exp( A2i/n —)

An unambiguous way to decide whether or not
the E = 0 state with infinite localization length is

localized is by studying the transmission coefficient
T of the system. At E = 0, the transmission coeffi-

cient T is given by

T= 4

/x + 1/x f'
(4)

Using the normal probability distribution [Eq. (3)]
for the random variable y we have that the probabil-

ity of y not being in the interval [—co&'n, eo.v'n ]
is equal to 1 —c(2/tt)' when E~0 and n ~ ao.
Therefore for the random variable x, which is equal
to exp(y), we have that

Pr[x & exp(+eov'n )

or x & exp( ecrv'n )] —~ 1 —e(2/vr)'j2
g—+p

where Pr is the probability; i.e., the quantity
x = c2„/cp, which is a measure of the exponential

growth or decay of the envelope of the wave func-

tion, is almost certainly either very big or very small

for large n. But in either case the transmission coef-
ficient T [Eq. (4)], due to its specific form, is small,

yj l V2j —1,2j —2/V2j, 2j —i

one has that the y s are independent variables with

mean 0 and standard deviation o; For large n we

use the central limit theorem to obtain the probabili-

ty distribution of y,

which implies that the E = 0 state is always local-
ized. In particular we can say that

Pr[T & 4exp( —2e~n)] ~ 1 —e(2/n)' . (6)
e~p

n~oo

It is worthwhile to note that while it is correct to
discuss probabilities with the help of the normal dis-

tribution derived by the central-limit theorem, one

cannot in general use the normal distribution to ob-
tain the various moments.

In order to further check the above analysis and
in order to calculate the different mean values of T
we have numerically calculated the transmission
coefficient T of our system for E = 0 as a function
of the length L of the system for different distribu-

tions of V„
Our numerical results show, in agreement with

our previous results for only diagonal disorder, that
the random variables T and 1/T are not normally
distributed. In fact their probability distributions

have very long tails which completely dominate the
behavior of their means. Only the random variable

lnT seems to follow a normal distribution.
Results for the geometric mean In Fig. 1.(a) we

plot the results for the —(inT ) as a function of
v'L for different off-diagonal disorder. We em-

ployed, in our numerical work, the rectangular pro-
bability distribution P( V„m ) defined by

1/2 8' if
I

Vnm —Wo
~

& W
nm

0 otherwise

We select 8'p ——1 as the unit of energy. Note that,
for all the strengths 8' of the off-diagonal disorder,
(1nT ) behaves, within our numerical uncertainties,
as —yiv L. The coefficient yi as a function of the
width 8' is also shown in the' insert of Fig. 1(a).
Note that y& initially increases as 8' increases,
reaches a maximum, and later saturates. This indi-
cates that as 8' is increased beyond a certain value
it does not introduce more disorder. Why this is so
can be seen by considering the limit W )) 8 p,

where 8'p can be taken as zero. In this case 8' is
the only energy scale in our problem and its further
increase does not produce any physical effect since
it can be compensated for completely by changing
the unit of energy. ' Therefore the width 8' of the
rectangular probability distribution for V„ is not a
good measure of the disorder, because after some
disorder 8' & 8'p it really reproduces the same
physical situation. We therefore used another pro-
bability distribution which gives more weight to
small values of V„as disorder increases. A logical
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1/2vp if
~

lilv
~

( Vp
P(lnV„) = .

0 otherwise . (8)

With this choice, we can easily see that V„ is re-

stricted to positive values, with the small values of
V„weighted by higher probability as Vp increases.

The numerical results for the (lnT ) for the proba-

bility distribution given by Eq. (8) are shown in Fig.
1(b). Note that within our numerical uncertainties

(lnT ) = y, v'L. —The coefficient yi as a function

of the width Vp of the off'-diagonal disorder is

shown in insert of Fig. 1(b) and it follows a straight

line. To a good approximation y&
——0.9Vp ——

1.560]„v, where o]„z is the standard deviation of the

ln V„. This very simple relation between y] and
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choice is to use a rectangular probability distribution
not for the V„but for the 1n(V„~)." We use

Vp suggests that a good way of measuring the size
of the oA'-diagonal disorder is probably the standard
deviation o.~„v of the probability distribution. For
the probability distribution given by Eq. (8) we have
that oj„v ——Vp/t/3. To check if tf~„v is a good
measure of the off-diagonal disorder for the distribu-
tion given by Eq. (7) we first calculate the o~„i for
this case. After some algebra we get that

oj„y ——1 + 0.25(1 —1/8' )

X[ ln[(1+ W)/(1 —W')] I2 (9)

In Fig. 2 we plot o~„~ given by Eq. (9) as a function
of 8'. Note that o~„q follows pretty well the coeffi-
cient y~ of Fig. 1(a), in fact as W ~ eo, o~„i 1.
Furthermore, if we replot the coefficient y] of Fig.
1(a) not a function of IV but a function of o~„i we

get the points exactly on the curve in the insert of
Fig. 1(b) [see X 's in the insert of Fig. 1(b)]. So it

seems very tempting to suggest that a universal
quantity of measuring the degree of the off-diagonal
disorder is the standard deviation 0.]„q of the ln V„
independently of the probability distribution of the
random variables V,~.

Results for the harmonic mean. As we men-

tioned above the probability distributions for T and
1/T are not normally distributed. In addition, due

to the long tails in the probability distributions we

expect large fluctuations in the average values of
ln( T ) and ln(1/T ). In fact, that was the case for
the harmonic mean where ln(1/T) = y2&L for all

widths Vp of the oA'-diagonal disorder. The relation

between y2 and Vp is again linear, in particular

4Vp but with some larger errors due to fluc-

tuations in the value of 1/T. Note that the harmon-

ic mean ln(1/T ) also follows the &L dependence
and correctly gives that the coefficient yz is almost
four times larger than the geometric one, because in

the harmonic case the mean value (1/T ) is dom-
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FIG. 1. Plot of —(1nT ) vs v'Z (T is the transmis-
sion coefficient of the 1D disordered system of length L)
for (a) a rectangular probability distribution for V„with
mean Wo ——1 and width 2W and (b) a rectangular proba-
bility distribution for lnV„with mean 0 and width 2Vo.
Results are for different values of W and Vo. The inserts
plot the coefficient y~ as a function of 8' and Vo, respec-
tively.

W

FIG. 2. Plot of the standard deviation o~„v of a

rectangular probability distribution for V„as a function

the half-width JK
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FIG. 3. Plot of —ln( T) vs lnL for different values of
off-diagonal disorder. With (a) a rectangular probability
distribution for V„with mean 8'0 ——1 and width 28'
and (b) a rectangular probability distribution for ln V„
with mean 0 and width 2VO. The inserts plot u and 5 as
functions of W and Vo, respectively. ( T) = aL

inated by the small values of T, owing to the long

tails of the distributions for T and 1/T. We want to
point out that the exp( yv'L ) depend—ence of the

harmonic and geometric mean values of T of a 1D
disordered system with off-diagonal disorder is in

contrast to the case of only diagonal disorder where

all the three means behave as exp( —AL), of course
with a different coefficient A, for every case.

Results for the arithmetic mean Our numeric. al

results for the arithmetic mean ( T ) show that ( T )

does not follow either an exp( A,&—L ) dependence
but a power-law behavior as a function of L. In
fact we find that ( T ) —L with 5 =0.50. In
Figs. 3(a) and 3(b) we plot —ln(T) as a function of
lnL for different disorders 8' and Vo, respectively.
Note that in spite of the fluctuations, —ln( T ) vs

lnL can be approximated by a straight line. There-
fore ( T ) = aL s. In the insert of Fig. 3(a) we

plot a and 6 as a function of disorder W. Note that
0.53+ 0.03, while a decreases as 8'increases in

the beginning but finally saturates. On the other
hand, for the distribution given by Eq. (8) again

5 = 0.50+ 0.01 while 0; decreases as Vo increases

[see insert of Fig. 3(b)]. If we replot a for the distri-

bution given by Eq. (7) not as a function of 8' but
as a function of o]„q, the curve of the insert of Fig.
3(a) coincides pretty well with that of the insert of
Fig. 3(b) [see &( s in the insert of Fig. 3(b)]. This

again suggests that o~„z is a very good way of
measuring off-diagonal disorder independently of
the probability distribution of V„

In conclusion we have investigated the localiza-
tion character of the E = 0 eigenstate of a 1D
tight-binding Hamiltonian by studying the transmis-

sion coefficient T of the system when only off-

diagonal disorder is present. It is found that diago-
nal and off-diagonal disorder have qualitatively dif-

ferent behavior for the length dependence of the

eigenstates. From our previous analysis, for the
case of only diagonal disorder all three means of the
transmission coefficient behave as exp( —AL) and

therefore approach zero as L ~ 00, which of course
implies localization of the eigenstates. In the off-

diagonal case we find that the E = 0 state is again

localized, in spite of the infinite localization length.

In contrast to the diagonal disorder case we find

that the geometric and harmonic mean values of T
behave as exp( —yv'L ), while the arithmetic aver-

age ( T ) —L with 5 = 0.50. Finally our study
for the two probability distributions of V„~ seems to
suggest that o~„z is a universal quantity for measur-

ing the strength of the off-diagonal disorder.

This work was partially supported by a Universi-

ty of Virginia computing grant.

'Present address: Exxon Research and Engineering Co.,
Linden, N.J. 07036.

'K. Ishii, Prog. Theor. Phys. Suppl. 53, 77 (1973).
G. Gzycholl and B. Kramer, Solid State Commun. 32,

945 (1979).

C. M. Soukoulis and E. N. Economou, Solid State Com-
mun. 37, 409 (1981).

4D. J. Thouless and S. Kirkpatrick, J. Phys. C, in press.
5G. Theodorou and M. H. Cohen, Phys. Rev. B 13, 4597

(1976).



C. M. SOUKOUI. IS AND E. N. ECGNOMOU

~P. D. Antoniou and E. N. Economou, Solid State Com-
mun. 21, 285 (1977)„Phys. Rev. 8 16, 3768 (1977).

~L. Fleishman and D. C. Licciardello, J. Phys. C 10„
L125 (1977).

~R. Landauer, Philos. Mag. 21, 863 (1970).

9E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett.
46, 618 (1981).

~~P. A. Lee, J. Non-Cryst. Solids 35 k 36, 21 (1980).
~~T. Odagaki, Solid State Commun. 33, 861 (1980).


