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Superlattice band structure in the envelope-function approximation
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Thc band structure of GaAS-GaAlAs and InAS-GaSb supcrlattices is calculated by

matching propagating or evanescent envelope functions at the boundary of consecutive

layers. For GaAs-GaA1As materials, the envelope functions are the solutions of an effec-

tive Hamiltonian in which both band edges and effective masses are position dependent.

The effective-mass jumps modify the boundary conditions which are imposed to the eigen-

states of the effective-mass Hamiltonian. In InAs-GaSb superlattices, the dispersion rela-

tions, although quite similar to those obtained in GaAs-GaAlAs materials, reflect the

genuine symmetry mismatch of InAs {dectrons) and GaSb (light-holes) levels. The evolu-

tion of the InAs-GaSb band structure with increasing periodicity is calculated and found to

be in excellent agreement with previous LCAO results. The dispersion relations of heavy-

hole bands are obtained.

I. INTRODUCTION

The superlattices, ' which are tailor-made sem-

iconductors, have recently attracted considerable at-
tention. These materials, grown by molecular-beam

epitaxy, consist of alternating layers of two semicon-
ductors of almost equal lattice constant. So far the
GaAs-GaAIAs (Ref. 2) and InAs-GaSb (Refs.
3 —5) superlattices have been widely studied but few

attempts were made to calculate their band struc-
tures. Sai-Halasz et a/. have used linear combina-
tion of atomic orbitals (LCAO) approximation to
describe the one-dimensional band structure of
InAs-GaSb superlattices. Mukherji and Nag, being
concerned with GaAs-GaAlAs structures, have cal-
culated their dispersion relations by matching
plane-wave-type solutions and their derivatives at the
GaAs-GaAlAs boundaries. An attempt to apply
the same plane-wave formalism to InAs-GaSb su-

perlattices was apparently unsuccessful. This led
Sai-Halasz et QI. to propose a one-dimensional

model of superlattice band structure in which the
periodic parts of host-Inaterial Bloch functions were
mcluded.

In this paper, we will incorporate the superlattice
features into a Kane-type analysis of the conduc-
tion and valence levels of host materials. The essen-
tial point of our model is to neglect any phenomena
if rapidly varying at the atomic scale, and to focus
attention on the effective Hamiltonian which

governs the slowly varying envelope functions, The
boundary conditions fulfilled by these envelope
functions will be discussed (Sec. II). We will show
that previous analysis had overlooked the effective-
mass jumps in GaAs-GaA1As structures; we will

derive the dispersion relations valid in these materi-
als (Sec. III). In InAs-GaSb superlattices, the InAs
electron states have to be admixed with GaSb light-
hole levels. Electrons and light-hole eigenfunctions
are orthogonal in host materials, and some trace of
this orthogonality is preserved across the interfaces.
In fact, the dispersion relations of InAs-GaSb super-
lattices cannot be obtained by assuming only that
the effective masses of the host materials have oppo-
site signs. The allowance of the symmetry
mismatch enables a recovery of proper (and simple)
dispersion relations. As an application of our
results we calculate the evolution with increasing
periodicity of InAs-GaSb superlattice band struc-
tures for superlattice wave vectors parallel to the su-
perlattice axis (Sec. IV). The envelope-function
results are in excellent agreement with LCAO calcu-
lations. The heavy-hole dispersion relations will
also be discussed (Sec. V).

II. BOUNDARY CONDITIONS IN THE
ENVELOPE-FUNCTION APPROXIMATION

In GaAs-GaAlAs and InAs-GaSb superlattices,
the band structures of host materials in the vicinity
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of the center of the Brillouin zone are quite similar
and are well described by the Kane model. For a
given superlattice A-8 the wave function in each
host material takes the form

(y) pe, S(y) A,B(y)
J

where FJ(r) are slowly varying envelope functions
and uJ is the periodic part of the Bloch functions atJp
k = 0. If, for simplicity (but this is not crucial), we
neglect the I 7 spin-orbit split-oA' valence band, the

FJ(r ) are the solutions of a 6 && 6 differential system

QDJJ FJ (r) = AEj(r),

~11 ~12 +1 +1

~21 ~22 +2, +2 (3)

Kane and A, is the energy. Equivalently, the eigen-

value problem can be expressed in terms of a
nonlinear-in-A, 2 &( 2 Hamiltonian. This Hamiltoni-
an acts on the envelope functions associated with
two S-type band-edge Bloch functions [hereafter la-

beled as (1,2)]. Assuming the Kane matrix element
to b. e identical in A and B host materials, neglect-

ing the free-election kinetic energy P /2m o, and
choosing the z axis along the superlattice (SL) axis
(i.e., perpendicular to the A,8 layers) one finds

where the explicit form of DJJ' has been given by where

1 1A 11 = A 22 ——VS + m P P+ + P+ P
eg + A, —Vp 3 eg+A, —Vp

2 1
(4)

~12 ~21
1 1

P, P+ —P+ Pz
eg + A, —Vp eg + A, —Vp

where P+ ——(P„+iP„)lv'2; The energy origin has
been taken at the bottom of the A conduction band,
and ez is the energy gap in the A material. Vs and

Vp are the shifts of the S and P levels at the point I
point when going from A to 8 host materials.

We recall that Eqs. (3) and (4) are valid in each
host material but do not give any information on
the potential energy associated with the A-8 inter-
faces. Actually, for infinite A or 8 layers, the (1,2)
coupling disappears, and the eigenenergies of (3) are
the well-known Kane dispersion relations. For in-

stance, in material A

1(i (k, + 2k+k ) = A, (A, + e~ ) .

We will assume the interface potential to be
strongly localized in the vicinity of the A-B inter-
faces. Its spatial localization is such that at the
scale of variation of the slowly varying envelopes the
interfaces reduce to the planes

z=nd
n relative integers .Z=lg+nd

Moreover, we will assume the interface potential
does not mix but only shifts the S- and P-like states

Vs(P1(z +d) Vs(P)(z),

0 if 0&z &lz
Vs(pi(z) = '

~s[p) if /z &z &lq+lz ——d,

(6)

where lz and lz are the A and B layer thicknesses
and d is the SL period. The z dependence,
although quite simple, has important consequences.
Namely, the (1,2) coupling does not vanish in the
SL since ez + A, —Vp does not commute with P, .
In turn, this coupling inAuences the boundary con-
ditions which F1 and I'2 should fulfill at the A-B in-
terfaces.

we will assume the envelope functions I'1,I'2 to
be continuous at the interface. To obtain two other
boundary conditions, we integrate Eqs. (3) and (4)
across an interface. Since the 2 )( 2 Hamiltonian
[Eq. (3)j is independent of (x,y), k~ = (k„,kP) is a

at the band edges. For a perfect interface this seems
plausible, since A and B have the same spatial sym-
metry and the same lattice constants. With these
Ansatze the only effect of the interface on the en-
uelope functions F1 and I'2 is to make the Vs and
VP appearing in Eqs. (4) depend on z through
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good quantum number. As long as Vs (z) and

Vp(z) have at most finite jumps and making use of
tllc FIJI colltlillllty, wc obtalll

1
( —I/2F

1
—ik+F2)

eg + A, —Vp(z)

1
( —1/YF2 + ik Fi),

eg + A, —Vp(z)

both expressions continuous at the interface, where
the prime denotes the derivative with respect to z
and k+ ——(k„+ ikp)/v'Z. Furthermore, the long-

range behavior of E& 2 is governed by the Bloch
theorem,

Fi 2(z + md) = exp(Iqmd}FI q(z),

valid for any z and any relative integer m. In Eq.
(8) q is the SL wave vector along the SL axis.

III. APPLICATION TO GaAs-GsA1As

SUP ERLATTICES

In this specific case, we take GaAs as the 3 ma-
terial. Then

z&,A, +A, in GaAs layers
cg +)(,—Vp(z)= '

go~&A, +A, —V& in GaA1As layers .

the boundaries.
The boundary condition equation (10) can be

derived in another way. Suppose ab initio we as-
sume that only the GaAs and GaA1As conduction
bands come into play, and equivalently that the
bands are parabolic in each host material with effec-
tive masses m& and mz. Then the correct effective
Hamiltonian one should use to describe this situa-
tion is

~= —p + Vs(».1 2 1

4 'm(z)

Vs(z) is the periodically varying conduction-band

edge defined in Eq. (6). Note in Eq. (11) the pres-
cilcc of tllc Rlltlcolllflllltator jII,pj = Ixp + pcK. It ls

imperatively needed to ensure the Hermiticity of 4 .
Assuining the envelope-function eigenstates of (11)
to be continuous at the interface and integrating Eq.
(11) across an interface, one immediately recovers
the boundary condition (10). Let us finally remark
that the (1/m)(dF/dz) continuity is the only boun-

dary condition if the continuity of I' is given, which
ensures the continuity of the probability current, i.e.,
which guarantees that the eigenstates are stationary.
Taking F to be linear combinations of plane waves
with opposite wave vectors inside each host materi-
al, and using the boundary conditions equations (8)
and (10), one readily finds the dispersion relations
A,(q) in GaAs-GaA1As superlattices:

Since GaAs and GaAlAs are wide-gap materials,
we may assume in a first approximation
A, « so~„and

~

A, —Vs
~

&&eo,AiA, in the energy
range of current interest (0 & A, & Vs). If, more-
over, kl « l&,EII, we may neglect the (1,2) cou-

—1

pling and replace Eq. (7) by

1 1x + — sink& lz slnkillII, (12)
2 X

2m' 2ka = (~ —Vs) —ki$2
dP (3)

~GaAS

dI'

&GaA1As dZ
X (14}

However, in the two-band Kane model eG,A,
0- mg Rlld E'G AIA CC ms, Rlld Eq. (9) call bC rCwrlt-
ten

mg 8z
1 d+~z'

mg dz

at the interfaces. This boundary condition has not
been used before. Instead, one currently assumes
the n1ore familiar dI'/dz continuity, which is
correct only if there are no effective-mass jumps at

Let us again stress the fact that Eq. (12) is not
identical to the usual Kronig-Penney result, since x
explicitly depends on mz and m~. Note also that
any rapidly varying term like the value of the
periodic part of the Bloch function at the interface
has disappeared from the final result, Eq. (12). This
is coherent with the identification of interfaces with
planes. The latter is possible only for functions
which vary slowly at the scale of interface.
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IV. DISPERSION RELATIONS IN
InAs-GaSb SUPERLATTICES

At first sight, it would be very tempting to ex-

tend Eq. (12)—(14) to the case of InAs-GaSb su-

perlattices by neglecting in a first approximation
the band nonparabolicity. In fact, since mz & 0
and ms &0, the 1/m (z)](dI'/dz) continuity leads

to a superlattice band structure which shows

several similarities but also noticeable difII'erences

with the LCAO results. The salient feature of the
InAs-GaSb system, when compared with GaAs-
GaA1As material, is the symmetry mismatch be-

tween the states of each host material which have

to be admixed in the superlattice state: The con-
duction states of InAs are predominantly S-like,
whereas light-hole GaSb levels are predominantly
P-like. It was stressed by Sai-Halasz et al. that
the symmetry mismatch is preserved across the in-

terfaces (this is in fact one of our basic assump-

tions), and the building of superlattice states is pos-
sible only because of P admixture in the InAs elec-

tron states and of S admixture in the GaSb light-
hole levels. The more general Eqs. (7) and (8)
should then be used to calculate the dispersion re-

lations. Taking the energy zero at the bottom of
the InAs conduction band, we have'

Note that in Eq. (19) m~ is negative. We see that

xz,„,b,~;, is equal to the previous result [Eq. (14)]
weighted by the ratio of the light-hole kinetic energy

to the GaSb band gap, i.e., by a factor which rough-

ly measures the amount of S-like level into the

predominantly P-like GaSb light-hole band.
Assuming lz ——lB ——d/2, we have calculated, ac-

cording to Eqs. (12) and (16)—(18), the evolution

with increasing periodicity d of the SL band struc-
ture, which arises from the mixing of InAs electron
states with GaSb light-hole levels. The results are
shown in Fig. 1. Comparing these results with

those of LCAO, we see that an almost quantitative

agreement is reached between the two models, even

in small details such as the anticrossing behavior
which takes place near d —230 A (Ref 5) (an.d for
larger d). We will not discuss further the physical
properties implied by the results shown in Fig. 1,
since this has been very accurately done by several

authors.

V. HEAVY-HOLE SUPERLATTICE STATES

Equations (12) and (16)—(18) do not apply to the
SL bands which originate from the heavy-hole bands

of the host materials. This arises from the fact that

Vp = ~+ &inps = 0.56 eV if z corresponds

Vs ~ + ~Gasb 0.96 eV to a GaSb layer (15)

Vs = Vp = 0 if z corresponds to an InAs layer .

Let us assume for simplicity kz ——0. Then the

(1,2) mixing disappears. The superlattice states ori-

ginating from the matching of InAs conduction

states with GaSb light-hole levels have dispersion re-

lations which are still given by Eq. (12). However,

in this equation one should replace Eqs. (13) and

(14) by

o.e

Oh

04

C9
CL

Q2

2 2=
3

kq ——A(A, + et«, ),
2 2=

3
ks ——(A, —h)(A, —b, —eo,sb),

(16)

(17)

~B ~ + ~InAs
(18)

In the parabolic limit, x does not reduce to Eq.
(14). Instead, for A, « e&«„one obtains

0.4
0 50 &00 150

tI (A)

200 250

~A mB 6 —A,
+ parabolic

~B mA ~oasb
(19)

FIG. 1. Calculated subband energies and bandwidths

for electrons and light holes as a function of period, as-

suming l& ——l~ for InAs-GaSb superlattices.
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heavy-hole states correspond to vanishing E~ 2 en-

velope functions, i.e., the heavy-hole curvature is
governed by remote bands not included in the sim-

plified Kane model used throughout this paper.
Still, one may accurately calculate the heavy-hole

superlattice bands if kj ——0. The effect of remote
bands in each host material can be incorporated up
to order k in the 4 )& 4 matrix acting on the I';,
i = 3—6 envelope functions. If kz ——0, the modi-
fied 4 &( 4 matrix is diagonal and the heavy-hole

3 3
states correspond to J = —,, m J ——+ —,, i.e., they are
entirely decoupled from light-hole states mj ——+ —,.

3
The mJ ——+ —, modified matrix elements are simply

2D 3/2+ 3/2 — Pz /2M+ B (20)

where Mz z are the heavy-hole effective masses in

materials 3 and 8. Owing to the complete decou-

pling between heavy holes on the one hand and
electrons or light holes on the other hand, we see
that the heavy-hole SL bands can be calculated ex-

actly in the same way as SL conduction states in
"parabolic" GaAs-GaAlAs materials [Eqs.
(11)—(14)]. In the InAs-GaSb system, the GaSb
layers are potential wells for heavy holes. Measur-

ing the energy from the top of the GaSb (8 material
here) valence band, and denoting by Ahh the heavy-
hole energy, the dispersion relations A,hh(q) are given

by

cosqd = cosk& l& cosk&lz

2M~
1/2

(khh —Vhh )

2M
~hh

(22)

where M& ——0.4mo, Mz ——0.33m o, and Vhh
——0.56

eV, Since Vhh is quite large, the SL heavy-hole
bands are almost dispersionless, except for small
(l„& 20 A) InAs thicknesses. Numerical calcula-
tions performed for l& ——lz indicate that the ground
heavy-hole band behaves like the ground bound lev-
el of a particle confined in a quantum well of infin-
ite depth if lz &150 A.

VI. CONCLUSION
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We believe the advantage of the envelope-function
formalism lies in the simplicity of the final results,

Eqs. (12) and (16)—(18), as well as in their generali-

ty. For the first time both kinds of existing super-
lattices are described by the same formalism and the
differences in their band structures are naturally ex-

plained. Finally, the envelope-function approxima-
tion is able to incorporate finite k&. This will per-
mit a discussion of the transverse motion (i.e., in the

layer plane), which is in fact most frequently in-

volved in the experiments. '
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