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Nature of the process of overdriven shocks in metals
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Within the bounds established by the formal theory of overdriven shocks in solids, an

approximate solution is constructed, and a consistent set of approximations for the ther-

modynamic coefficients is described. Numerical calculations of the temperature, entropy,
shear stress, and plastic strain, as functions of compression, are shown for shocks up to
0.8 Mbar in 2024 A1, and up to 3.0 Mbar in Pt. For well-overdriven shocks in metals

the shock entropy is generated by heat conduction in the front part of the shock, the heat
is generated by plastic flow in the last part of the shock, and the shock rise time is of or-

der 10 ' s.

I. INTRODUCTION

We have obtained extensive theoretical informa-

tion about the irreversible-thermodynamic process
of overdriven shocks in solids. ' This theory was

developed for an isotropic solid with heat transport
and dissipative plastic flow, and a steady-wave
shock which does not induce phase changes or
macroscopic inhomogeneities in the solid. The
purpose of the present work is to carry out numeri-

cal calculations to see what can be learned about
the details of the shock process, without assuming

anything about the plastic flow behavior. Calcula-
tions are done for 2024 A1 for shocks of 0.4 and
0.8 Mbar, and for Pt for shocks of 0.5 —3.0
Mbar. Information is obtained on temperature, en-

tropy, shear stress, plastic strain, and heat current,
as functions of compression, and the space and
time dependence of the process is estimated.

All the approximations used in the numerical
evaluations are described in Sec. II, and their phys-
ical bases and implications are discussed. Results
are tabulated and discussed in Sec. III, and the
salient features of overdriven shocks in metals are
summarized in Sec. IV. The status of an investiga-
tion into the validity of irreversible thermodynam-
ics in shock theory is mentioned in Sec. IV. For
the two metals studied here, properties on the
Hugoniot are tabulated in the appendixes.

bounded by the theory of Ref. 1. The bounds for
the temperature T(e) for a 2.5 Mbar shock in Pt
are shown by the solid lines in Fig. .1. Our aim is
to construct an approximate T(e) curve within
these bounds, thus defining a partial solution, and
then to solve as far as possible the Rayleigh-line
equations for the other functions of this partial
solution, the entropy per unit mass S(c), the heat
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II. AN APPROXIMATE SOLUTION
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A. The conduction front

In general, except for shocks not far above the
overdriven threshold, the shock process is narrowly

FIG. 1. Solid lines show upper and lower bounds for
T(e) for a 2.5 Mbar shock in Pt. Our approximate solu-
tion takes the lower bound (nonplastic solid curve) up to
point c, and the linear interpolation (dashed line) from
T(e, ) to TH(eH).
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current J(e), the plastic strain. 1((e), and the shear
stress r(e').

At the beginning of the shock, in state a, w and

f are zero. As the uniaxial compression begins, r
increases due to elastic response of the material but

l( remains zero unitl r reaches the static yield
value. When ~ increases above the static yield,
plastic flow proceeds. However, since the shock
process is quite fast, its timescale bring governed

by heat conduction, the plastic flow will be of
negligible importance until w rises high enough to
drive P at a very high rate, a rate commensurate
with the shock rise time. Thus in the leading part
of the shock we should have dg=O to a good ap-
proximation, i.e., we have nearly the response of an
elastic solid with infinite yield strength, as de-

scribed in Theorem 3.' %'e take this approxima-
tion to hold up to a point c, at e„ to be determined
later. The region 0 & e & e, is called the conduction
front because heat must be transported to this re-

gion, according to Theorem 1.' The Rayleigh-line
equations for the conduction front as function of e
are Eqs. (32) —(35) of Ref. 1. These equations are
accurately represented by their leading terms in the
small-anisotropy expansion, and this representation
is used in the present calculations.

8. The flow region

(a) Since dr is of order mdiv, the leading terms
must cancel to relative order ~/G, which implies

dg= ——,din V . (2)

TdS=Ci (dT pyV, Tde)—,

df=(26) 'I pyTdS

(3)

(b) dr depends essentia/Iy on the first-order
terms in (1).

In practice it is not possible to make respectable
estimates of all the coeA&cients appearing in the
first-order terms in dr along the Rayleigh line for
overdriven shocks in solids. If we cannot estimate
all the coefHcients in the first-order terms in d~,
we cannot make a meaningful evaluation of d~ in
the flow region. We conclude that we cannot use
Eq. (1) in the flow region.

There are three equations which couple the nor-
mal stress o(e), and T(e), S(e), g(e) on the Ray-
leigh line, namely Eqs. (5), (9), and (11) of Ref. 1.
When cr(e) is eliminated, the results can be written
as two equations for S(e) and g(e) in terms of
T(e). Neither of these equations depends critically
on the terms of relative order r/6; meaningful
evaluations of both are obtained in zeroth order in
the small-anisotropy expansion. In this order the
equations are the following:

After the point c the plastic flow gets going at a

high rate, and the temperature rises significantly
above the nonplastic solid curve. From e, to e&,
T(e) goes from the nonplastic solid curve to TH,
increasing monotonically with e, as illustrated by
the dashed line in Fig. 1. The region e, &@&@~ is
called the flow region, because here the dissipative
plastic flow is essential to the process. Before ap-
proximating T(e) in the flow region, we will study
the Rayleigh-line equations here in some detail.

In the flow region, it is necessary to keep both
dissipative mechanisms in the equations. First
consider the equation for d~; in the small-

anisotropy expansion this is written

dr= —G(din V+ —,dg)+

The leading terms in dw are thus of order Gde.
There are a host of first-order terms, indicated by
+ in (1},of relative order r/6, which means
of order (r/6)Gde in dr. These terms involve the
third-order elastic constants, the anisotropic
Gruneisen parameters, and so on. From Eq. (1) we
learn two things:

Thus if we have an acceptable approximation for
T(e} in the flow region, (3) can be integrated to
find S(e), then (4) can be integrated to find 1(j(e).
The coefHcients in (3) and (4) can be evaluated
with respectable accuracy on the Rayleigh line for
real metals.

Finally there is the equation for the entropy pro-
duction,

TdS =dJ!p,D+2vrdg .

This cannot be solved because it contains two un-

knowns, J and ~. Ho~ever, because of the initial
and final condltlons Jg =JH =0~ we have an 1Q-

H
tegral condition on dJ, namely dJ =0. Hence

f TdS= f 2' dg, and this is f 2' dij'r be-

cause d Q=O on 0 & e & e, . This last integral is
used to define a mean shear stress (r} in the flow

region:

f 2Vrdy=(V, +V„)(r&f aq.
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Then (r) can be evaluated from

, TdS
(r) =

(V.+ Va)fa

To emphasize an important point, this estimate of
(r) is not based on Eq. (1) for dr, which is essen-

tially a first-order equation and hence is extremely
diAicult to evaluate, but is based on an integral
condition for TdS, namely the requirement that the
shear stress must do the correct amount of work in
the flow region to generate the correct amount of
heat, so the material reaches the correct Hugoniot
state at the end of the shock. A reasonably accu-
rate evaluation of (r) can be made for real metals.

The above results for S(e) and g(e) in the flow

region and for (r) do not depend strongly on the
curve of T(e) in the flow region. We take simply a
straight line interpolation for T(e) from T,(e, ) to
T~(e~ ), and define c as the point on the nonplastic
solid T(e) curve which is tangent to the straight
line drawn from T~(F~). This approximation is
shown for a 2.5 Mbar shock in Pt by the dashed
line in Fig. 1. There is a technical point which
should be mentioned: The approximation for T(e)
in the flow region should be consistent with the
physical requirement that d fide be non-negative.

Now dJ/de =0 at es, and for the nonplastic solid
partial solution both terms on the right side of (4)
are zero at es, and e, is close to Ebso dg'lde is al-

ways small at e„but it can be negative. In the nu-

merical calculations of the present work, dglde is
found to be essentially zero at e, .

C. The Hugoniot

We are studying shocks upwards from a few

hundred kbar, ~here nothing is known of the shear
stress on the Hugoniot. While the shear stress dur-

ing the shock becomes large, driving plastic flow at
a high rate, all strain rates go to zero at the end of
the shock, and the final-state shear stress is the
static yield stress on the Hugoniot. For overdriven
shocks in metals ~~/o.~ should be at most a few
percent, so neglecting v~ should not introduce a
significant error in the present calculations. We
therefore set ~& ——0, which reduces o.~ to an isotro-
pic pressure I'&.

The Hugoniot jump conditions are the first in-
tegrals of the equations for conservation of mass,
momentum, and energy, evaluated at the final state
H [see, e.g., Ref. 1, Eqs. (3) —(5)].

Since our approximate Hugoniot lies in isotropic

thermodynamic space, the thermoelastic coeAi-
cients on the Hugoniot are reduced to isotropic
coeAieients, e.g., yi ——y2 ——y, where

The constant c and s are commonly measured for
overdriven shocks in solids.

D. Thermodynamic coefficients

In the small-anisotropy expansions, ' anisotropic
coeAicients on the anisotropic Rayleigh line at
V,S,v. are given in lowest order by isotropic coeAi-
cients at V,S; for example,

Cv( V,S,r) =Cy( V,S)+ (10a)

This relation is to be understood when we say "Cz
on the Rayleigh line. " In the present work we will
need y, Cv, 8, and 6 on the Rayleigh line. Fur-
ther, because the relation between T and S is
evaluated to lowest order in the small anisotropy
expansion, which is Eq. (3), the T, V,S relation on
the Rayleigh line is in fact the isotropic-space
T, V,S relation, so (10a) can also be written

C„(V,T,r)=Cy(V, T)+

For the Gruneisen parameter we use the approxi-
mation py=, const:

Pl=Pa /a

The heat capacity is the sum of a lattice part CI
an(i an electronic part C~. The lattice part is
described in terms of a characteristic temperature
8, e.g., the Debye temperature, where for most
metals 8 is less than or equal to room temperature
at I' =0. If T, & 8, then the Hugoniot and Ray-
leigh lines all lie in the region T)8, where

CI -3%k, with k = Boltzmann's constant. For the
conduction electrons, degenerate electron theory
gives C, =I"T. We will neglect the explicit
temperature-dependence of I, and use low-
temperature measurements for I . The volume-

i3P
PT=

V

Equations for calculating T and S on the
Hugoniot and the adiabatic bulk modulus on and
off the Hugoniot are well known. A well-

established experimental result for shocks in solids

up to a few Mbar, and excepting cases where phase
changes occur, is that the shock velocity is a linear
function of the final-state particle velocity
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dependence is g =dlnI /din V= 1 —2, and we take

g = const for a given metal. The total heat capaci-

ty is then approximately

its maximum at point c, and this gives a simple
approximation for the right sides of (15) and (16).
For example,

Cv=3&k+r

I'=I, ( V/V, )s . (12b)

«( TII Tg—)
AZ(T) =

C C

The shear modulus is entirely unknown in the
moderate shock region. The common behavior of
polycrystalline materials at I' =0 is G/8 = con-
stant in T, except near melting. We will assume
this holds for shocks in the solid phase, and calcu-
late G on the Rayleigh line from 8,

As a point of curiosity we calculated 8 and G for
A1 from ultrasonic data, in the form of expan-
sions linear in T and I' from state a, and found the
remarkable results that 8(ultrasonic) =B(shock),
and G/8(ultrasonic) = const, up to 2 Mbar
(neglecting melting) on the Hugoniot. These calcu-
lations are tabulated in Appendix B.

The thermal conductivity a is needed only to
compute the explicit space and time dependence of
the shock process, from the equation'

—KdTdz=
(1—e)J ' (14)

where Z =X—DI;. For electronic conduction in
the region T/8 ) 1, we expect « to be nearly in-

dependent of T, and to have a density dependence
of order p to p .' This density dependence is negli-

gible for the present purposes, and we simply take
v = constant and use the measured value of x at
T/8 ) 1, P =0.

E. Shock thickness and p1astic strain rate

(15)

The Lagrangian shock thickness AZ, the same as~ at a fixed time, is usually defined in terms of
the compression e(Z) (Ref 10); we call this the
compression thickness AZ(e):

The Lagrangian rise time is then At& ——5Z/D.
The plastic strain rate 1( is approximated as fol-

lows: dP is given by (4), dJ is approximated in the
flow region by (5) with 2Vrdg=(V, + VH)(r)dg,
then dZ is given by (14), and

Bt
L JX

(17}

A useful measure of plastic strain rate in the shock
is the average of P in the flow region, defined by

(18}

F. On the e1ectronic contributions

There are several important points to note re-

garding the electronic contribution to thermo-
dynamic coeAicients.

(a) For shocks in the Mbar range, electronic
contributions to thermal energy and thermal pres-
sure are not always negligible and should at least
be estimated. This was pointed out by Al'tshuler. "

(b) Ill sllock allalysls, lf flic clcctI'OIllc llca't capa-
city C, =I T cannot be neglected, then the volume
dependence of I also cannot be neglected because
of the significant compression. Including C, =I T
with a constant value of I seriously overestimates

C, .
(c) The Gruneisen parameter y is not simply the

sum of a lattice part yI and an electronic part y,
(Ref. 6, p. 287). Specifically, Eq. (8) can be
transformed to py= —Cv '(8 F/8 VBT)Tv, where I'
is the Helmholtz free energy, the sum of a lattice
and an electronic part, I' =I'I+I'„ from which it
follows:

b,Z(T)
dT
dz ... (16)

Eithe~ derivative Ide/dZ I
or

I
dT/dZ

I
is n

The temperature profile T(Z) is noticeably broader
than the compression, so we define also the tem-
perature thickness b,Z(T):

It is y we want for shock analysis, to calculate total
P, U relations from Eq. (8), and it is y which satis-
fies pg= const in Neal's compilation.

(d) Degenerate electron theory is satisfactory for
kT/e+ is less than or equal to a few tenths, where

e~ is the Fermi energy. For suAiciently strong
shocks, which may be above the melting tempera-
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ture on the Hugoniot, the temperature will rise so
high that the electrons are no longer degenerate.

III. RESULTS AND DISCUSSION

The experimental information for the present
shock calculations for 2024 A1 and Pt is listed in
Table I. The Hugoniot was calculated first, and
results are tabulated in Appendix A. Several obser-
vations follow from the Hugoniot calculations.

(a) The elastic precursor velocity cz is very close
to the longitudinal sound velocity cl, so the over-
driven threshold at D =e~ is close to D =el, we
find

TABLE I. Input data for shock calculations. Shock
measurements (c,s) are from McQueen et al. (Ref. 2) for

2024 A1 and from Morgan (Ref. 12) for Pt; 6, /8, are
from the poly- crystal averages of Simmons and Wang
(Ref. 9); and g are from White and Collins (Ref. 8).

Quantity pt

T, (10 K)
p, (g/cm3)
c (cm/ps)
S

$0
6, /8,
I, (10 cal/mole K )

z (cal/cms K)

0.293
2.785
0.533
1.338
2.05
0.34
3.30
1.8
0.48

0.293
21.44
0.363
1.472
2.66
0.23

16.4
2,28
0.20

Pz(D =cI ) =0 145 M.bar for 2024 Al,

PH(D =ci)=0.308 Mbar for Pt .

(b) From the Kraut-Kennedy melting rule, '

melting on the Hugoniot is found to occur at

T~ ——2715 K, P~ ——0.88 Mbar for 2024 A1,

T~ ——5800 K, I'~ ——3.04 Mbar for Pt .

To the extent this approximation is in error, we ex-

pect it to be low fol TM~ I~.
(c) Neglecting the electronic heat capacity gives

a calculated temperature on the Hugoniot too high

by about 4% at 0.9 Mbar for 2024 A1, and too
high by about 33% at 3 Mbar for Pt. For details
see Appendix A.

The approximate solution for the shock process
was computed for 2024 A1 for shocks of 0.4 and
0.8 Mbar, and for Pt for six shocks of strength 0.5
—3.0 Mbar. The main results are listed in Table

II. The shape of the shock process as a function of
the compression e, and as a function of shock
strength, is shown by the Pt sequence in Figs.
2—4. Note that as the shock strength increases,
the width e, of the conduction front becomes
larger compared to the width e~ of the entire
shock. In the weakly overdriven shock at 0.5
Mbar, only about a quarter of the shock tempera-
ture rise Tyy —Tg occuls ln the conduction front,
and the entropy continues to increase in the flow

region. In the well-overdriven shocks, 1 Mbar and
stronger, at least three quarters of the shock tem-
perature rise occurs in the conduction front, and
the entropy decreases in the flow region. The re-
sults for 2024 A1 show the same qualtitative
behavior. %e conclude that for well-overdriven
shocks, in the present calcultions at shock pressure
around three times the overdriven threshold or
greater, heat conduction ls a major part of the pro-
cess, and most of the shock temperature rise occurs
in the conduction front. For weaker shocks the ef-
fect of heat conduction becomes smaller as the
shock strength decreases toward the overdriven
threshold. In fact since the initial compression of
the solid is presumably elastic, in the small e re-
gion J(e) +0 as—D~c~, and for D (cI a solution
can be obtained without heat transport. %e con-
sider the effect of heat transport to be generally
negligible for underdriven shocks in solids. '

Because of the shape of T(e) on the Rayleigh
line, it appears that for shocks near melting on the
Hugoniot, but still in the solid phase there, T(e)
will rise above the equilibrium melting temperature
for a time in the center of the shock. %hen T
passes the melting temperature, the material should
begin to respond as a fluid after a time of order t„
the shear relaxation time of the fluid phase. For
most monatomic fluids, tt, -10 s at zero pres-
sure, and should decrease roughly as ( V/V, )r in
compression. However, fluid behavior depends on
the presence of vacancies, and during the shock
there may not be time to develop the equilibrium
concentration of vacancies, since this is presumably
a diffusion process. The time required for fluid
response to occur during a shock is an interesting
open question.

As mentioned before, our approximate solution
for T(e) is reasonably accurate because of the nar-
row bounds imposed by the formal theory' (see,
e.g., Fig. 1; also Fig. 4 of Ref. 1). In the flow re-
gion, these bounds limit T(e) to within a deviation
from the mean of +20% for the two weakest '

shocks in Table II, namely 0.4 Mbar for 2024 A1
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TABLE II. Results of the shock process calculations.

24

Quantity pt

I'H (Mbar)
&H

D (cm/LMs)

TH (10 K)
SH —S, (cal/mole K)
&c

J, /p, D (10' cal/mole)

T, {103K)
S,—S, {cal/mole K)
~, {Mbar)

SH
(r) (Mbar)

(g) (10"/s)
AZ(e) (10 cm)

hZ(T) (10 cm)

0.4
0.2363
0.779
0.930
4.10
0.0565
1.81
0.648
4.15
0.019
0.162
0.027
0.06
1.30
2.23

0.8
0.3241
0.941
2.365
8.83
0.1130
8.17
1.903

10.19
0.048
0.226
0.064
0.27
0.48

1.41

0.5
0.1200
0.441
0.534
1.84
0.0155
0.34
0.359
1.06
0.011
0.081
0.021
0.011
2.47

2.90

1.0
0.1863
0.500
1.132
5.79
0.0544
3.61
0.919
6.79
0.044
0.126
0.053
0.12
0.32

0.90

1.5
0.2311
0.550
2.032
9.29
0.0825
8.77
1.755

11.23
0.075
0.158
0.086
0.32
0.18

0.71

2.0
0.2642
0.594
3.138

12.1
0.1044

15.0
2.699

14.5
0.107
0.182
0.121
0.43
0.17

0.65

2.5
0.2903
0.634
4.374

14.5
0.1210

21.9
3.685

17.1
0.136
0.202
0.16
0.48
0.18

0.61

3.0
0.3114
0.670
5.697

16.5
0.1355

29.2
4.680

19.3
0.167
0.219
0.19
0.51
0.19

0.58

and 0.5 Mbar for Pt, and to within a deviation of
+10% for the other shocks. The T(e) bounds can
be transformed to bounds on r(e), from the varia-
tional relation'

5r(e) = —,pyCV5T(e—) .

From this we estimate that our computed values of
(r) have error bounds of +23% for the two weak-

est shocks in Table II, and of +10—15% for the
other shocks.

The space-time dependence of the Pt 2.5 Mbar
shock is shown in Fig. 5, where Z =0 is at point c
in the shock. The difference in behavior of the
temperature and entropy, as compared w'ith the
compression, is clearly seen: Because of the mas-
sive long-range transport of heat in the conduction
front, the profiles of T and S extend far ahead of

oint c and the increases of T and S are large

600'
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FIG. 2. Shape of the shock process for a 0.5 Mbar
shock in Pt.

FIG. 3. Shape of the shock process for a 1.0 Mbar
shock in Pt.
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FIG. 4. Shape of the shock process for a 2.5 Mbar
shock in Pt.

approach zero as e~, with P another constant.
In the same way, P~PH and $~0 behind the
shock.

Concerning the plastic constitutive behavior
through the shock process, we note that (r) is
larger than ~, for all the shocks. This is consistent
with setting /=0 up to point c. In a real solution,
of course, plastic flow will start at a much lower
value of r than r„but g should still be small in

the conduction front, and should increase signifi-

cantly around point c, so the qualitative behavior
of g and g should be still as shown in Figs. 2 —5.
Since the total g is small in a planar shock, strain
hardening should be correspondingly small, and the
high shear stress we find in the flow region is

presumably due to the high strain rate f Final. ly,
while we expect our estimates of (r) and g(e) to
be reasonably accurate, it is difficult to establish
bounds for l((e), and only order-of-magnitude
meaning can be claimed for our values of (l(r ).
For all but the weakest Pt shock in Table II, the
ratio (v)/(p) lies in the range 0.2 —0.4 g/cm s.

0.2 0.4
Z(i06cm)

0.6 0.8

FIG. 5. Shock process as function of Z for a 2.5
Mbar shock in Pt.

there; then behind point c, T and S change little
while most of the compression takes place. Note,
however, that in the limits Z~+ ao, all three func-
tions T,S,e have formally the same Z dependence.
In particular, for Z~ ao, T —T„S—S„and e all

approach zero as e, with a a constant; and for

I
T—TH I I

~—S'H
I

and
I
e—eH

I
»I

IV. NATURE OF THE SHOCK PROCESS

We review the nature of shocks in solids, for dif-
ferent ranges of shock strength. Recall that the
elastic line is the o(e) relation corresponding to
isentropic uniaxial elastic compression of the solid
(see, e.g., Fig. I of Ref. I). In a weak (underdriven)
shock, the initial compression is on the elastic line;
this signal travels as the elastic precursor. Follow-
ing this initial elastic compression, the normal
stress o falls below the elastic line; hence a solution
can be obtained by allowing plastic flow to occur,
to relax o. below the elastic line. ' The effect of
heat transport on the shock process is presumably
negligible. Since the elastic precursor travels faster
than the plastic wave, the entire shock is not a
steady wave.

For an overdriven shock, we assume the shock is
a steady wave. The normal stress rises above the
elastic line at small. e, so heat transport is neces-
sary to obtain a solution in the leading edge. As
the shock strength increases from the overdriven
threshold, the quantity of heat which must be
transported to the conduction front increases from
zero. Also in the vicinity of the overdriven thresh-
old, as shock strength increases, there is a dramatic
decrease in the shock rise time, a decrease of a fac-
tor of order 10 for metals.

As a qualitative definition, a well-overdriven



TABLE III. Hugoniot for 2024 A1. Units are the
following: P (Mbar), T (K), S (ca1/mole K).

p

TABLE V. Elastic moduli calculated on the Hugo-
niot for A1, neglecting melting. Units are the following:
P (Mbar), T (K), B (Mbar), G (Mbar).

0
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.30
0.32
0.34
0.36

0
0.035
0.079
0.135
0.205
0.295
0.412
0.566
0,662
0.774
0.905
1.060

293
319
354
411
507
675
962

1446
1799
2252
2835
3583

0
0.018
0.157
0.56
1.35
2.59
4.27
6.30
7.41
8.58
9,79

11.04

293
319
354
411
509
679
974
1474
1842
2319
2938
3741

PH

0
0.2
0.4
0.6
0.8
1.2
1.6
2.0

TH Te

207
637
1274
2072
4015
6270
8730

0.79
1.55
2.20
2.80
3.37
4.47
5.54
6.58

0.96
1.04
1.10
1.15
1.18
1.21
1.23
1.25

0.345
0.3?
0.37
0.37
0.36
0.35
0.34
0.33

shock is one in which most of the shock tempera-
ture rise occurs in the conduction front. For well-

overdriven shocks in solids, the theory we have

developed is characterized by the following proper-
ties

(a) Essentially all of the shock entropy is gen-
erated in the conduction front, by heat conduction.

(b) The heat is generated in the flow region, by
plastic flow.

(c) For metals the shock thickness is b,Z-10
cm, the risetiIne is ht-10 ' s.

(d) For shocks near melting on the Hugoniot,
but still in the solid phase there, T(e) rises above
the equilibrium melting temperature for a time in
the center of the shock.

Once the detailed space snd time dependence of
the shock process is found, it is possible to examine
conditions on the validity of irreversible thermo-

dynamics, in terms of the relaxation times snd the
mean free paths of electrons and phonons. The
preliminary conclusion from this study, for steady-
wave shocks in solid or liquid metals, is that the
present theory is a valid approximation for shocks

up to a definite hmit and is invalid for all stronger
shocks. The breakdown of irreversible thermo-
dynamics results from the massive demand for heat
transport and the consequent inability of electrons
and phonons to remain near equilibrium. The li.m-

it is in the range of a few Mbar for metals.
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APPENDIX A: THE HUGONIOT

0
0.04
0.08
0.12
0.16
0.20
0.24
0.26
0.28
0.30
0.32

0
0.128
0.290
0.500
0.773
1.135
1.621
1.928
2.289
2.718
3.231

293
329
395
534
816

1348
2283
2967
3839
4942
6327

0
0.067
0.56
1.84
4.00
6.81

10.03
11.7
13.5
15A
17.3

TABLE IV. Hugoniot for Pt. Units are the follow-

ing: P (Mbar), T (K), S (cal/mole K).

Tion

TheITIlodynaInlc-functions on the Hugonlot, fof
2024 A1 and for Pt are listed in Tables III snd IV,
respectively. The effect of neglecting the electronic
contribution to Cq is shown by the coluInn T;,„,
which is computed by taking for Cq only the ion
vibrational part, 3%k peI' mole.

APPENDIX 8: ELASTIC MODULI
ON THE HUGONIOT

A linear expansion of 8 from state a (I' =0,
T=T, ) is

a =a.+(aayar ),I +(aa)aT), (T T.), —
where the coeAicients are to be evaluated at state a.
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A similar equation may be written for G. Evalua-
tions of these equations from ultrasonic data are
denoted 8„,6„. For single crystal A1, Thomas'
measured variations in ultrasonic transit times due
to variations in anisotropic stresses up to -25 bar,
variations in I' up to -50 bar, and variations in T
of —10 K. Polycrystalline averages of Thomas's
results give

8„=0.759+4.42P —0.16(10 )(T —T, ),

6„=0.262 ~ 1.82P —0.14(10 )(T—T, ),
in Mbar, with I' in Mbar, T in K, and T, =293.

The bulk modulus computed on the Hugoniot
from shock data is denoted 80. We ignore melting

and the presence of the liquid phase, and we also

ignore the difference between pure A1 and 2024 A1

in order to compare the ultrasonic and shock re-

sults, Table V. It is seen that 8„=BH and

6„/8„= const to 2 Mbar on the Hugoniot.
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