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An isotropic solid, capable of transporting heat and of undergoing dissipative plastic

Aow, is treated. The shock is assumed to be a steady wave, and any phase changes or
macroscopic inhomogeneities which might be induced by the shock are neglected. Under

these conditions it is established that for an overdriven shock, no solution is possible

without heat transport, and when the heat transport is governed by the steady conduction

equation, no solution is possible without plastic dissipation as well. Upper and lower

bounds are established for the thermodynamic variables, namely the shear stress, tempera-

ture, entropy, plastic strain, and heat flux, as functions of compression through the shock.

I. INTRODUCTION

We have recently discussed the irreversible-
thermodynamic theory of flow processes in
solids. ' The processes considered include simul-
taneous clast1c stlain and plastic flow, where plas-
tic flow is any dissipative rearrangement of the
atoms in a solid. The theory is expressed in three
coupled subscts of cquat1ons: thc continuum-
IQcchan1c cquat10Qs foi COQscfvat10Q of mass,
momentum, and energy; the thermoclastic equa-
tions which relate variations in the elastic strains,
stresses, entropy, temperature, and so on; the ther-
moplastic equations which define plastic flow and

specify the entropy generation. When the thermoe-
lastic cocfBcicnts, which are the stress-strain coeN-
cients, the anisotropic Griineisen parameters, and
the heat capacity at constant elastic configuration,
and the plastic constitutive relations are known,
the equations can be integrated from initial condi-
tions to find a general flow process of a solid.

When applied to the problem of weak shocks in

solids, this woik pfovidcs Rn improvement 1Q thc
description of the shock process in t%o ways: En-

tropy terms in the stress equations are properly in-

cluded {instead of using Hooke's law) and the en-

tfopy pfoduct10Q 1s pfopcfly expressed in terms of
plastic flow {1Ilstead of using viscous fluid d1sslpa-

tion). ' Further, the theory can be used to determine
the plastic Aow behavior in the weak-shock pro-
cess, from measurements of the shock profiles and
the polycrystalline thcrmoelastic coefficients. Fi-
nally, a solid-state Hugoniot theory has been given
for the first time, from which it is possible to
determine Recut'ate equation-of-state data from
weak shocks in solids.

For overdriven shocks, there is very little exper-
imental information about the nature of the shock
process. The shock is generally too fast to be ex-

perimentally resolved; an experimental upper limit
for the rise time for shocks of several hundred kbar
1Q scvc1al metals 1s 3 Qs. HowcvcI, by applying
the same principles we have previously used in the
weak-shock theory, it is possible to learn a great
deal about the process of overdriven shocks in
solids, even without knowing details of the plastic
constitutive behavior of the material. The purpose
of the present paper is to develop this theory of
overdriven shocks in solids.

The solid material is assumed to be isotropic, ac-
cording to the definition of Ref. 1, and capable of
transporting heat and of undergoing dissipative
plastic flow. Polycrystalline effects are neglected;
some justification fof this is glvcn 1Q thc Appendix.
Shock-induced phase transitions, such as melting
and other structural changes, and shock-induced
1Tlacfoscopic inhomogcncitics, sucIl Rs CI'Rcks Rnd

local hot spots, are also neglected. The shock is
assumed to be a steady wave. The theory has been
developed %'1th Rppllcatlon to polycrystRllinc IIlct-
als in mind, but it might be valid for some non-
metals as well.

II. RAYLEIGH-LINE EQUATIONS

A. The conservation equations

Thc shock 18 a plane %'avc which propagatcs in
the x direction; y and z are equivalent transverse
directions. Lateral edge effects are eliminated by
specifying that there is no material motion in
transverse directions. Mass elements of the materi-
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al are planar slabs of infinitesimal thickness, nor-
mal to the propagation direction. The Lagrangian
coordinate of each mass element is X, which is
equal to the laboratory coordinate x of the mass
element before the shock arrives, i.e., at the time
t = —00. The mechanic and thermodynamic prop-
erties of each mass element are functions of t, so
for the whole material these properties are func-
tions of X and t. The density is p, the volume per
unit mass is V=p, the material velocity is v,

compressive stresses in the normal and transverse
directions are, respectively, o. and o.—2~, so the
shear stress is r. Quantities in the initial state {be-
fore the shock) are denoted by subscript a, and
a=1 —V/V, measures the total compression from
the initial state. The heat Aux is J.

The shock is assumed to be a steady wave, mov-

ing at constant velocity D. The steady-wave condi-
tion is that any property F(X,t) depends only on
the Lagrangian steady-wave variable Z=X—Dt:
F(X,t) =F(Z). Equivalently, with z =x Dt the-
laboratory steady-wave variable, the condition is
F(x, t) =F(z). The two variables are related by

e=v/D,

o =p~DU (4)

The Rayleigh line is the o(e} relation through the
shock process; from (3) and (4) this is

o.=p,D e.
Since the transverse stresses do no work, the in-

cremental center-of-mass work done on the materi-
al is d W= —od V per unit mass. The incremental
heat transferred to the material is dQ per unit
mass, so conservation of energy requires

dU= —adV+dQ .

This equation includes arbitrary entropy genera-

dZ=(p/p, }dz .

Because of the steady-wave condition, the entire

space and time dependence of any function F(e)
on the Rayleigh line is specified by a single vari-

able.
The initial conditions are that the stresses, the

material velocity, and the heat Aux are zero in the
state ahead of the shock,

o.,=~, =u, =J,=O.

First integrals of the equations for conservation of
mass and conservation of momentum are, respec-
tively,

tion, corresponding to whatever part of the work
dW is dissipated, in addition to the entropy genera-
tion due to heat flow. It is convenient to eliminate

Q for J, because J is the function custotnarily relat-
ed to the material heat-transport properties. For a
steady wave the continuity equation is simply
dQ =dJ/p, D, and the energy is integrated on the
Rayleigh line to give

U —U, = , D e —+J/p,D .

B. The thermodynamic equations

The thermodynamic equations include both ther-
moelastic and thermoplastic subsets; the derivation
proceeds as follows. ' Total symmetric strain mea-
sures may be taken as i,j———, (U;1 +UJ; ), where U;1

are velocity gradients; e,& increments are composed
of elastic and plastic parts: dE'IJ dE'pj+dE'jtthe
de,j are related in the usual way to variations in
stresses, energy, entropy, and so on, and de~j are
related to plastic constitutive behavior and to the
entropy production. Note that all these thermo-
dynamic equations are Lagrangian, in that they re-
late various properties of a given mass element. In
the present case of plane-wave motion there are
only four independent strain variables: de~, de&&

and d 'Eyy d 6 The boundary
condition qf no transverse motion requires

dezz ——de~ =0, and the assumption that the plastic
flow is volume conserving means de~~+2de~~ ——0.
There remain only two independent strain vari-
ables, which may be taken as the total compression
E and the plastic strain p, where d1}'j=—de~~. It is
also convenient on occasion to use V or p in place
of e.

The thermoelastic equations may be derived in
complete tensor form, appropriate for arbitrary
elastic strains, by taking dE'jpand dS as indepen-
dent variables, where S is the entropy per unit
mass. These equations may then be simplified for
the present geometry. The results for the energy
U, the stresses o. and ~, and the temperature T are
the following '.

dU= TdS a.d V 2Vrdf, — —

pyl TdS B11dlnV (B11 B12)dy
1d&= 2p(y, y2}TdS —,(B11—B21)din—V—

1 1 1

2 (B11+ 2 B22+ 2B23 B12 B21)d1t' ~

dT=C„'TdS Ty, din V T(y, y—2)dg . — —
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TdS =dJ!p,D+2Vrdg . (12)

Concerning the energy equation, we note that
the continuum mechanic form (6) and the thermo-

dynamic form (8) are the same when (12) for TdS
is used. Because we have used the entropy as an

independent variable, the energy equation is not
coupled to the other thermodynamic equations

(9)—(12), and so the energy equation does not have

to be solved simultaneously with them.
To complete the description of the process, two

more equations describing dynamic response
characteristics of the material are needed. The
plastic constitutive behavior is expressible as R

dependence of the stress which drives the plastic
flow, namely the shear stress w, on the plastic
strain and strain rate and on the thermodynamic
state, approximately

r=r(P, g, V,S) .

The heat transport behavior relates the heat
current J to the temperature gradient and other
var1ables

Here the Voigt indices are 1=xx, 2=yy, 3=zz.
8 ~ are the adiabatic stress-strain coeNcients, y&
'Rfc thc Rnlsotfop1c GfUnciscn parameters, and C~
1s the heat capac1ty at constant elastic configura-
tion. %'e also have to specify the entropy produc-
tion. There are two sources in the present theory:

dQ contributes to TdS, and also the plastic work
dlV"=2Vrd P, which is assumed to be totally dissi-

PRt1VC,

are five equations in the six variables cr, r, T,S,Q,J
Following this, some information on the heat
transport mechanism will be used to extend the
study to the space-time dependence of the process.

A. Necessity of heat transport

Theorem 1. For an overdriven shock in a solid,
no solution is possible without heat transport.

The proof does not depend on the mechanism of
heat transport. Heat transport is needed at the be-

ginning of the shock, to bring 0 up to the Rayleigh
line, as shown in Fig. 1. Thc elastic line corre-
sponds to adiabatic (dS=0) uniaxial elastic com-

pression of the material under plane-wave boun-

dary conditions (no transverse motion). The slope
of this line at m=0 is p, cI, where cI is the longitu-
dinal sound velocity in state a. The elastic precur-
sor velocity is c& & eI, where c& ean be greater than

cI by only very small fln1tc-stfa1n cofIcetlons. Thc
definition of an overdriven shock is D ~ c&, the
slope of the Rayleigh line for a steady-wave shock
is p,D, so for an overdriven shock the Rayleigh
line is steeper than the elastic line, as shown in

Fig. 1. If plastic Qow takes place in the small-e re-

gion, it can only reduce o below the elastic line at
small e. Therefore heat must be transported to the
material in the initial stage of the shock.

J=J(grad T, V S,... ) . (14)

The complete set of Rayleigh-line equations is
then (5) together with (9)—(14). We assume the
thermoclastic coe%cients 8 p,yp, C& are known as
functions of the thcrmoelastic state. There are
then seven coupled Rayleigh-line equations in the
seven variables: o,r, T,S,Q,J, and one space-time
variable, z, for example. These equations are in

principle solvable for the shock process. On the
other hand, if one of the Rayleigh-line variables
were known from experiment, e.g., z(e), or T(e), or
for example u (r) at a fixed X, then these equations
can in principle be used to determine the plastic
constitutive relation (13) through the shock. An
alternate point of view, which we pursue in the fol-
lowing because there is no experimental data on
the Rayleigh-line variables, and bemuse the plastic
conStitutive behavior in overdriven shocks is entire-

ly unknown, is to omit the last two equations of
the set, and to study Eqs. (5) and (9)—(12), which

FIG. 1. Showing the proof of Theorem 1. The elastic
line has a f&xed slope of p, c~ at @=0; the Rayleigh line
has slope p,D which increases with shock velocity D.



The proof may be shown directly from the
Rayleigh-linc equations. We set the heat transport
to zero: dJ=0. Then from (12), TdS =0 at state
a, since ~, =0. Also at state a, p=p„811——p, e»,
811—812——26, where 6 is the adiabatic shear
modulus, so (9) at state o is

do =p, cI de 26d—g .

Differentiating the Rayleigh-line equation (5) for a
f1xcd D gives

do =p~a dE .

Since dP & 0 by definition, no solution is possible
when D p e». When heat transport is included,

kg 0 and a solution is possible.

B. Family of partial solutions

Consider a given material with specified proper-
ties and a fixed shock strength corresponding to a
shock velocity D. The state behind the shock is
the thermodynamic cqu111briuID Hugomot state,
denoted by subscript H, where the Rayleigh line
reaches the Hugoniot at eH. The thermodynamic
variables have the values oH, re, T~,SH, QH, and
because of equilibrium the heat current vanishes:

Because the shock is a continuous process, the
Rayleigh-line solution is continuous, i.e., all the
variables are continuous functions of e for
6&6'&E~.

We define 8 partial solution as a set of six func-
tions o(e), r(e), T(e), S(e), g(e), and J(e) which
are continuous on 0&e&eH, which take on the
correct values at e=o and e~, and which satisfy
the five Rayleigh-line equations (5) and (9)—(12).
A partial solution can be constructed by taking any
function for one of the variables, for example S(e),
which is continuous and which takes on the correct
values at @=0and e~, and by solving the five
Rayleigh-line equations for the other five functions.
Given S(e), solution for the other five functions is
unique, because for the tetragonal symmetry of the
material under plane-wave compression there are
three independent thermoelastic state variables,
which can be taken as S,e,o, and o(e) is fixed by
Eq. (5). Because one function of a partial solution
is arbitrary, the family of partial solutions is infin-
ite. Among these, many will be unacceptable on
simple physical grounds, as we will see shortly;
among the physically acceptable partial solutions,

one is the correct solution for the material under
consideration.

It is possible to establish an important ordering
of thc part181 solutions. Starting fro1Tl onc part181
solution, we generate another one infinitesimally
removed by adding to S(e) an increment 5S(e),
which is continuous and which does not change
sign on 0& e & @~, and which vanishes at @=0and
Rt 6'@. FroIIl onc given partial solution~ 811 partial
solutions can be generated in this way. Functional
relations among the variations 5S(e), 5T(e), and so
on, at a fixed value of e, can be found from Eqs.
(5) and (9)—(12) evaluated at 5m=0:

5o = py ) T5S —(8 ) ) —8 )z )5$, (17)

5r= , p(y) y—z)T5S-

——,(&i i+ —,&zz+ —,&zz —&~z —
&zi )50

(18)

5T=C„'T5S T(y I yz—)5$, —

TSS=5Jlp, D+2Vv5$ . .

(19)

(20)

V2 V+

+ 6+ e o ~

11

&11—&12=26'+ ' ' '

Cg=cv+ '

These relations will eventually be useful in estab-
lishing bounds for the Rayleigh-line solution
throughout the shock.

The cocfBcients in these equations are complicat-
ed, but 8 cons1stcnt llsc of thc sII1811-an1sotropy ex-
pansion is su6icient to determine the relative signs
of the variations 5$(e), 5T(e), and so on The.
small-Rnisotropy expansion is defined as follows':
Throughout the shock process, the shear stress ~
should bc sII1811 compared to thc shear modulus G
so any thermodynamic coefficient f=f(e,S,r) can
be expanded in powers of r/G at constant e,S:

f(e,S,r)=f(e,S,O)+(coefficient)(r jG)+
(21)

For the needed coefBcients we write explicitly the
leading term in the expansion, which is defined in
isotropic thermodynamic space (r=0), and denote

by + . all terms of relative order r/6 and
highci:

'V1=F+ ' '
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where y is the ordinary (isotropic) Gruneisen
parameter, B is the adiabatic bulk modulus, and

Cv is the heat capacity at constant volume.
Relative signs of the variations 5S, 6T, and so

on, are given by the leading order evaluation of
Eqs. (16)—(20). In view of (16) and (17), the first
term on the right of (18}may be neglected because
it is of order ~/6 times the second term. Also be-

cause TCq & VG for shocks in solids, the second
term on the right of (19) is & (r/G) times the first
term. Then to leading order the functional varia-
tions at fixed e are related by

5$(E)=(pyT/2G)5S (e),

5T(e)=(T/Cv)5S (e),

5J (e)=p, DT5S ( E),

&-(e)= ——,pyT5S (e) .

(23)

(24)

(25)

(26)

Therefore, given any partial solution, functional
variation to a new partial solution has 5S(e},
5T(E), 5$(e), 5J (e) of the same sign everywhere,
and 5r(e) of the opposite sign everywhere. The
next step is to introduce physical restrictions that
will limit the range of partial solutions which are
acceptable.

C. The minimum-~ partial solution

For a solid, ~ cannot be negative during shock
compression, hence r=0 is a lower bound for r(e)
on the Rayleigh line. We can construct a partial
solution, the minimum-~ partial solution, by speci-
fying r(e) as follows: r(e) =0 for 0 & e & eH —5,
where 5 is a positive infinitesimal, and r(e} in-
creases continuously to ~~ at e~. If we want to set
~H ——0, i.e., to approximate the solid Hugoniot by a
fluid Hugoniot, then the minimum-w partial solu-
tion has r(e) =0 everywhere. Specifying r(e) deter-
mines a partial solution, whose properties follow
directly from Eqs. (5) and (9)—(12), and from the
ordering of the family of partial solutions:

Theorem 2. The minimum-v partial solution
represents, in the region where r(e) =0, an inviscid
fluid with heat transport, and it constitutes a
bound for physically acceptable solutions, in which
T(e), S(e), l((e), J(e) are all upper bounds.

The qualitative forms of T (e) and J(e) for the'
minimum-~ partial solution are shown in Fig. 2.
The Rayleigh-line equations simplify in the region
where v.=0. The stress becomes an isotropic pres-
sure P, and all the thermodynamic coefficients are
evaluated at ~=0, which is the state corresponding

FIG. 2. Behavior of T(e) and J(e) on the Rayleigh
line for an inviscid fluid with heat transport or a solid
with ~(e)=0.

to the leading terms in (22). Equation (10) is

0= —G (din V+ —,dl(t), (27)

which allows dit to be eliminated from the set.
Equations (5), (9), (11), (12) then become

cr=P=p, D e,
dP =pyTdS+p V,Bde,

dT=pyV, Tde+Cy 'TdS,

TdS =dJ/p, D .

(28)

(29)

(30)

(31)

D. The minimum-P partial solution

The plastic strain must be nondecreasing by de-
finition: dP & 0. Hence /=0 is a lower bound for
itj(e') on the Rayleigh line. The condition /=0
represents the response of an elastic solid with heat
transport and with infinite yield strength; we refer
to this hypothetical material as a nonplastic solid.
If we set g(e) =0 the Rayleigh-line equations can
be solved. Figure 3 shows the behavior of J(e) and
T(e) in this case: J(e) has a maximum at some
point eb, and T(e) has a maximum at Ed & Eb.
This solution is not a partial solution because the
variables do not reach the Hugoniot values at eH.,
we find, in particular, T(eH) & TH and J(eH) &0.
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E. Solutions continuous in space and time

H

d

FIG. 3. Behavior of T(e) and J(e) on the Rayleigh
line for a solid with heat transport and with /=0 (a
nonplastic solid). J{e)has a maximum at eb and T{e)
has a maximum at eq & eb.

pyi TdS =(p,D pV, Bi i )de, —

and (11) and (12) beoome

(32)

dT =pyi V Tde+ C„'TdS,

TdS =dJ/p~D .

(33)

(34)

These are three equations in T(e},$(e), J(e). The
equation for r(e) is then uncoupled from the above
set:

In other words, the nonplastic solid does not pos-
sess a steady-wave shock solution. But we are only
interested in this solution in the region 0(e & @~,

beyond this, one of the thermodynamic variables
can be arbitrarily continued to the Hugoniot state,
generating a partial solution. This partial solution,
with 1((e)=0 for 0&e&Eg, is called the mini-
mum-g partial solution. Properties which follow
at once from Eqs. (5) and (9)—(12) and from the
ordering of the family of partial solutions are the
following.

Theorem 3. The minimum-g partial solution in

the region where 1((e)=0 represents a nonplastic

solid, and constitutes a bound for physically ac-
ceptable solutions in which T(e},$(e), J(e) are
lower bounds and r(e) is an upper bound.

The condition dl( =0 simplifies the payleigh-line
equations considerably. Combining (5) and (9)
g1ves

To study the space and time dependence of the
shock process, we need to know something about
the dynamic response characteristics of the materi-
al. There is currently no sound basis for estimat-

ing plastic flow behavior under conditions of over-
driven shocks. However, a respectable estimate of
the heat transport mechanism can be made, and we
will do this specifically for metals.

For an ordinary metal, solid, or liquid phase, un-

dergoing a shock to the few Mbar range, the
compression is about a factor of 2, and the tem-
perature rises to the order of 10 K. These
changes are mild for most metals, so the nature of
the electron-phonon system in its simplest approxi-
mation is not significantly changed. We can still
think of electrons carrying the heat, and being scat-
tered by electrons and phonons. Further, if irrever-
sible thermodynamics is approximately valid, the
heat current should be given approximately by the
steady conduction equation J= —v gradT.

Elementary solid-state theory for electronic con-
duction at high temperatures (T & Debye tempera-
ture) expresses the conductivity a as

2K=
3 CVFf~

where C is the electronic heat capacity per unit
volume, U+ is the Fermi velocity, and t, is the
dominant electronic relaxation time. The
electron-phonon relaxation time is Ipp 10 s at
room temperature and should decrease through the
shock approximately as T '. The electron-
electron relaxation time is T«-10 ' s at room
temperature and should decrease approximately as
T . Hence t„will become dominant at suffi-

ciently strong shocks, but up to a few Mbar, t,p
should ordinarily be dominant. With t,p as the
electronic relaxation time, the above expression for
K has the following properties ": ~ is indepen-
dent of T, and ~ has only a small density depen-
dence of order p to p . So in the shocks under
consideration, ~ is roughly constant.

The thermodynamic variables o, r, T, S, 1(, J
should be continuous single-valued functions of
space and time through the shock, or what is
equivalent, they should be continuous single-valued
functions of z. This requirement leads to a condi-
tion on the behavior of T(e} and J(e), which we

will derive. The heat-conduction equation for a
steady plane wave is

1 1dr= ,p(y, y, )TdS+ ,pV, —(B—» B»)d—e. —(35) J= a(dT/dx), = a(dT/dz), — — (36)
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or with de&0,

d T/de
dz/de

(37)
2024 Al 0 8 Mbar

For overdriven shocks, Theorem 1 implies J(e)
and dT/de are both positive at small e. As e in-

creases Eq. (37) allows the following possibilities.
If dT/de=0 on a finite interval while J(e}& 0,
then e(z) is discontinuous. If dT/de&0 on a finite
interval while J(e) & 0, then e(z) is double valued.
If J (e)=0 on a finite interval while dT/de& 0,
then z(e) is undefined. If J(e}&0 on a finite inter-
val while dT/de& 0, then e(z) is double valued.
All of these cases can be rejected, because if e is
discontinuous or double valued in z, then the ther-

modynamic variables are also discontinuous or
double valued in z. Then either J(e) and dT/de
both remain positive on 0 & e & eH or else both are
zero at some e'&eH.

In fact, both J(e) and dT/de must remain posi-
tive, as can be shown from the Rayleigh-line equa-
tions. In (11) the last term on the right is of order
z/G relative to the second term, so the sign of the
last two terms together is the sign of the second
term, from which it follows that T(dS/de) &0
when dT/dE&0. Then because r(dg/de) &0, (12)
implies dJ/de&0 when dT/de&0. Now suppose
J and dT/de are zero at e' &eH. Then if
dT/de & 0 all the way to eH, dJ/de & 0 all the way
to eH, and J(cH ) &0, which violates the final con-
dition (15). If instead dT/de&0 for e'&e&E",
where e"& eH and dT/de & 0 for a finite interval

of e & e", then J(e) & 0 for a finite interval of
e & e" and e(z) is double valued. Hence we have

the following theorem.
Theorem 4. For an overdriven shock in a solid

with heat conduction and dissipative plastic flow, a
steady-wave solution continuous and single valued
in z is possible only under the conditions J(e) & 0,
dT/de&0, on 0&a, &eH, where either equality
can hold on a sum of intervals whose total length
is zero.

F. Bounds throughout the shock

It is now possible to construct upper and lower
bounds for the temperature through the shock pro-
cess. The construction is shown in Fig. 4, where

the curves are those computed for a 0.8 Mbar
shock in 2024 Al, with the approximation 7"H =0.
The inviscid fluid curve is the ~=0 partial solution
[Theorem 2 and Eqs. (27)—(31)];it reaches TH at
e* and so, because dT/de) 0 for 0&@&tH by

/
IN VISCID/

/ FLUID

/
/

/

LAST IC
ID

'0 I

OI
I

02
]

0.3

FIG. 4. Solid lines show upper and lower bounds for
T(e) on the Rayleigh line. Curves plotted are for a 0.8
Mbar shock in 2024 Al, where ~H ——0 has been taken for
approximation (e~ ——0.324, TH ——2365 K).

G. Necessity of plastic dissipation

With reference to Fig. 4 and with vH ——0 for ap-
proximation, we consider the possibility that the

Theorem 4, an upper bound for T(e) on e*
&e&ez is TH. The nonplastic solid curve is
the /=0 partial solution [Theorem 3 and Eqs.
(32)—(35)]; it has a maximum of T~ at e~ and so,
because dT/de&0 for 0&6'&6'H, a lower bound
for T(E}oil Ed& e'&EH'is Td.

For the real shock process in a solid with heat
conduction and dissipative plastic flow, the T(c)
curve must lie within the bounds illustrated in Fig.
4, must be a nondecreasing function of e, and must
reach TH at eH. Further, with the upper bound
for T(e) prescribed as in Fig. 4, a partial solution
of the Rayleigh-line equations can be found, in
which S(e), P(e), J(e) are upper bounds and r(E)
is a lower bound. Also for the lower bound T(e)
shown in Fig. 4, another partial solution can be
found, in which S(e), 1t(e), J(e) are lower bounds
and r(e) is an upper bound. This gives a great
deal of information about the shock process.
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inviscid fluid solution for T(E) remains less than
TH for 0&e&eH and reaches TH at e~. In his
classic paper on shocks in gases, Rayleigh' has
shown that this is the case for sufficiently weak
shocks, but not for shocks stronger than a certain
limit. We express this limit in the form D
=(1+x)cs, where cs is the "bulk sound veloci-

ty, " given by pc~ ——8. For dense systems such as

p, ) 1 g/cm, and corresponding values of y, and

Cz, we find x -10 . This value of D is certainly
less than the longitudinal sound velocity, so we
conclude that for overdriven shocks the inviscid
fluid curve of T(e) passes above TH at some
e~ & eH, as shown in Fig. 4. It is therefore possible
to establish the following theorem.

Theorem 5. For an overdriven shock in a solid
with heat conduction, no solution is possible
without plastic dissipation.

The theorem is most easily proved from Fig. 4.
The inviscid fluid T(e) corresponds to r=O; there-
fore, in order to have T(e) & TH for e& e~, we
must have r(e) & 0 for E & e~ The no. nplastic solid
T(e) corresponds to /=0; therefore, in order that
T(E) & Td for E)Gg, we 'must have f(e) & 0 for
e& ed. Thus in the last part of the shock process,
for e ~ e* and e g e~, the plastic dissipation
de'=2Vrdf is greater than zero.

This result is approximately the counterpart for
solids of Rayleigh's theorem' for viscous heat-
conducting gases. Physically it arises because the
heat which must be transported to the initial re-
gion of an averdriven shock, in order to bring 0. up
to the Rayleigh line according to Theorem 1, has
to be generated by plastic dissipation in the later
stage of the shock.

IV. SUMMARY AND DISCUSSION

We have studied the irreversible thermadynamic
process of overdriven shocks in an isotropic solid
with heat transport and dissipative plastic flow.
Shock-induced macroscopic inhomogeneities and
shock-induced phase changes are not considered.
The theory developed is expected to apply to poly-
crystalline metals, apd possibly to ductile non-
metals as well. Arguments can be given for the
neglect of polycrystalline effects (the Appendix),
but more experimental information on this question
is needed.

Some comments can be made concerning the
steady-wave assumption. When a shock is initiat-
ed, for example by a plate impact, the wave front
presumably evolves as it moves. The assumption is

that it approaches a steady wave (evolution ap-
proaches zero), and that for all practical purposes
the real shock is well approximated by the limiting
steady wave, after a distance of travel of many
shock widths. The steady-wave assumption does
not hold for weak shacks in solids ' because the
elastic precursor travels faster than the plastic
wave and the entire shock continues to spread in-

definitely. Also, for overdriven shocks a phase
change could split the wave into two components
traveling at different velocities. Obviously, then,
the steady-wave assumption implies some re-
strictions on the dynamic response of a material.
We note that heat transport according to the
steady conduction equation. is compatible with a
steady wave.

The concept of the family of partial solutions is
quite useful in analyzing the shock process because
these solutions depend only on the best-known ma-
terial properties, namely, the thermoelastic coeffi-
cients. For a given material, with thermoelastic
coefficients known as functions of the thermoelastic
state, the family contains all continuous solutions
with the proper initial and final values, which are
consistent with the thermoelastic coefficients and
consistent with arbitrary (unspecified) dynamic
response properties. Members of the family are or-
dered by observing that given a partial solution
functional variation leads to a new partial solution
with 5S(e), 5T(e), 5$(E), 5J(e) of the same sign
everywhere, and 5r(e) of the opposite sign every-
where. Then because ~ must be non-negative,
r(e) = 0 defines a unique partial solution which
gives upper bounds for S(e), T(e), f(e), J(e)
(Theorem 2). And because 1( must be non-
negative, P(e) =0 defines a partial solution, unique

up to ed where dT/de=0, which gives lower
bounds for S(e), T(e), g(e), J(e), and an upper
bound for r(e), for 0 & e & ed (Theorem 3). Fur-
ther, the condition that the solution be continuous
and single valued in z, coupled with the steady
heat-conduction equation, requires J(e) to be non-

negative and T(e) to be a nondecreasing function
of e (Theorem 4). This theorem then narrows the
bounds on T(e) and on the other variables as weH

(Fig. 4). Finally, it is established that for an over-
driven shock in a solid no solution is possible
without the operation of both dissipative mechan-
isms, heat transport and plastic flow (Theorems 1

and 5).
An observation is in order on the use of thermo-

dynamics in the theory of shocks. In the present
work, irreversible thermodynamics is assumed
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valid; this means thermodynamic functions are de-
fined throughout the shock, and they are related by
irreversible-thermodynamic relations. It is then
possible to solve for, or at least to estimate, the
space and time dependence of the shock process,
and from this solution it is possible to determine
whether or not irreversible thermodynamics is in
fact valid. We will pursue this line of investigation
in the future. In the following paper, the present
theory ls used as basis fol numerical calculations
for some representative metals, and it is found that
the Raylcigh-line solution is narrowly bounded and
the nature of the shock process is revealed in some
detail.
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APPENDIX: POLYCRYSTALLINE EFFECTS

The question is, for overdriven shocks in solids,
is the shock width (or rise time) influenced by po-
lycrystalline effects; more specifically, does the
polycrystal structure give rise to a signi6cant dissi-
pation in the shock process. Such dissipation
could result if the shock velocity is different in dif-
ferent crystallographic directions and if the shock
thickness is small compared to the grain size.
Then in any two neighboring grains of differen
orientation, the shock will move faster in one and
will transfer energy sideways to the other grain
ahead of the shock front there; this is dissipative,

and it broadens the shock front. We note that dif-
ferent shock velocities in different crystal directions
can result if there is a noticeable shear stress in the
shocked state, and especially if that shear stress is
differen for the different directions. On the other
hand, if the Hugoniot shear stress is insignificant
for shocks in all crystal directions, and if the shock
is a steady wave, then the Hugoniot lies in isotro-
pic thermodynamic space (stress system is isotropic
pressure) and the shock veloctty must also be tso-
tl oplc.

As for experimental data, there is very little to
help resolve the question. Grains in metals range
nominally from 10 to 10 cm. According to
the present theory, the width of overdriven shocks
in metals is of order 10 cm, so the shock thick-
ness is small compared to thc grain size. Thc same
should be true for any nonmetals to which the
present theory might apply. For very weak shocks
in NaC1 (3—15 kbar), a large difference in plastic
wave velocities in diAerent crystal directions has
been observed. ' This has been explained by attri-
buting the plastic flow entirely to primary slip. '

For stronger shocks, driving higher order slip,
dependence on crystal orientation is expected to be-
come weaker. Shock velocity-particle velocity
measurements for NaCl in different crystal direc-
tions all lie on the same curve up to 230 kbar (Ref.
15); a phase change which begins at 230 kbar in-
troduces efFects with which we are not concerned
here. This result suggests that polycrystal effects
should not be important in NaC1 up to 230 kbar.
For metals we might speculate that ~& g& o.@ for
shocks in the Mbar range, so that shock velocity is
insensitive to crystal direction and polycrystal ef-

fects are correspondingly negligible. Any experi-
mental information which bears on this question
would be welcome in the future.
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