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The resistance p of a one-dimensional Anderson model with both diagonal and off-

diagonal disorder is studied by analytic and numerical techniques. A recursive method is

developed and used to derive an exact scaling law for the average resistance at F. =0 for
arbitrary disorder, and for E+0 in the limit of weak disorder. The average resistance

grows exponentially with L, the length of the sample, in all cases. The typical resistance

p =exp[(ln(1+p) )]—1 is also found to grow exponentially with L in Rll cases, except for

pl11cly off dlagoIIR1 dlsordcl Rt E =0, whcrc (111(1+p) ) ~ I/L . All cxplRIIRtloII Is glvc11

for the existence of this special case and it is shown that all our results are consistent with

R lognormal probability distribution of the resistance for p » 1. Quantitative estimates

are made of the reliability of numerically performed averages which show that a
numerical aver'age will converge only very slowly to the analytic result. This provides a
qualitative explanation of the slower than linear growth of ln(p) with L found in several

numerical calculations; its consequences for experiment are also explored.

I. INTRODUCTION

Recent theoretical work has shown an interesting
difference in the behavior of the resistance of the
one-dimensional (1D) Anderson model with off-

diagonal as opposed to diagonal disorder at band
center. Scaling studies of the Anderson model
with diagonal disorder and of a number of other
models of disordered lD systems have found that
the dimensionless resistance p=R /T (Refs. 1 and
2) satisfies in((p) ) ~ L and (in(1+p) ) ~L as L,
the length of the sample, goes to infinity. In
contrast, very recently analytic and numerical

studies of the Anderson model with purely off-

diagonal disorder at E =0 have found that while

In(p) ~L, (in(1+p) ) ~ t/L .9' The significance
of this difference may be understood by a con-
sideration of the rather unusual statistical proper-
ties of the distributions for p which arise from
these models. There is mounting evidence that al-
most any model of a disordered one-dimensional
solid will generate an approximately Gaussian dis-
tribution for lnp with a variance growing as I..
This means that the distribution of p will have a
very long tail which skews the arithmetic mean to
be much greater than a typical value of p, i.e.,

Prob(p) (p) ) && 1. However, the geometric mean

of 1+p is much less affected by these large but im-

probable values of p, and in fact it is easy to show
as we do in Sec. V that it always gives a result
representative of the distribution of p if lnp is ap-
proximately normally distributed. Thus Anderson
et al. argued that one should study the scale resis-
tance defined by p—:exp[(ln(I+p) ) ]—1 instead of
(p) or ( I/p). It is still a somewhat open ques-
tion whether experimental results will be at all af-

fected by the long tail of the distribution and thus
measure (p) or whether they measure p.

This question is important and will be addressed
below. If experiments are measuring p then it is of
course important to explore the question of wheth-
er the behavior of (ln(1+p) ) ~ &L can be found
in a more general case than for purely off-diagonal
disorder at E =0. Thus, we are motivated to study
the resistance of the Anderson model with purely
off-diagonal disorder and arbitrary energy, and the
Anderson model with both diagonal and off-diag-
onal disorder in the work which follows.

In Sec. II of this paper we derive an entirely gen-
eral expression for the dimensionless resistance

p=R /T for the Anderson model with one scatter-
ing channel which is convenient for both numerical
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and analytic calculations. In Sec. III we develop a
recursive method which enables us to calculate an
exact scaling law for the arithmetic mean of the
resistance of an Anderson model with any com-
bination of diagonal and oA'-diagonal disorder. An
explicit closed form is given for (p) at band center
and its extension to E+0 is discussed. In contrast
to some numerical results, ' we find ln(p ) cc L in

all cases, even for oA-diagonal disorder at E =0.
(An explanation for this disagreement is given in

Sec. V.) In Sec. IV we examine numerically the
behavior of p in two cases." First, we consider the

case of purely off-diagonal disorder and E+0.
Second, we consider the case of both diagonal and
off-diagonal disorder at E =0. In both cases we

find that the asymptotic behavior as L~ co ap-
pears to be (ln(1+p) ) cc L even for small energies

or a small degree of diagonal disorder. Thus, at
least in one dimension, oA'-diagonal disorder at
E =0 does turn out to be a special case in terms of
the behavior of p. In Sec. V we interpret our re-

sults and show that they are explained by the hy-

pothesis that in all cases lap is normally distribut-
ed f«p » 1 with (lnp) =My, and ofF-diagonal
disorder at E =0 corresponds to the special case
@=0. This implies that the geometric mean of p
will always be representative of the distribution of
p and that the arithmetic mean will not. It also
suggests that numerical studies of the average resis-
tance and conductance will converge only very
slowly to their limiting values as calculated analyt-
ically. Finally, in Sec. VI we discuss the relation
of these results to experiment and make an argu-
ment that experiments could measure an ill-
converglxl approximation to ln((p) ). As we dis-
cuss below, such an approximation would not give

a clear linear dependence of the logarithm of the
resistance on sample length, and would tend to
give a value closer to Inp than to ln((p) ) as
L, ~oo.

II. DIMENSIONLESS RESISTANCE IN
THE ANDERSON MODEL

%e consider the generalized one-dimensional
Anderson model described by the Hamiltonian

H= g e~n)(n
~

where f ~

n ) J form a tight-binding basis set. The
site energies ( e„J are assumed to be uncorrelated
random variables distributed with an arbitrary
probability density P(e„), symmetric around zero
for 1 & n &%+1,and to be identically zero outside
this region. Similarly, ( V„„+I) are taken to be
uncorrelated random variables for 1 & n &X, and
simply equal to a constant Vo outside this region.
Thus the system consists of a disordered segment
containing %+ 1 atoms and of length Xd (where d
is the lattice spacing), embedded in an infinite, per-
fectly conducting, ordered chain. If we write the
solutions of the time-independent Schrodinger
equation in the tight-binding basis, the eigenvalue
equation for the wave-function amplitudes a„may
be summarized in terms of a 2&2 matrix which
we call the promotion matrix, as follows:

N

p(n)
an —i

a„+i
(2)

Therefore the real-space wave-function amplitudes
at each end of the disordered segment are related

by

%+1 ai

i=1
J

The I.andauer formula for the resistance of a finite
one-dimensional system embedded in a perfect con-
ductor is

r =(2m%/e )R/T: (2M/eI)p, —

I

where 8 and T are the total reAection and
transmission coefBcients of the disordered region. '
%e now derive a useful expression for p in terms of
the matrix elements of P~ by relating P~ to the
transfer matrix T~.

The transfer matrix is defined so as to relate the
amplitudes of the solutions of the Schrodinger
cqllatloll 111 thc asymptotic (ordered) lcglolls oil cl-
ther side of the disordered segment. These solu-
tions are

(4a)
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with

an =Ce' n+De ' ", n )N+1 (4b) aN+2

aN+1

—ikd ikd —ik (N +1)d

1 1

0 D
ik(,N+1)d

E =2VO cos(kd)

and we define TN by

B D
TN

By relating TN to the scattering matrix one finds

that, by definition

so we have merely to relate TN to PN to get the
desired result. Equations (4) give us a relation be-

tween aN+2, aN+1 and C,D of the form

D
=SO

and a similar relation for a1,ap and A,B with the

phase matrix 0 ' simply replaced by the unit ma-
trix. Substitution of these relations into (3) gives
the result

TN ——OS PN5

where we note that S 'QS+ in general. From (8)
and (6) we find, using the relation det (PN ) =1, the
general expression for the resistance of any one-
dimensional Anderson model

P 2
—

2 ( N}+(PN}+( N}+(PN}+ (PN N)(PN PN}
E 2»22

Vp
(9)

This expression is very convenient for performing
both analytic and numerical calculations on the
Anderson model which we proceed to do in the fol-

lowing sections.

From squaring 'Eqs. (10}and averaging we ob-
tain the same recursion relation for F„and f„
which can be written in matrix form as

III. ARITHMETIC MEAN OF p IN
THE GENERAL CASE

A. E=o
Fn-1 0 F„

(13)
Averaging Eq. (9) gives an expression for the

arithmetic mean, (p), in terms of the quantities

(PgPz ), which can be determined by a recursive
method based on Eqs. (2} and (3). We first consid-
er the average of Eq. (9) for arbitrary diagonal and
off-diagonal disorder at E =0. Equation (3) iin-

plies the recursion relations FN —1 F2
RN —2 (14)

where we have used (e) =0 and the fact that P„" i

depends only on e„1. . e1 and
V 1 . ' V1 2 Vp. Denoting the 2&(2 recursion
matrix in (13) by R, Eq. (3) implies that

Pn = Pn
Vn, n+1

21 11
Pn =Pn-1

i2P„ = P„
Vn, n+1

22 12
Pn =Pn —1

Vn-1, n'
Pn-2 ~

V.,n+1

12
Pn

n, n+1

(10a)

(10b)

(10c}

(lod)

Some care must be taken in the last iteration of the
recursion relation since the promotion matrix at
the boundary, P' +", depends on a nonrandom
variable VN+1 N+2 ——Vp which is not to be aver-

aged. The eigenvalues and eigenvectors of R are
found to be

If we define

F, = ((P„")'), f, = ((P,")')
and set E =0, then (9) takes the form

(p)= , [PN+I'~ i+fx+f—x i1 (12) (15a)
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1 1

+ j/g & — 1/g

By expanding the initial vector of (14) as

(15b)
+X—2 )

=a(J(, ) U +P(A, ) U

(17)

=aU++PU
&

J

we see that

(16)

where fN ~,f~ 2 may be determined in an exactly
analogous manner. Equations (15)—(17) together
with a careful treatment of the averages of promo-
tion matrices at the boundaries which contain non-
random variables, yield the desired exact general
scaling law for (p):

V2

p2 2

The salient features of this result are as follows.
First, the eigenvalue A, + is always greater than or
equal to the quantity ( V ) (1/V ), which in turn
is greater than unity for any normalizable probabil-

ity distribution of finite width by the Schwartz
inequality. Since (e ) )0 for any degree of diago-
nal disorder, we see that A, + & 1 for any type or de-

gree of disorder. Also A, is always negative and

~
& J(,+. Therefore, in the limit N —+ ao

Eq. (18) gives the result that in all cases the mean
resistance grows exponentially with (p)
0:exp(N Ink, +). Second, (p) depends only on the
moments (e ), (V ), and (V ) of P(e) and

Q( V) so we see that our result is relatively insensi-

tive to the precise nature of these distributions.
Third, in the limit of weak disorder as Ã~ oo,
Eq. (18) reduces to

(19)

which is the form of the result which Landauer'
and Anderson et al. derived for the independent

(18)

I

scattering model which is a continuum model.
That the result of Landauer and Anderson et al.
should correspond to the limit of weak disorder
was already noted in Ref. 4 since their approach
requires that the elastic mean free path (which is
the wave-function localization length in one dimen-
sion) be much greater than the length at which the
relative phases of successive scatterers are random-
ized. A related point is that the continuum limit
of our result is obtained by letting X~ oo, d ~0
while the physical lengths I. =Nd and g=d/in', +
remain constant; but we see that for g to remain
constant as d~0, A, + must go to unity as it does
in the limit of weak disorder, so the continuum
limit of this discrete model is the limit in which
the Landauer result holds, as one might expect.

For purely diagonal disorder which has been
considered by Abrahams and Stephen,

J
J(, j & 1

and so terms proportional to (A, ) decay exponen-
tially. Dropping these terms and setting ( V )
X(V )=1 gives

I4[((e )/2Vo) +1]'~ ] '( 2Vo 2Vo

For purely oA'-diagonal disorder —A, =A,+
=[(V ) ((1/V ) )]'~ and (18) gives the result 1 ((1/V )) ' Vo

( 2) 1

V' (V') V-"

(p&= — (v'&(,) —1, N even (21a)
1 E odd .2' (21b)
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The diAerence between chains with an even or
odd number of atoms arises from different boun-

dary scattering in the two cases. Again, we note
that ln(p) cc N as N~ 00, even for purely off-

diagonal disorder at E =0 where numerical re-
sults' have indicated ln(p) ccrc'~ . We suggest
that this disagreement is due to the fact that (p) is
skewed by a few very large very improbable values
which will not show up at all jn numerical averag-

ing over an ensemble of reasonable size. This point
will be discussed in detail in Sec. V.

B.E+0

Next we consider the case E+0 which requires
treating Eq. (9) in its full generality. Besides gen-
eralizing the recursion relation for ((P„'J) ), there
are in principle five new quantities (PgP„) for

which recursion relations may be derived. Howev-

er, this treatment may be simplified in several
ways. First, since P„satisfies the same recursion
relation as P„,and P„=P„~and P„=P„~,the
only difference between ((P„") ) and ((P„' ) ),
((P„+i) ), ((P„+i) ) consists in difFerent initial
values ((Pg) ), which is a boundary effect. Since
we will only concern ourselves with the rate of ex-
ponential growth of (p) we neglect this difference
and simply consider ((P„") ). Also, neglecting
boundary effects, (P„' P„)= (P„"P„')and
(P„'P„) =(P„' iP„' i ). Finally, again since P„"
and P„' satisfy the same recursion relations,
neglecting boundary effects, (P„"P„' ) satisfies the
same recursion relations as ((P„") ) and (P„"P„)
tile saiile as (Pq Pq ) =(P„Pq i ) ~ Tllus tlie oilly
two quantities required to get the growth rate of
(p) are (P„") ) and (P„"P„"i ) (so at this point
we suppress the matrix indices):

V.-in,((P.)')= P, &

— ' P. z )~n, n+1 ~n, n+1

=(E'+ & ')), &(P. )'&+ & V'&, &(P. )'& —2E, & V„,„P„P„&. (22)+2

Since P„~ depends on V„~ „we cannot immediately factor the last average, i.e.,

& V„,„P„,P„,)~(V)(P„,P„,) .

However, calculation of the relevant recursion relations shows that & V„P„P„ i) =(1/V) '(P„P„ i) and

(P„P„ i ) satisfies the recursion relation

(P„P„&)=E(—)((P„&) ) —(P„ iP,

(P.P. , ) (-')

so we can write the recursion relations (22) and (23) in the form

" "»(') "(') — (-')-'(') ((P„,)'&
&(P„,)'&

(P„,P„,)
(24)

The eigenvalues of this recursion matrix are the roots of the cubic equation

C(A, )= A,'+ 1 —(E'+(E')), A.'+, (E'—(E') —(V')) A, —(V') —, =0.
I

Since

C(1)=2 1 —(V') —(~') &0Qz Vg

and C(A.~ oo ) & 0, there must always exist a posi-
tive root greater than unity, A, +, which leads to ex-
ponential growth with (p) ccexp[Nln(A, +)]. A
simple expression for k+ may be obtained in the
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limit of weak disorder but for arbitrary energy by
linearizing Eq. (25} around &(, = 1, which is the
relevant root for zero disorder. We write
A, + ——1+M., V= Vo+5V and insert these expres-
sions into (25), keeping lowest-order terms in 5&&&,,
((5V) ), and (e ). Solving for 5&&&, gives

2=1+
E2/V2

("& 4((5V}'&

Vo o
2 V2

(26)

where in this case we have assumed (5V) =0.
Thus, expanding ln(1+&,},

2((e )/V&&+4(5V )/V&&)

4 E /V&&—

(27)

A more careful treatment of the case of weak diag-

onal disorder with E+0 analogous to our exact
treatment of the E =0 case yields the result

2(~'&/v,'
(p(E))d;,s

———, exp Nln 1+
4—E /Vo

(28)

where we have neglected terms of order unity.
We see that the resistance rises more rapidly as

we approach E =2VO, reflecting the greater locali-
zation of the states near the band edge. At the
band edge, R/T blows up since there exist no nor-
malizable eigenstates with E & 2VO which have fin-

ite amplitudes in both ordered regions.
We have seen that examination of the arithmetic

mean indicates the existence of localization with

ln(p) ~ N in all cases, even for purely off-diagonal
disorder at E =0 [see Eq. (21)]. However, for
these systems as noted earlier, the arithmetic mean
does not in general represent a "typical" value for
the resistance. One indication of this behavior may
be obtained by an examination of (p ); if it grows
more rapidly with N than (p) then the distribu-
tion becomes broader and broader relative to the
mean as N~&c. We can calculate (p ) by the re-
cursion method, and at E =0 it is determined by
the recursion relation

&(~„")'&

&(~.",)')
((pllpll }2)

(29)

The eigenvalues are the roots of the cubic equation

0= I' — &e4&(,)+1 I'

'1/2
( 2)

2

(A,,)'= ( v')
V 2VO

("&,&(5V}'&=1+ , +4
Vo Vo

(32)

so I + &A,+ and

(30)
r,(p')/(p)'~exp Nln

Solving for the largest root I + in the limit of
weak disorder yields

~3( 2) 8((5V) )
V2

(31)

whereas in the limit of weak disorder at E =0 the
largest eigenvalue of Eq. (15) satisfies

which diverges as N~ 00. In addition, for the case
of purely diagonal disorder, I is determined by the
simpler equation

r' —(1+(e') /V,')r'

+((e )/V&& —1 —6(e ) /Vt)r+. 1=0. (33)
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For a Gaussian distribution P(e), (e ) =3(e ),
and this cubic factors with negative one as a root.
Then one can obtain a simple expression for I +
for any degree of disorder

4
1/2

r =1+"+ (.)+-"+

One can verify from Eqs. (15) and (34) that in this
case I'+/A, + & 1 for any degree of disorder. Be-
cause of this poor behavior of the distribution of p
as X~ Oo we shall see in Sec. V that it is really the

geometric and not the arithmetic mean of p which

gives a value of p representative of the distribution.
In addition, it is convenient to study not (inp) but

(ln(1+p) ), which is non-negative and will have no

pathologles associated with the perfectly conduct-

ing (p=0) members of the ensemble. We study

this quantity numerically in Sec. IV.

IV. NUMERICAL STUDIES

A. Off-diagonal disorder for E+0

The numerical work of the next two sections is

primarily oriented toward answering the specific
question of whether and for what range of parame-
ters the behavior (in(1+p) ) ~ v N persists if we

consider off-diagonal disorder away from band
center, or off-diagonal disorder mixed with diago-
nal disorder at E =0. It is not intended as an ex-
haustive numerical study of the statistical proper-
ties of the Anderson model with general disorder.
Our calculations are again based on Eq. (9) for p in

terms of the matrix elements of the promotion ma-

trix. %e computed numerically the promotion ma-

trices of an ensemble of chains of varying lengths

N, and then calculated the quantities (ln(l+p) )
and in((1+p) ), where the angle bracket denotes
the ensemble average. Off-diagonal disorder was

introduced into the promotion matrices by ran-

dornly generating the hopping matrix elements

Vn n+1 according to a rectangular probability dis-

tribution of width 2$'v centered around Vo which
we set equal to unity. Our basic result is that
(ln(1+p) ) ~N as N~ 0D for all E+0 even down

to E =10 Vo, so that the behavior of the geo-
metric mean for off-diagonal disorder at E =0 does

appear to be a very special case, at least in one
dimension. In Fig. 1 we present a plot of
(in(1+p) ) versus N with Wv ——0.25 for several

nonzero values of E. Note that for all nonzero en-

ergies even for E =0.01 we get a very precise

linear dependence down to N =100. Qualitatively,
this kind of behavior for E+0 is not too surpris-

ing, as may be seen by a consideration of the recur-
sion relations for I'n'. For diagonal disorder at
E =0 the recursion relation is I'„"

(e„—/Vp)P„"
&

P„"—z which has already been
shown numerically to lead to the behavior
(ln(1+p) ) ~ N For off-diagonal disorder at
E+0 the recursion relation is

E F11 n 1nV
n —1

V n —2
n, n+1Vn,.+1

If one considers E = Vo ——1 and takes a rectangular
distribution of e„ofwidth 8', =1 centered at zero
and a similar distribution of V„„+1centered at
one, then trivially the random variable E/V«+1 is

always positive and greater than e„/V; thus one

expects P„" for off-diagonal disorder to grow faster
than for diagonal disorder for equal degrees of dis-

order and E of order unity. It does not seem ob-

vious however, that for E ~~ 1 we should get such

precise linear dependence, and it would appear that
more powerful mathematical techniques such as
those employed by O' Connor are necesary to
show this, as will be discussed in the following sec-
tion.

The slope of the lines in Fig. 1 is twice the in-

verse localization length and it is a monotonically
increasing function of energy as expected, since the
states should be more strongly localized nearer the
band edge. The results are consistent with the en-

ergy dependence (1/N)(ln(1+p)) ~1/(4 —E ),
which is the analytically derived energy depen-

dence of (1/N) in((1+p) ) for weak disorder.
At E =0 we do get the result (ln(1+p) ) cc V N,

in good agreement with the analytic results of
Ref. 9 and the numerical results of Ref. 10. These
results are shown in Fig. 2 (the solid line is the an-
alytic result). The analytic result is only exact as
X~ oo, and we found that for weak disorder
( W~ ——0.05) we had to go to chains as long as
10000 atoms before a clear square-root dependence
was found. The behavior (ln(1+p)) ~v N is
reached much more rapidly for large disorder
( Wv & 0.5), but then the onset of linear dependence
for finite E also occurs more quickly. %'e note
also that very large off-diagonal disorder ( Wv & 1)
is somewhat unrealistic physically since in such a
situation the chains have a large probability density
near zero coupling which, for example, causes the
arithmetic mean of p to diverge. It is significant
that there is substantially greater scatter in the
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30

t200

FIG. 1. Plot of (1n(1+p)) vs S for a 1D Anderson model with purely off-diagonal disorder for several nonzero
values of energy. The results are for 8'y ——0.25 and an ensemble of 500 chains. The inset plots N times the relative
variance I =([In(1+p)—(ln(1+p))]2}/(ln(1+p))~ vs N Averages .are over an ensemble of 500 chains.

IO

60 80

FIG. 2. Plot of (ln(l+p) ) vs ~N for purely oA'-diagonal disorder and 8 =0 for Wy ——0.25 and an ensemble of
$00 systems. The sohd hne is the analytic result of Ref. 9 which is only exact at E~m.
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data at E =0 than for E@0. It was shown in Ref.
9 that for OA'-diagonal disorder at E =0, the rela-
tive variance of ln(l+p), which is the ratio of the
variance to the square of the mean, was indepen-
dent of N, unlike the case for a Gaussian distribu-
tion with nonzero mean, where this ratio decreases
as X '. %C computed this ratio, I, given by

([ln(1+p) —(ln(1+p) ) ]2)
(ln(1 +Z))'

fof E+0 Rlld foulld tllat lt did ill fact decl'cRsc Rs

Rs Q—+ ae (scc lllsct to Flg. 1), wllcrcRs for
E=O it converged to the analytic result (II/2 —1)
and remained constant as X increased. This
behavior was refIected in the variation of
(»(1+p) ) from ensemble to ensemble. We found
that for ensembles of 500 chains of length 3200,
the value of (ln(1+p) ) typically varied by only
+0.5% from ensemble to ensemble for E =0.5,
whereas for E =0 it varied by +5%.

The behavior of the In((1+p) ) was much
worse, as expected. Por an ensemble of 1000
chains of length 400 at E =0 and F'v ——0.25 the
value of In((1+p) ) typically varied by +15% as
compared to +2% for (In(1+p)). The growth of
ln((1+p) ) was approximately linear with N and
in fair agreement with the analytic result Eq. (21)

up until N =400, at which point it begins to grow
more slowly, roughly as V N with large fluctua-
tions. The explanation for this behavior is that as
X increases the numerical averaging procedure is
sccing less of thc long ta11 of the distribution, as
will b discussed in detail in Sec. V.

B. General disorder at E =0

We next consider (ln(1+p) ) numerically for the
Anderson model with both off-diagonal and diago-
nal disorder at E =0. Again, previous work on the
Anderson model with only diagonal disorder sug-
gested that we should 6nd (In(1+p) ) cc N for large
diagonal disorder, and similar to our previous re-
sults wc fIInd that cvcn a small aInount of diagonal
disorder gives a linear dependence on E. In Fig. 3
we plot (ln(1+p)) versus N for Wv ——0.25 and
various values of 8', ; note the linear dependence
down to 8",=0.01. %C found that as wc increased
8'v the linear behavior could be seen clearly for
even smaller values of 8', . The inverse localiza-
tion length ( I/2N)(ln(1+p) ) grew more rapidly
with 8', than it did with energy in the case of
purely off-di. agonal disorder, as one might expect
(until very near the band edge). We also calculated

FIG. 3. Plot of (ln(1+p)) versus N for both diagonal and off-diagonal disorder at E =0. Results are for an ensem-
ble of 400 chains arit 8'v ——0.25 and several values of 8', .
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60

50

400 800 I 200 1600

FIG. 4. Plot of In((1+p) ) vs N for both diagonal and off-diagonal disorder at E =0. The solid curve is the analytic
result of Eq. (41). The squares are the numerically computed average. Averages were taken over an ensemble of
1000 chains.

ln((1+p) ) with rather interesting results as is
shown in Fig. 4. We found good agreement with
the analytic result of Eq. (18) (the solid line) for N
up to 250, after which we find that the numerical
average is consistently less than the analytic result
with a percentage deviation which increases with
N. This is exactly the behavior one would expect
based on the assumption that 1zp is normally dis-
tributed so that a numerical averaging procedure
underweights the long tail of the distribution in p.
This kind of behavior is characteristic of one-
dimensional disordered systems for reasons which
we discuss in detail in Sec. V, and has been found,
e.g., by Andereck and Abrahams working on a
different model. We discuss in our concluding re-
marks, however, that it may in fact be physically
significant that an ill-converged average like the
numerical average in Fig. 4 does not lead to a clear
linear dependence on N.

V. STATISTICAL BEHAVIOR OF p

Let us summarize the results which have been
obtained so far for the Anderson model with gen-
eral disorder. It appears that (ln(l+p) ) ~N as

N~ 00 in all cases except for purely off-diagonal
disorder at E =0 where (in(1+p) ) ~ ~N. It is
also known analytically that the arithmetic mean
satisifes In(p) ~ N in all cases despite numerical
results indicating ln(p) ~ ~N for purely off-

diagonal disorder at E =0. Finally, it appears that

(p )/(p) always diverges as N~ oo, but that the
relative variance of ln(1+p) goes to zero as N ' in
all cases except for purely off-diagonal disorder at
E =0, where it is constant. All of these results

may be understood by the hypothesis that in all

cases lop is approximately normally distributed for

p g) 1, so that p has a lognormal distribution

P(p)= exp p» 1,
—(lnp —Ny)

(2n.No )'~ 2NO.

(35)
and off-diagonal disorder at E =0 corresponds to
the special case where y=0.

There is a great deal of mathematical work on
products of random matrices which suggests that
(1/N)lnp should be a statistically well-behaved

quantity'; however, there exists no general analytic
proof that 1qp is normally distributed for the An-
derson model with arbitrary disorder, although this
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has been shown in some special cases. Abrahams
and Stephen have shown this for very large diago-
nal disorder and their proof can be trivially gen-
eralized to both types of disorder at E =0. In this
limit, the dominant contribution to p is obtained

by dropping the second term in the recursion rela-
tions for (P2t') in (10):

2

(P1v ) =ll 2 1V 11 2

( ~N, N+1)

which implies

(36)

In(P1v ) = g ln11 2

~...+i
(37)

Also, Stone and Joannopoulos have shown that for

purely off-diagonal disorder at e=O, and p » 1

and, since lnp =In(P&') in this approximation, by
the central-limit theorem 1np is normally distribut-
ed and P(p) is given by (35) with y=(inc )
—(lnV ) and

o. = ([1n(e /V )] —((in@ /V ) ] ) .

zero, in agreement with Eq. (38).
If we assume (35) holds and the contribution to

the moments of p from values of p near the origin
is negligible, then the rth moment

(p"}=exp(rNy+ , r N—o ) . (39)

(ln(1+p) ) = I ln
1 f (1—x)

(8~No2)1~2 "— 4x

e ()~)2/'SN o.2

X dx

(40)

We see that ln(p }cc N even if y=O, and that

(p )/(p) ~ao as N~co in all cases. Moreover,
if (35) holds, then (1np) =(ln(1+p) ) =yN except
when y=O. In this case the fact that lnp is not
normally distributed as p~O is crucial, since oth-
erwise one would get (Inp) =0. We have seen that
y=O for the Anderson model with purely off-

diago~al disorder at E =0. For this case, it has
1 1

been shown that p= 4 (x +1/x) ——, where lnx is

normally distributed with mean zero. Thus

P(p)= (8mNcr—)
~. exp2 —1n (»4P)

p 8Ncr
(38) letting y =lnx, and keeping the dominant terms as

N~op gives

with o. =((1nV) ).
In addition, a general proof of a central limit for

a disordered harmonic chain which obeys the clas-
sical equation of motion has been given by
O' Connor. ' His proof applies with a little reinter-

pretation to the Anderson model with diagonal dis-
order and E+0. In our notation what he shows is
that ln[(PN') +(PN') ] is normally distributed as
N —+ oo with mean growing as Ny and y& 0. It
seems quite possible that with some modifications
these techniques may be applied to prove an analo-

gous theorem for the logarithm of the more gen-

eral bilinear forms appearing in Eq. (9), but this
has not been accomplished as yet. ' Note that
even if it is true that for any bilinear form trav

=g' "
CjktPNPN' that ln(t„) is normally distribut-

ed, the constant term in Eq. (9) means that p will

not be normally distributed for p & 2/(4 E /Vo)—
(which is of order unity except very near the band
edge). However, this will only make a difference if
y=O in Eq. (35), since otherwise almost all the
support of P(p) is far from unity. Finally,
O'Connor's proof that y& 0 does not apply to the
case of off-diagonal disorder at E =0, where the
random matrix products involved are always either
diagonal or purely off-diagonal. In this case one
can show that y as defined by O' Connor is in fact

' ]/2

Nir2 (41)

Note, we can drop the integral from —~ to 0
since the very small values of e~ which occur as a
y~ —ao simply keep ln(1+e") =0. The integral
from zero to infinity has been obtained exactly in
the limit as N~ oo by squeezing it between an
upper and lower bound. Although it is not obvi-
ous from (40), one gets the same result for (1np) as
N~ op. Thus, we see that the unusual behavior
(»(1+p) ) ~ ~N for off-diagonal disorder at E =0
is perfectly consistent with the assumption that lnp
is normally distributed for p » 1, but corresponds
to the special case where y=0. The results of Sec.
IV suggest that this is the only case where y=0 in
the Anderson model. This is consistent with the
mathematical fact that off-diagonal disorder at
E =0 is the only case where the promotion ma-
trices generated by the Anderson model are always
diagonal or off-diagonal.

(ln(1+p) ) = I ln(1+e~)e ~ dy(8.N. )
~

1 1n(1+e~)e ~ ~ dy(8~No2)'"
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Returning to the general case described by (35)
with y+0, it is obvious that the geometric mean of
p, exp((lnp) )=e r, will be the median value of
the distribution of p and will be representative of
the distribution. To be precise, it is easy to show
from (35) that for any positive e

N 1/2

Prob(e 'r+'&p&e 'r ")=2erf
2

e

(42)

where erf(x) is the error function defined by

erftx)=(1/V2~) I e "~dx. Erf(x) converges
to unity for positive arguments very rapidly, e.g.,
[1—elf (5)~~& 5X10 . For off-diagonal disorder at
E =0 where (ln(1+p) ) ccN'~ the results of Ref. 9
imply the weaker result

Prob[exp(2crN'~ ') &p & exp(2crN'~ +')]

=2[erf(N') —erf(N ')], (43)

which again goes to unity as N~ ao. Thus, it ap-
pears the geometric mean will always give a value
of p representative of P(p) despite the long tail
characteristic of lognormal distributions which
skews the arithmetic mean to be much larger than
a typical value of p.

In fact the probability of finding a value of p
greater than or equal to (p) decreases quite rapid-

ly with N which means that numerical averaging
over finite ensembles may miss these large but im-

/

probable values entirely. A simple calculation
based on Eq. (38) shows that for oA'-diagonal disor-
der at E =0 if one assumes a rectangular distribu-
tion of Vwith 2$'=Vo ——1,

Prob(p& (p))=2[1—erf[(0.45) N ]J . (44)

This is less than 10 for N =200. So even for
a chain as short as 200 atoms if one considers an
ensemble of 1000 systems the probability of ever
seeing a value as large as the arithmetic mean as
found analytically is quite small; less than 1%.
We believe this is the explanation for the numerical
calculations which indicate that ln(p) ~ ~X for
off-diagonal disorder. Exactly the same difficulty
has been encountered in numerical work by An-
dereck and Abrahams on a system of uniformly
spaced delta-function potentials of random
strength. In this case y@0, and the theory
predicts ln((1+p) )=2(ln(1+p) ), but numerical
averaging finds that ln((1+p) ) is consistently less
than 2(ln(l+p)) (see their Fig. 3). They correctly
attribute this discrepancy to the fact that averaging

finite ensembles will miss the long tail of P(p) and
show that an analytic calculation at E =0 does
give ln((1+p)) equal to twice (In(1+p)) which
they compute numerically. It is also worth noting
that their results show that the discrepancy be-
tween the arithmetic mean as computed numerical-

ly and as calculated analytically increases with the
length of the chains being averaged as we found in
our numerical work and as our argument leading
to (42) suggests it should.

Finally, we must say a brief word about averages
of the conductance, g =1/p, which have been per-
forrned numerically on the Anderson model using
the Kubo formula with controversial results. ' '
From (35) one sees that (g ) =exp[ N(y —, cr )—]-
so that (g ) always decays more slowly than 1/(p)
with N and if y & —,o, (g ) will even grow which

would mistakenly suggest extended states. For the
independent scattering model studied by Lan-
dauer, ' Anderson et al. , and Andereck and Abra-
hams, y= , cr and (—g)is independent of N. In
the Anderson model for off-diagonal disorder at
E =0 an analytic expression for (g ) diverges for
all N, whereas the numerical calculations show
only a weak tendency towards localization. '

Clearly the arithmetic mean of the conductance is
even a less representative quantity to study than

(p). However, if one studies the geometric mean
then trivially

exp((lng) ) =exp( —(lnp) )=e-Nr,

which will be a value representative of the distribu-
tion of g by arguments similar to those given
above.

VI. CONCLUSIONS

Thus, to summarize, all the known analytic and

numerical results concerning the one-dimensional

Anderson model with arbitrary disorder are con-

sistent with and suggest the hypothesis that in all

cases P(p) is lognormally distributed for p » 1

with off-diagonal disorder at E =0 correspondirjg
to the special case where y=0 in Eq. (35). We
conclude that the behavior of lnp in this special
case is not relevant to experiment. The results of
this work shed some light on the question of
whether it is the scale resistance, p, or the average
resistance, (p), which will be measured for exam-

ple in an experiment on the low-temperature resis-

tance in a thin metallic wire with impurities. It is

generally believed that such disordered systems are



bcttcI' dcscribcd Rs many-channel scattcr1ng sys-
tems than as the rigorously one-channd scatterer
that me have studied above. Setting aside this is-

sUc foI' thc moment, lct lls suppose that the onc-
channel result was directly Rpplicablc to experi-
ment. A zero-temperature scaling law may be re-
lated to experiment in the weakly localized regime,
according to an argument due to Thouless, '

by re-

placing the sample length by an "effective" saInplc
length (Dv;„)'~, where D is the diffusion constant
Rnd 7;„ is thc 1nclast1c scattering t1IIlc. Then sub-

stituting v;.„Rs a function of temperature allows one
to predict the temperature dependence of the resis-
tance at low temperatures. The distance (Dr;„)'~
is the distance an electron diffuses elastically before
it scatters inelastically, thus it is, roughly speaking,
the distance over which standard localization
theory which tfcats d1sofdcfcd systems of nonln-

teracting electrons at zero temperature, is valid.
Therefore, me imagine the sample as partitioned
canto segments of length (Dr;„)'~ . In a rtgorously
onc-dimensional system S1ncc thc CUIYcnt 1s uni-

form in steady state, the resistance of the sample
should be obtained simply as the sum of the resis-
tances of each of these segments and thus in princi-

ple should be proportional to the average resis-
tance. However, if the temperature is such that the
number of segments of the sample of length
(Dr;„)'~ is not very large, then measuring the
resistance of a single sample will be like doing a
numerical Rvcfagc ovc1 R finite ensemble.

Thoulcss orig1nally estimated that thc length
(Dr;„)'~' should be ~bout 10 pm at 2 K,"but ex-

perimental results have indicated that it is in fact
on the order of 1 pm. ' ' Since the thin wires stu-

died experimentally, fof example, by Giofdano
et al. mere typically about 200 pm in length,
such a mire would bc roughly equivalent to 200
"samples" of lengths (Dr;„)'~, each sample several

thousand atoms in length. Homever, since the lo-
calization length in these samples is greater than
(Dr;„)'~, which corresponds in our notation to
yX ~ 1, me are not in the regime of exponentially
large statistical fluctuations in the resistance, and
the role of statistical Auctuations in this weakly lo-
calized regime is still unclear. If experiments be-
come capable of probing the strongly localized re-

gime, where the resistance depends exponentially
on sample length, then our results suggest that
such experiments will not find the clear linear
dependence of the logarithm of the resistance on I.,
but instead mill find a slower than linear depen-
dence of thc soft depicted in Fig. 4, mh1ch con-

vcfgcs towards 111p Rs I ~ 00. This gcIlcfal afgu-
ment should remain valid in the many-channel

case, since in a system where there are several con-
ducting channels in parallel one mould expect the
presence of a small number of highly resistive seg-
ments to have even less effect on the total resis-
tance. The pfcccding arguments do not, of coufsc,
consider the influence of many-body effects on the
low-temperature resistance, which appear to be
quite significant.
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