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The homomorphic-cluster coherent-potential approximation is applied to obtain the

average Green's function for spatially disordered systems in two and three dimensions,

which is described by a tight-binding one-electron Hamiltonian with transfer energy be-

tween two 1s hydrogenic orbitals. The effective medium to be determined self-consistently

is assumed to be an appropriate lattice, and a modified Hertz distribution is used for the
random distribution of nearest-neighbor distance. With the use of the I.(E) criterion for
localization, Anderson's transition is predicted to occur at a critical density p' a& ——0.403
in two dimensions and p' az ——0.252 in three dimensions, where p is the number density

of atoms and az is the effective Bohr radius.

I. INTRODUCTION

In recent years, the question of electron localiza-
tion in random systems has been extensively stu-
died. ' %'hile most of the works have been con-
cerned with the cellular disordered systems
described by a tight-binding one-electron Hamil-
tonian, where atomic sites form a regular crystal
lattice, a few authors have investigated electron
localization in spatially disordered systems.
Matsubara and Toyozawa first introduced the fol-

lowing tight-binding Hamiltonian to study elec-
tronic properties of spatially disordered systems:

u(r„)= —Vo(1+r„ latt )e (1.2)

where a~ is an effective Bohr radius of electron
under consideration and Vo is twice the ionization
potential of the 1s state. They evaluated the densi-

ty of states and the conductivity as functions of the
number density p of the atoms. Their approximate
method did not show any indication of localization

II= g ~n)u(r„)(m ~,
n+m

where ket
~

n ) is the Wannier function associated
with an atom located at r„and a transfer energy
u(r„) is a function of the distance rnm
—=

~

r„—r
~

between two atoms at r„and r
They developed a graphical technique to sum up a
part of perturbation series of Green's function
(E H) ', E being —the energy, when the atoms are
distributed uniformly. As an example, they em-

ployed the transfer energy between two hydrogenic
1s orbitals

of eigenstates. The procedure developed by Matsu-
bara and Toyozawa was extended to include a
correlation of atomic position by Ishida and
Yonezawa. They discussed mobility edges by
making use of the modified F(E) criterion. Some
authors have utilized more general forms of
transfer energy.

The model system introduced by Matsubara and
Toyozawa was studied numerically in two dimen-
sions by Kikuchi and Debney. Using the sensi-

tivity of eigenenergy to a change of boundary con-
tions as a criterion of localization, Kikuchi
showed that the mobility edges move inward as the
density is reduced, but he did not obtain Ander-
son's transition. Debney used the same criterion
and predicted that Anderson's transition takes
place at p,

'
a~ ——0.364 in two dimensions.

The localization of electronic state is well known

as a possible mechanism of the metal-insulator
transition. As shown by Halperin, a spatially lo-

calized eigenstate gives zero dc conductivity.
Therefore, if the states near the Fermi energy are
spatially localized, we expect that the system is an
insulator, and when those states become extended,
an insulator-to-metal transition will occur.

Many experiments have been done to observe
metal-insulator transition in spatially disordered
systems. Expanded liquid metals, metal —rare-gas
mixtures, ' and doped semiconductors ' are
among the most familiar systems. The mechanism
of metal-insulator transition in these systems has
been subjected to controversial arguments, i.e.,
whether it is Mott's transition due to electron
correlation or Anderson's transition due to electron
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localization. Because the transition density p'~ az
for many cases coincides with the value (0.25)
predicted for Mott's transition, electron correla-
tion has been supposed to be the dominant
mechanism of the transition. However, some au-
thors' ' explained the metal-insulator transition
from the percolation viewpoint. The percolation
approach is a simplified classical treatment of elec-
tron localization. So far, there are no explicit es-
timation of the critical density of Anderson's tran-
sition in spatially disordered systems.

The purpose of the present paper is to study
electronic properties of systems described by Ham-
iltonian (1.1) with the transfer energy (1.2) and to
provide an estimation of the critical density of
Anderson's transition by an analytical method. To
this end, we introduce an approximate method to
handle spatially disordered systems in Sec. II. %e
assume that each atom interacts with z neighboring
atoms, z being a fixed parameter. Then, we em-

ploy a double site version of the homomorphic
cluster coherent potential approximation' (CPA)
by taking a neighboring atomic pair as a disor-
dered unit. The surrounding efFective medium to
be determined is assuxned to have a lattice struc-
ture with a coordination number z. The distribu-
tion of the distance of neighboring atoms is chosen
so as to reflect actual random systems. This pro-
cedure is quite general to treat spatially disordered
systems. In the present paper, application is spe-
cialized to calculate average Green's function and

tq examine electron localization in systems charac-
terized by Eqs. (1.1) and (1.2) by making use of the
L(E) criterion. ' In Sec. III we study two dimen-

sions and result will be compared with numerical
result of Debney. %'e examine three dimensions in
Sec. IV and predict Anderson's transition to occur
at p'~ a~ ——0.252. Finally, a brief discussion will

be given in Sec. V.

—oq/z u (r) o,—z.
V(r) =

u(r) o~— —oz/z
r

6=

(2.2)

(2.3)

and 1 is the 2X2 unit matrix. Here u (r) is the
transfer energy between two neighboring atoms,
N(r) is the distribution function of the nearest-
neighbor distance, and G~& ——622 and G&2

——62&,
respectively, are the diagonal and next diagonal
matrix elements of effective Green's function
(E —X) ', where E is the energy and X is the
Hamiltonian of the effective medium given by the
coherent site energy 0.~ and the coherent nearest-
neighbor transfer energy 0.,~. The matrix elements
of effective Green's function are expressed as

—~ E—og —cr,gE'/V

G)2(E)= [(E—og)G))(E) —I]/zo, g, (2.5)

where D (E) denotes the density of states for a reg-
ular lattice of the same structure as the effective
medium with the site energy 0 and the nearest-
neighbor transfer energy V.

The distribution function X(r) of nearest-

tion, ' we assume that each atom of the pair in-
teract only with z neighboring atoms (one of which
is the another atom of the pair and the rest belong
to the efFective medium) and partition each atom in
to z subunits, one of which is considered to belong
to the random units and others to the efFective
medium. The situation is schematically shown in
Fig. 1. The explicit CPA condition reads as'

I E(r) V(r)[1 —GV(r)] dr=0, (2.1)

II. BASIC FORMALISM

Consider a sample of spatially disordered system
described by Hamiltonian (1.1). We replace the
whole system except for a neighboring atom pair
by an effective medium, which is assumed to be a
certain crystal lattice with a coordination number
z. The efFective medium is determined such that
the pair of atoms embedded in the medium does
not produce further scattering on the average over
a distribution of the distance between those two
atoms. To ensure the analyticity of the approxima-
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FIG. 1. Schematic illustration of the homomorphic
cluster CPA. Dotted region denotes the effective medi-
um and undotted part is a random unit.
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neighbor distance is given by a modified Hertz dis-

tribution,

(2.6)
T

N(r) =pS(r)g(r)exp —J pS(r')g(r')dr'
0

where p and g (r) are the nuinber density of atoms
and the pair correlation function, respectively. The
surface area S (r) of one of z equivalent parts of d-

dimensional sphere with radius r, i.e., d-

dimensional cone is written as

I/2
p as=080

where

(2ir) r '/z(d —2)!! (d =even)

2(277) d r /z(d 2)!! (d =odd)
p aa =0.55

n (n —2) "3.1 (n =odd)
pg tt —'

n (ii —2) "4 2 (n =even)
(2.8)

The factor 1/z in Eq. (2.7) takes account of the
fact that the atoms in the random unit interact
with z neighbors. In each d-dimensional cone we
pick up the nearest-neighbor atom from the vertex

of the cone lying in the spheiical shell between r
and r +dr.

In the following sections, we employ the L (E)
criterion' to obtain mobility edges. Explicitly,
L(E) is defined by

p' as =0.45

p aa =0.35

L «)=&I'I Gii —Gi2G2i/Gii l
(2.9)

InV= f N(r)ln
~

u(r)
~

dr . (2.10)

Mobility edges will be determined by L (E)=1.
In the present paper, we consider a uniform dis-

tribution of atoms so that g(r) in Eq. (2.6) is set to
be unity. In a forthcoming paper, we will study

where E', the connectivity constant of the system, is
chosen to be the corresponding value of the regular
lattice and

-3 -2 —I 0 I 2

E/Vo

FIG. 2. Density of states and mobility edges for a
two-dimensional system determined by the effective
medium with triangular lattice (z =6). Eigenstates in

the shaded region are localized.

the effect of the short-range order by using a func-
tional form for g(r).

III. TWO-DIMENSIONAL SYSTEM

Let us consider a two-dimensional system where atoms are distributed uniformly. We first employ a tri-
angular lattice for the structure of the effective medium. The density of states of the regular triangular lat-
tice with site energy 0 and nearest-neighbor transfer energy —1 is given by

r

3F(arcsing, k)/2ir (3 E)'~4 if—6&E &2—

D(E)= ~6F(arcsin(l/P), 1/k)/m [12—E +8(3—E)'~ ]'~2 if 2&E&3,
0 otherwise

(3.1)
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FIG. 3. Dependence of band edges (BE), mobility edges {ME), band center Eo, and Fermi energy EF on p' a for a
two-dimensional system determined by the effective medium with triangular lattice. Eigenstates in the shaded region
are localized.

where

g) =2/[1+(3—E)I"),
k=[12—E

+g( 3 E)I /2] 1/2/4(3 E)I /4

(3.2)

(3.3)

+(~/2, (l —E /16)' )/2tr if ~E
~

&4DE='
0 otherwise. (3.4)

Figure 4 shows the dependence of the density of .

states and mobility edges on p. The critical density
for the Anderson transition reads as p' az ——0.37S.

and F(t)Ii, k) is elliptic integral of the first kind.

The simultaneous equations (2.1)—(2.3), with (1.2),
(2 4)—(2.6), and (3.1) have been solved numerically

to find as yet unknown coherent site energy crd and
coherent transfer energy o.og. Figure 2 shows the
density of states which is given by —(I/tr)lmG»
and mobility edges by the I.(E) criterion for vari-

ous values of p. All eigenstates are localized in the
shaded region. Band edges and mobility edges are
plotted as functions of p' a~ in Fig. 3. According
to the l. (E) criterion, Anderson's transition takes
place at p,

'
a& ——0.403.

In Fig. 3, also are plotted two characteristic en-

ergies as functions of p' az.. Eo is the energy at
which the density of states takes the maximum
value and EF is the energy which will be the Fermi
energy if the energy band is half filled. A careful
analysis shows that two mobility edges meet at an

energy E~ which is very close to Eo larger than
EF. In the present numerical accuracy, the differ-
ence (E~ Ez)/Vo is 0.2. —

To observe the sensitivity of the critical density
on the lattice structure used as the effective medi-

um, w'e have also considered the effective medium
to be a square lattice, where the density of states is
given by

IV. THREE-DIMENSIONAL SYSTEM

We assume the effective medium to be a lattice
which has a semielliptic unperturbed density of
states (Hubbard density of state)

D (E)=(z2 E)'~ (2/w z—) . (4 1)

In this paper we have introduced an approximate
method based on the homomorphic cluster CPA to
handle spatially disordered systems and applied it
to obtain mobility edges of the systems described

by Hamiltonian (1.1) with transfer energy (1.2). A

We set z =6 corresponding to a simple cubic lat-

tice.
The simultaneous equations, (2.1)—(2.3), with

(1.2), (2.4}—(2.6), and (4.1) have been solved nu-

merically and yielded the density of states shown

in Fig. 5. Figure 6 shows the dependence of mo-

bility edges determined by the i. (E}criterion and

band edges on the reduced density p' az. Both
mobility edges meet at p' az ——0.252, which indi-

cates that Anderson's transition occurs at this den-

sity.

V. DISCUSSION
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FIG. S. Density of states and mobility edges for a
three-dimensional system determined by the effective
medium with Hubbard density of state (z =6). Eigen-
states in the shaded region are localized.
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FIG. 4. Density of states and mobility edges for a
two-dimensional system determined by the eAective
medium with square lattice (z =4). Eigenstates in the
shaded region are localized.

similar appllcatlon of thc CPA has bccn cons1dcred

by Djordjevic et af 'A crucial d. ifference of the
present method from theirs is to use the modified
Hertz distribution (2.6) for the nearest-neighbor
distance, which describes spatial randomness ade-

quately. The same distribution has been success-
fully used to examine an impurity conduction in
doped-semiconductors by Odagaki and Lax. '

In the present method, an effective medium to be
determined has been assumed to have a regular lat-
tice structure. This assumption has been made in
order that one can have a definite relation bet~ee~
diag'onal and next-diagonal elements of Green's
function and coherent site energy and coherent
transfer energy such as Eqs. (2.4) and (2.5). There-
fore, if Eqs. (2.4) and (2.5) hold, the unperturbed

density of states can be of any form„ for example,
one of a regular crystal as we used in Sec. III or
one of a pseudolattice as we used in Sec. IV. The
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FIG. 6. Dependence of band edges (BE) and mobility
edges (ME) on p'~3a~ for a three-dimensional system
determined by the effective medium with Hubbard den-
sity of state. Eigenstates in the shaded region are local-
ized.
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unpcrtUIbcd dcnslty of states should bc also chosen
so as to reflect actual spatial randomness. In this
sense, an asymmetric function will be preferable as
the unperturbed density of states. As for the ques-
tion of'the electron localization, however, the
choice of thc unperturbed density of states w111 bc
less important, partly because the Anderson's tran-
sition occurs at a rather low density where the
average density of states look alike regardless of
the choice and partly because we arc concerned
with the properties of eigenstates in the vicinity of
the center of the energy band. Actually, the criti-
cal density at which Anderson's transition is
predicted to occur in two dimensions differed 5%
for diferent ch01cc of thc unpcrturbcd dcns1ty of
states (3.1) or (3A). These values are somewhat
larger than the value p,

'
ag ——0.364 obtained by

Dcbncy.
For three dimensions we estimated the critical

density of Anderson s transition in spatially disor-
dered systems. Our estimation p,

'
a~ ——0.252 is

very close to thc value prcdlctcd fo1' Mott s transi-
t1on and obscrvcd 1Q var1ous metal-insulator traQs1-

tion. A simpbfied model system also gave a simi-
lar value. ' This fact suggests that the density it-

self is not 8 relevant quantity to judge the mechan-
ism of metal-insulator transition in spatially disor-
dered systems.

After we completed thc present work, we have
learned Fertis eI; al. used 8 method similar to the
present one to observe localization. However, they
used different forms for N (r) and V(r) and they
have considered Bethe lattice as their effective
medium. Thc1r crit1cal value p~ Q~ ——0.162 fol
three dimensions is 36% smaller than Our value.
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