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Polarizability of a small sphere including nonlocal effects
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We develop a simple semiclassical method for calculating the polarizability of a very

small spherical particle by taking into account the nonlocal nature of the dielectric

response. Our theory is very general in the sense that it can be applied to any material

which can be characterized by a bulk dielectric function of the form ez(k, co): We intro-

duce a new additional boundary condition (ABC) which is similar but not exactly

equivalent to the Fuchs-Kliewer ABC. The theory is applied to calculate the polarizabili-

ties of dielectric and metallic spheres.

I. INTRODUCTION

It is well known that the optical properties of
very small spheres (with radii of the order of 100 A
or less) are very different from those of the corre-
sponding bulk materials because of the surface ef-

fects. ' A particularly important consequence of the
small size of the system is that the electric field E
and the displacement vector D are related by a non-
local relationship of the form

D(r) = f e(r, r ',co)E(r ')d r '

instead of the usual local relation, D(r) =
e(co)E(r). Here co is the frequency and the co

dependence of the fields is kept implicit. In this pa-
per we focus on one specific property, the polariza-
bility, which can be easily related to many other op-
tical constants of the particle. The static polarizabil-

ity of a small metallic sphere including nonlocal ef-

fects has been calculated by a number of au-

thors, while the dynamic polarizability has been
treated somewhat incompletely. ' The case of a
dielectric sphere has received relatively less atten-

tion. Very recently, Ruppin has calculated the
scattering and absorption coefficients of dielectric
spheres as well as those of metallic spheres' using
two additional boundary conditions (ABC). These
ABC's are necessary for taking into account the ex-
citation of collective modes (plasmons, excitons,
etc.) in the sphere, which arise naturally in a nonlo-

cal treatment.
The purpose of the present paper is to provide a

unified approach for calculating the polarizability of
a very small sphere including nonlocal effects which
can be applied to various types of materials such as
metals, insulators, and semiconductors. %e assume
the sphere to be so small that retardation effects can
be neglected. The theory is semiclassical in the
sense that effects of the surface on the electronic
wave functions or vibrational normal modes are not

explicitly included. Surface effects are treated by a
method similar to the "specular scattering" or
"semiclassical infinite barrier" approximation used

previously for a plane surface. " This method al-

lows us to express the solution in terms of the bulk
dielectric constant. ett(k, co) which depends on the
wave vector k and frequency co.

The paper is organized as follows. In Sec. II we
derive a simple expression for the polarizability of a
small sphere by assuming that the effect of the sur-

face is taken into account by introducing an "im-
age" system on the other side of the spherical boun-

dary and using the usual Maxwell's boundary con-
ditions, viz. , the continuity of the tangential E and
the normal D fields. The ABC implied by our as-

sumption is examined critically in Sec. III, where
we show that it is similar to the Fuchs-Kliewer
ABC (Ref. 11) for a plane interface, but it does not
satisfy the criterion that the component of the polar-
ization vector P normal to the boundary should be
zero at the boundary. In Sec. IV we Inodify our
ABC so as to make the normal component of P
vanish at the surface, and give a corresponding
modified expression for the polarizability. Section V
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is devoted to a numerical calculation of the polari-
zabilities of dielectric and metallic spheres using
simple analytical expressions for the dielectric func-
tion EE(k,ro). We find that the results given by our
two expressions for the polarizability are very simi-

lar, differing only in quantitative details. These
results are compared with the results available in the
literature from previous works ' ' and the agree-
ment is impressive. We conclude in Sec. VI by
pointing out some possible areas of application of
our formalism.

Therefore Eq. (5a) does not hold on the surface of
the sphere, where there is a fictitious external sur-

face charge that acts as a source for D.
It is convenient to introduce the potential function

Vii(r) defined by'

D(r) = —7' Vli(r) (6)

Next we define

Vti(k} = f Vn(r)exp( i k —r)d r

and its inverse

II. A SIMPLE THEORY OF THE
POLARIZABILITY

Vn ( r ) = J Vz ( k ) exp(i k r )d k
(2m. )

(g)

Let us assume that an external electric field, given

V(r) = —Epr cos8„E+ (p/r )cos8„E (3)

D„(r) = E„(r)= Epcos8„E + (2p/r ) cos8,E,

E = Ep(co)z

is applied to a sphere whose radius is a and whose
material is characterized by a bulk dielectric func-
tion EE(k,co). The sphere is therefore much smaller
than the wavelength of light, retardation is being
neglected, and EE(k,co) is a longitudinal dielectric
function. The potential V and the radial component
of the displacement vector D„outside the sphere (as-
sumed to be vacuum) are then given by

V(r) = V(r) cos8„E

Vii(r) = Vn(r}cos8,E

Equation (5) then reduces to

V Vz)
——0

(9a)

(9b)

Multiplying this equation by exp( —i k r) and in-

tegrating we get

—k Vli ( k ) + a 5 I exp( —i k r )

in this infinite system, and similar relations for the
total potential V(r ) and its Fourier transform

V(k). We note at the outset that V(r) and Vli(r)
must be of the form

(4)

where p is the induced dipole moment of the sphere
and O„E is the angle between the vectors r and E.
Inside the sphere, we can write

where'

x cosOEd0 r=a

V.D =0,
VXF=0 . (5b)

d Vg) +
dr r =a+

d Vg)

dr p
—a—

(12)

To solve for the fields inside the sphere we intro-
duce -a fictitious medium in the r ~ a region, which
is a mathematical continuation of the material inside
the sphere and which satisfies the following condi-
tions: (i) Maxwell's equations are continued to the
r & a region in a form-invariant manner with ap-
propriate definitions of the D and E fields and the
charge density there; (ii) the fields inside the actual
sphere are the same as the fields in the r & a region
of this infinite medium, the bulk response function
of this medium being the same as that of the sphere
material; (iii) the component D„ is discontinuous,
but the tangential component D~ is continuous
across the surface r = a in this infinite system.

Using the expansion

exp( —i k r) = 4rrg ( —i)j~(kr)Ylm(8kE ltikE)
l,m

X Yl (8EPE) (13)

Vn( k) = [4mia Bj i(ka)/k ]cos8kE

whence

(14)

V(k)=[4iria 5j i(ka)/k EE(k,pi)]cos8kE (15).

where jl(kr) is the spherical Bessel function of order
I and Fg 's are the usual spherical harmonics, one
gets
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We can now go back to the coordinate space using
equations like Eq. (g). For r & a, this gives

VD(r) = (fi/3)r cos0„z

V(r. ) = a oF(r) cosg,E

where

j i(krj)i(ka)
F(r) =- dk

eg( k,a~)

(16)

r

1 —3aF(a)
n(co) = a 1+ 6aF(a)

(19)

Note that in the local limit, i.e., when e~ (k,co)—:
ez (ai),

rP(r) =
3a eL

(20)

and o. reduces to the familiar expression found in

elementary textbooks, ' viz. ,

a(cu) = a'(ez —1)/(ez + 2) . (21)

III. THE NATURE OF THE ABC

Before applying Eq. (19) to a more general
e~(k, co), we will discuss more precisely the nature
of the boundary conditions implied by our assump-
tions. A specific transformation which satisfies all
our requirements is suggested by the "inversion
theorem"' and is defined by

V)(r) = (a/r)V((a r/r )

VD (r) = (air) VD (a r/r )

(22)

where the & ( & ) sign refers to the region r & a
(r & a) of this infinite system. Furthermore, the
nonlocal susceptibility function P(r, r ',co), which re-
lates V(r) and VD(r) for the actual sphere accord-
ing to the equation

VD(r) = V(r) + 4~f X(r, r ',co)V(r ')d3r'

-is assumed to be of the form

(24)

Since the potentials are the same as those within the
actual sphere, we can match V(r) and D„(r) ob-
tained from Eqs. (6), (16), and (17) with the corre-
sponding quantities outside the sphere, given by Eqs.
(3) and (4), at r = a. The resulting equations can be
immediately solved for p and hence for the polariza-
bility, a(co)—:p/Eo Our fin. al result can be written

as

X(r, r ',co) = [Xii(r —r ',ai) + (a/r')

&& gz(r —a r '/r', ai)]

x 8(a —r)8(a —r') (25)

where Is(r —r ',co) is the corresponding bulk

response function and 8(x) is the usual step func-
tion

1 ifx )00'"'= 'o f o . (26)

The factor (a/r') in the second term on the right
side is a "weight factor"' which allows for the
difference in locations of the r ' and a r '/r' . Us-

ing Eqs. (22), (23), and (25), the integral over the
sphere in Eq. (24) can be transformed into an in-

tegral over all space, giving the equation

VD(r) = f e~(r —r ',a~) V(r ')ai r' (27)

unless it is discontinuous at r = a. In either cgse,
P„(r = a) + 0 because it follows from the match-
ing conditions of the fields that V (a) Q VD (a).

In the case of insulators this is not really a re-
striction because there is no physical condition
which requires P, to be zero at r = a. For a metal-
lic sphere, however, the normal component of the
current density J„which is related to P, by

aP,
Bt

must vanish at the boundary. So if P, +0 at
r = a, J„ is also nonzero, except in the static case,
co = 0. In the next section we discuss how one can
overcome this difficulty.

which is formally the same as a "bulk response"
equation in the fictitious infinite medium, as desired.
Equations (22) and (23) are also consistent with the
Fourier transforms of Eqs. (14) 'and (15).

Our boundary condition is similar to the "specu-
lar reflection" boundary condition of Fuchs-Kliewdr
(FK) in the sense that the effect of the boundary is

assumed to be the same as that of a fictitious medi-

um which is an "image" of the real system (about a
spherical boundary in the present case instead of a
plane boundary). However, unlike the FK ABC,
the present scheme does not satisfy the condition
that the normal component of the vector
P—:(D —E)/4ir should be zero at the boundary.
This can be seen by differentiating Eqs. (22) and
(23), whence we get

P„(r = a) = [V (a) —VD (a)]cos8„z/Sabra

(28)
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IV. MODIFIED EXPRESSION
FOR POLARIZABILITY

VD(r) = (5/3)r cosB„z + Cr cosB„E (30)

V (r) = a oF(r) cosB,E + (Cr/eL ) cosB„E (31)

without changing Maxwell's equations. One can
now determine the three unknowns 6, C, and p in

our problem by using the two previous matching
conditions plus a third condition which we now im-

pose,

Epa + 3
cosOqE

2P

a

Although P„(r = a) is nonzero in our formula-
tion we can make it vanish by slightly modifying
our ABC. In order to do that the key observation
necessary is the fact that any solution of Eq. (10)
can be changed by an amount Cr cosO„E, where C is

an arbitrary constant, without changing the equa-
tion. One can therefore add to the solution
D =——V VD(r ), where VD( r) is~ven by the
Fourier transform of Eq. (14), a D field of the form
—Cz, which is constant everywhere in the infinite
medium. Note that, unlike V' VD (r), which goes
like 1/r for r y a, this additional field remains
constant and nonzero even at infinity. This does not
contradict any boundary condition on the real fields
because the real fields coincide with the fields in this
mathematical space only for r & a. This change
would, of course, mean a change in V(r) also, but
since the added D field is constant, the change in V
is related to the change in V~ by the local dielectric
constant el —= e~(k = O, co). Thus we can change
Eqs. (16) and (17) to their new values, indicated by
the superscript 0,

where

E = 3cpa 2 dI'

dr I —ep) . (35)

+ (Cr/EI ) cosB„E (36)

VD (r) =(a/r)[VD (a r/r ) —(Ca /r) cosB,E]

(37)+ Cr COSO&E

Using Eqs. (36), (37), and (25), it can again be easily
shown that Eq. (24) can formally be written as in

Eq. (27) in the infinite mathematical space.
%e would like to point out some interesting as-

pects of these transformations. First of a11, if we

compare our theory with the FK theory for a plane
boundary then it is clear that our Eqs. (22), (23),
and ()5) are analogous to the following equations in

the planar case, which follow from their work in the
nonretarded limit:

V(a + z) =- V(a —z)

VD(a + z) = V&(a —z)

X(zg', rp) = [X~(z —z', ro) + Xii(z + z', cp)]

(38)

(39)

In the local limit, Eq. (34) gives a(ro) = 0/0; this re-

flects the fact that in the local limit the third condi-
tion, given by Eq. (32), is inconsistent with the first

two. The correct local limit can be restored either

by neglecting the third condition altogether or b~
evaluating expression (34) using a nonlocal eii(k, co)

and then taking the limit k ~0. The second pro-
cedure will be discussed in the next section.

Let us note that instead of Eqs. (22) and (23), the
"modified" potentials, given by Eqs. (30) and (31),
satisfy the transformation equations:

V (r) =(a/r)[V (a r/r ) —(Ca /eLr)cosB„E]

(32)
)& 8(a —z)8(a —z') (40)

H = P —(ep —1 )E/4ir, (33)

must have a vanishing radial component at r = a.
With this new condition, our final result for a(ro)
takes the form

1 —3aF(a) + K(el —1)
a(co) = a

1+ 6aF(a) + K(eL + 2)
, (34)

where Ep is the background dielectric constant of the
sphere. For simple metals ep ——1 and this is simply
the continuity condition on the radial component of
the electric field. For dielectrics this implies that
the excitonic part ~ of the total polarization, given

by

where z is the coordinate perpendicular to the plane
interface located at z = a and the real system occu-
pies the z & a half-space. In the case of a plane
boundary, these transformations automatically irn-

ply that the normal component P, of the polariza-
tion vector (or its excitonic part H, in the case of
dielectrics) vanishes at the boundary. This is no
longer true in the case of a sphere. Equations (22)
and (23) were somewhat artificially modified by in-

troducing the constant C to get Eqs. (36) and (37)
and the arbitrary constant C was in fact "fixed" in

order to make P, vanish at r = a. Secondly, we
should emphasize that although our modified ABC
does make P, zero at the boundary it is still not ex-
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actly analogous to the FK ABC. This is because,
unlike the FK ABC, the normal derivative of the
tangential component of P (i.e., r) Pe/dr) does not
vanish at the boundary in our work. Finally we
note that, if we let a ~ oo, r ~ oo, keeping

I
a —r

~

finite, both pairs of transformation equa-
tions, viz. , (22), (23) and (36), (37), go over the
result (38) and (39) for a plane boundary.

V. APPLICATIONS

A. Dielectric sphere

As a simple example of application of our result,
consider the expression for es( k,co),

e~ ( k,co) = eo + to~/[AT + Dk —co(co + i y) j

(41)

which is frequently used' ' to represent the nonlo-
cal effect in a dielectric medium (also known as
spatial dispersion in this case) near an isolated exci-
ton resonance. Here co& is a measure of the dipole
oscillator strength of the excitation of frequency cur,

y is a damping parameter, and the term Dk
represents the spatial dispersion. With this form for
e~(k, ro) we can easily determine the function F(r)
given by Eq. (18)'

citation of the so-called Fr'ohlich mode. We ob-
tained a similar shift using our results. Ruppin has
shown that this frequency shift of the absorption
peak increases with decreasing particle size in a
manner which depends on the choice of the ABC
(see the second article in Ref. 9). We have investi-

gated this size dependence using the same values for
the various parameters as those employed in Ref. 9,
viz. , co /co~ ——0.07416, D/C = 6.1728 g 10
y/coT ——10, eo ——8.1, and coT ——2.8 eV. These
values correspond to a ZnSe sphere. Our result for
the frequency of the absorption peak versus the par-
ticle radius is shown in Fig. 1 using both Eq. (34)
and Eq. (19). It is interesting to note that these
results are close to that of Ref. 9 if one uses the FK
ABC in that work. This closeness also shows that
our approach is similar to the FK formalism as far
as the basic physics is concerned, even though the
precise boundary condition on the polarization vec-
tor is somewhat different.

We can also use Eq. (42) to show that expression
(34) has the correct local limit, as mentioned in the
last section. This follows by noting that in the
D ~0 (or A~ ec) limit, the parameter E in Eq.
(35) has the form

3eoC

212

F(r) = r 1 C C+
2 I3/2( Ar)E 3/2(Aa),

3Q ~o A, g VQp

(42)

while aF(a) goes like

aF(a) = 1 C
2A, a

(45b)

where B. Metallic sphere-dynamic case

C = cop/Dao

2
COp

~ 2—cu( ro + t p ) + N T
Cp

If we represent the response of the metal by a hy-
drodynamic dielectric function, '

eg(k, co) = 1 —re~/[co(co+ i y) —P ic'], (46)

and I and E„are modified Bessel functions of
half-integral order v( = —,). The polarizability a(co)
can now be calculated either from Eq. (34) or from
Eq. (19). Of particular interest is the imaginary part
of u(co) because it is proportional to the absorption
coefficient of the sphere and its variation with fre-
quency can be compared with the result given in

Ref. 9. Note that Ruppin has numerically calculat-
ed the extinction coefficient, which is approximate-
ly equal to the absorption coefficient for a very
s~all sphere. According to Ref. 9, the main effect
of the spatial dispersion is a slight shift in the main
absorption peak from its local value of about 1.0003
coT to a higher value. This peak arises from the ex-

I.OO 5
I-

3
I.002

I.OO I

I.OOO
40

I

60 80
a(A)

100

FIG, 1. Variation of the frequency of the absorption
peak with radius for a ZnSe sphere. The solid curve is
obtained using Eq. (34), while the dashed curve follows
from Eq. (14).
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where P = 3Up/5 (UF being the Fermi velocity) and

co& is the bulk plasmon frequency of the metal, then
the polarizability a(rp) can be obtained from the
dielectric case simply by setting eo ——1, coT ——0,
and D = P . We have plotted Ima(co) versus ro in

Fig. 2 for a sphere of sodium (cop
——5.9 eV,

Up ——1.07 X 10 cm/sec) of radius 15 A with

y = 0.Olcott. This figure may be compared with

Ruppin's result given in Ref. 10. The agreement is

excellent. In particular, our result predicts (just like

Ref. 10) a shift in the main absorption peak (due to
the excitation of l = 1 surface-plasmon mode) from
its classical value of cop/3/3 to about 0.62cop and a
series of small peaks above the bulk plasmon fre-

quency. Our result also agrees with Ref. 10 as fat
as the relative heights of the main peak and these

secondary peaks are concerned. The slight

discrepancy in the positions of the secondary peaks
is presumably due to the difference in the assumed

forms of the dielectric function, Ruppin used the
Lindhard expressions and since he considered
retardation effects, his formulation involved both the

longitudinal and transverse dielectric functions. He
also assumed a k-dependent damping term.

It is also quite striking that our expression for
a(rp) given by Eq. (19) gives essentially the same
result as the more rigorous expression, Eq. (34),
even though the derivation of Eq. (19) contradicts
the continuity of the component P„at the surface.
This suggests that the nonvanishing of the normal
current density at the surface is not a very serious

limitation in the case of a metallic sphere as long as

F(a) =— 1

6a
(47)

which agrees with the l = 1 case of a previous sur-

face plasmon dispersion relation derived by Das-
gupta. On the other hand, if one uses Eq. (34),
the corresponding equation for the surface plasmon
frequency is

dF
2(el —1)a F(a) a-

dr
dF= 1 —3eia
dr

(48)

Using the hydrodynamic version of F(r) given by
Eqs. (42) —(44) (with Ep= 1'AT =,0 D = P ) and
a little algebra, Eq. (48) can be reduced to

Is/2(ka) = FLI)/2(ia)/2 (49)

This is precisely the equation for surface plasmon
frequency for the l = 1 mode derived by Crowell
and Ritchie using a hydrodynamic theory. The
advantage of Eq. (48) is that it can be applied in

conjunction with more rigorous expressions for-
e~(k, rp) which go beyond the hydrodynamic model.

the nonlocal effects are included in a "reasonable"
way.

One can also investigate the variation of the "di-
pole" surface plasmon frequency with particle ra-
dius using our theory, because this frequency corre-
sponds to the pole in a(rp). If we use expression
(19), the surface plasmon frequency would be given

by

102

I PI

10
Hl

O

— IO-'
3
8

Ip-2
H

C. Metallic sphere-static case

If co = 0, then the dielectric function can be ap-
proximated by the well-known Thomas-Fermi ex-

pression

e(k,0) = 1 + kTp/k (50)

where kTF is the Thomas-Fermi wave vector. The
function F(r) now takes the form

F(r) = I3/2(kTpr)K3/2(kTpa)/V ar (51)

10-4
0

1 I I I I I I

1.40.2 0.4 0.6 0.8 1.0 1.2
ts) / QJ p

FIG. 2. Variation of'the imaginary part of a(co) with
0

co for a sodium sphere of radius 15 A The solid curve is

obtained using Eq. (34), the dashed curves using Eq. (19),
and the dot-dashed curve indicates the corresponding lo-

cal result.

In Fig. 3 the quantity a(rp = 0)/a is plotted against
the dimensionless parameter kTpa, using both Eqs.
(19) and (34). We obtain very satisfactory agree-
ment with the previous work of Rice et al." provid-
ed one uses low values of the parameter r,

3[—= ( , rrnp)' /a~, n p bein—g the electron density and

a~ the Bohr radius], such as r, = 1 in their work.
Since the surface becomes more diffuse in their
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l.0—
i 1

~ I t )

08-
fO

tf Q,6—

OA -i'

0.2—

model for larger values of I; whereas our model im-

plies a sharp metal-vacuum boundary for all values
of r„ the agreement gets worse as r, increases. The
authors of Ref. 4 calculated a(to = 0) using a semi-

classical approach as well as a quantum-mechanical
random-phase approximation (RPA) approach using
the infinite potential barrier model and obtained al-

most identical values in the two cases. The fact
that our numerical calculation agrees with those
values in the low-r, regime indicates that the essen-
tial physics of the system is contained in our simple

0
treatment even for particle radii as small as 5 A. If
one could include'the effect of the continuous na-
ture of the electron density near the surface in our
formalism, we believe that this agreement would
continue to larger values of r, as well. Another ad-
vantage of our theory is that one can use Eqs. (30)
and (31) to study the spatial variations of quantities
like electric field, polarization, induced charge densi-

ty, etc., within the sphere in a simple analytical
way.

V. CONCLUSiON

We have derived two simple expressions for the
polarizability of a small spherical particle including
nonlocal effects. While the second expression, given

by Eq. (34), is preferable because it is consistent

1 i 1 i I

20 40 60 80 l00
kFT a

FiG. 3. Variation of the static polarizability a(co = 0)
with particle radius for a metallic sphere. The solid
curve is obtained using Eq. (34) and the dashed curves

using Eq. (19).

with the correct boundary condition on the current
density in the case of a metallic sphere, the first ex-

pression, given by Eq. (19), is even simpler and gives

similar results as the second one. Apart from their

simplicity, two other major advantages of our for-
mulas are that (a) they can be applied to various dif-

ferent materials and (b) they are capable of giving

quantitatively correct results, as can be seen from
our calculations in the preceding section. We hope
that our work will be useful in studying the optical
properties of particles of other materials (such as
semiconductors, ionic crystals, etc. ) which we did

not consider here. In particular, there are two areas
of considerable current interest where a theory like
ours can play a significant role: (a) It is known that
absorption by phonons might be responsible for the
anomalously large absorption of infrared radiation

by very small metallic particles; one could try to
see whether our theory would explain this large ab-

sorption by adding a "phonon term" to the dielec-
tric function. (b) Some of the theories of the
surface-enhanced Raman scattering are based on an
enhancement of the effective polarizability due to
image effects. These theories treat the molecules
under investigation as point dipoles, which is a very
serious restriction since the metal-molecule distances
are comparable to the molecular size. As a better
approximation, one can assume the molecules to be
dielectric spheres and our expressions for a(to) can
provide a simple but accurate way for taking into
account both the size as well as the frequency
dependence of the polarizability,
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