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Cascading, a process whereby lower-order effects combine to contribute to a higher-

order nonlinear process, in optical third-harmonic generation (THG) is reported. By us-

ing the wedge-fringing method to observe the interference between bound and free waves

at the third harmonic, the presence of two bound waves is verified. Theoretical develop-

ment shows one bound wave to be due to true third-order nonlinearity plus a cascaded
contribution involving the bound wave of second-harmonic generation. The other bound

wave arises solely due to cascading involving the free wave of second-harmonic genera-

tion. Considerations of crystal and wave-vector orientations are presented, and a method

of effective fields is used to account for cascading through local fields. cz-quartz was stu-

died, allowing verification of the cascading by symmetry as well. A treatment is present-

ed for the THG intensity-altering effect of gases surrounding condensed-phase materials.

Finally, the specific observation of interferences among the several waves allows a direct
calibration of X' '( —3~,co,co, co, ) relative to the product X' '( —3',2', co)X'"(—2~, co, co)

of quartz for the 1.91-pm fundamental wavelength employed here.

I. INTRODUCTION

It is by now well known that lower-order optical
nonlinearities contribute in multistep or cascaded
fashion to higher-order nonlinear phenomena. '

The basic concept is that nonlinear polarizations
produced in low-order processes generate inter-
mediate macroscopic electric fields in addition to
those directed upon the sample by the experi-
menter. These intermediate fields may interact
nonlinearly with the purposely impressed fields to
generate polarization which contributes to the pro-
cess under investigation. While phase matching of
the process which generates the intermediate wave

is not typical, it may be utilized near resonances to
study polariton characteristics. ' More generally
when that process is non-phase-matched, both free
and bound intermediate waves result. If the
higher-order process being observed is phase
matched, cascaded interactions involving exclusive-

ly the intermediate bound waves will also be phase
matched. An appreciation of this resultant contri-
bution to the overall phase-matched process is con-
sequently essential for the extraction of true non-
linear susceptibilities or the prediction of the mag-
nitudes of such phase-matched nonlinear effects.
In this article we report the consequences of cas-
cading in the study of a non-phase-matched

higher-order process and obtain a calibration of the
true higher-order susceptibility in terms of the
lower-order susceptibilities which contribute in the
cascading.

Non-phase-matching is the situation for the ac-
curate Maker or wedge-fringing techniques of mea-
surement of nonlinear susceptibilities. These
methods rely on the interference of the nonlinearly
generated bound and free waves for determining
coherence lengths and susceptibilities. For this
work we employ the wedge-fringing technique
which displays these interferences by altering the
physical length of the crystal traversed by the
beams by a suitable transverse translation of the
wedge. A new observation which we consequently
make is the addition of a second bound wave in a
higher-order process due to the presence of an in-
termediate free wave in the cascading process.
This term has been theoretically suppressed in ear-
lier cascading studies where (nearly) phase-matched
third-order processes were monitored. ' This is
reasonable since at the monitored frequency the
non-phase-matched bound wave has a coherence
length which is generally much shorter than the
crystal length. Many cycles of phase between free
and bound waves occur across the crystal. A
negligible contribution obtains from this mechan-
ism in relation to that obtaining from the phase-
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matched bound wave involving the true higher-
order effect plus the cascading with the intermedi-
ate bound wave. Under those circumstances the
presence of the totally bound cascaded contribution
was confirmed only by geometric considerations,
that is, by measurement with different vector orien-
tations, in high-symmetry crystals. In the experi-
ments reported here the presence of cascading and
the evaluation of relative contributions are made in
a single polarization setting. It is suggested that
this is important since with low-symmetry crystals
one does not have the luxury of additional con-
straints to deduce the cascaded contributions and

may not wish to perform the measurement of all
elements of the lower-order susceptibility tensors
needed to calculate those contributions.

We chose perhaps the simplest situation in
which to observe these phenomena: third-harmonic
generation in a noncentrosymmetric crystal. Cas-
cading may be observed in third order of non-

linearity only in macroscopically noncentrosym-
metric media since nonvanishing second-order ef-

fects are required. By using a-quartz we were also
able to confirm the cascading by resorting to sym-

metry as done in earlier works as a supplement to
the direct single polarization setting method. That
is, by choosing two crystal orientations and polari-
zation settings for which the true third-order
responses are equal by symmetry but the second-
order responses are not, the observed difFerence in
total third-order response was used to characterize
the cascading. In. addition, the cascading which is
described by a product of two second-order suscep-
tibilities beats directly against the contribution due
to the true third-order susceptibility allowing an
accurate calibration of the latter relative to the
former. This feature was utilized to calibrate
third-order susceptibilities and to deduce bond
characteristics of GaAs by the Bloembergen
group. We were able in this work to perform this
type of calibration with high precision for a-
quartz, thus generating a useful standard for future
third-harmonic-generation studies in the visible.

In the remainder of this paper we will discuss
the detailed theory of macroscopic field cascading
in third-harmonic generation with a simplified dis-
cussion of the local or microscopic field cascading
as an appendix, the role of symmetry in determin-
ing the varieties of macroscopic field cascading in
a-quartz, the important but previously neglected
influence of gases surrounding a sample being stu-
died by non-phase-matched third-order processes,
and our experiments and conclusions.

II. THEORY

A. Cascading in third-harmonic generation {THG)

In this section the various electric and nonlinear
polarization waves involved in the production of
light at frequency 3' from an intense fundamental
wave in a noncentrosymmetric crystal will be
described in a scalar formalism. In the plane-wave
small-conversion approximation an intense mono-
chromatic electric field with frequency u and wave
vector kf z directed along the z axis,

E(r, t) =E"(r)+c.c. ,

E"(r)=E"exp(ikfz)

(2.1)

(2.2)

directly produces nonlinear source polarizations at
frequencies 2' and 3' through the nonlinear sus-

ceptibilities:

P "(r)=X' '( 2', co,c—o)(E") exp(ikq"z), (2.3)

P "(r}=X' '( 3',co,a—),co)(E") exp(ikb"z) . (2.4)

If there is an interface between optically linear

and nonlinear media at z =0, some electric fields

which arise in the crystal are

E (r) =Ef"exp(ikf z)+E„exp( ik, "z)—
+Es"exp(ikb "z), (2.5)

E "(r ) =Ej"exp(ikf"z }+E,~exp( ik 3"z)—
+Eg exp(Eky z)+Es exp(ik~ z) . (2.6}

The Ef E„and Eb terms are forward-travelling
free waves, reflected free waves and forward bound
waves. The E„may be removed by applying boun-

dary conditions at the interface.
Cascading requires the inclusion of the addition-

al source polarization at 3u:

P "(r}'=2X' ( —3',2', co)

&&[E "(r)+(I, lf ")P (r)]E"(r) .

(2 7)

The second term in the bracket is the result of cas-
cading through the local field. As discussed in
Appendix A, its effect can be subsumed in an effec-
tive bound wave (Eb"),ff. Ignoring contributions of
reflected waves to nonlinearities and using primed-
unprimed frequency notation shorthand to allow
suppression of cumbersome arguments,
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P "(r)'=2X( 'Ey"E"exp(ikb"'z)

+2X' ' (Eb ),rrE"exp(ikb"z) . (2.8)

For colinpar geometry the wave vectors are
directly related to refractive indices and angular
frequencies:

kP = (qco/c )n~„,

kb" ——2k'",

kb'" —3k',
kb"' —kI +kl ——(3colc)n, .

(2.9)

And for definiteness, assuming only transverse
waves,

Eb" —[16m——l, "/A, (n„+n2„)](E")X'2' (2.10)

Eb" ———[24@i,."/A(n, +n3„)](E )

X [X' ' —[32@i,"/1((n„+n2„)]
XX(2)X(2)~ [(E2co) /E2m] ]

(2.11)

Eb"' —— [4—8~1,"'
/A, (n, +n 3„)]EI"E"X' '

(2.12)

Anticipating that for all frequencies of interest

k~ & k~, we have defined the coherence lengths to
be positive (

~
kb kI ~

1,—=m ) EI".and also Eb"'
are determined by the optical properties of the
linear medium as well as the nonlinear medium.
For normal incidence to an interface with vacuum

(2.13)E/" —[(1+n„——) /(1+ n 2„)]Eb".

The substitution to obtain E~ 'may be easily made:

Eb"' ———[24ml, "'
/1(, (n, +n3„)][(1+n„)/(1+n2„)][32@1,/1((n +n2„)](E )

Then for another interface to vacuum at z =l, the 3' field at l+ is

E (1+)=I[B'exp(ill/1, ") B]Eb"+[—C'exp(ill/1, ') C]Eb"' ]exp(i—kI"1),

(2.14)

(2.15)

where

B=2n 3„(1+n „)/(1+ n 3„)

B'=(n„+n3„)/(1+n2„),

C=2n3„(1+n, )/(1+n2„)
(2.16)

C'=(n, +n2„)/(1+n3„) .

The intensity of light at 3' is

I "=(c/2')
~
E "(1+)

~

(2.17)

Although there are only two modulating terms in
the field, Eq. (2.15), there will be three modulating
terms in the intensity. The additional term will

vary with the difference of spatial frequencies of
the two bound 3m waves. ' Further contributions
would result and must be added to Eq. (2.17) if
cascading could simultaneously occur through a
second transverse intermediate or a longitudinal in-
termediate second harmonic (see below).

We have retained the precise form of the coeffi-
cients rather than make the approximations
B B'=C C' which are good to better than 1%
in the experiments here, but which may become

I

the limiting error in more dispersive cases. Some
care was taken in defining the notation since an ex-
plicit and consistent formalism is especially needed
when combining more than one order of nonlinear-

ity. Additionally, the notation was chosen to em-

phasize observables of the wedge-type experiment.
Two points should be emphasized about the con-

tributions inherent in Eq. (2.17). First, Eb of Eq.
(2.11) appears as a normal bound wave resulting
from the third-order response of the material to the
fundamental wave but with the modification that
the usual X' ' factor is altered by a term involving
the product of two second-order susceptibilities.
This alteration depends on the characteristics of
the crystalline material under study as well as the
frequency ro chosen and may vary from being
negligible to dominant in comparison to X' '.
Second, the appearance of the second bound wave

EI,"', which results in three spatially modulated
contributions to I rather than the single com-
ponent of the usual Maker or wedge experiments,
is correlated to the occurrence of the just men-
tioned alteration of X' '. Barring drastically dif-
ferent l,"and I,"' the failure to observe complex
fringing due to the presence of EI,

"' would assure
that the X term of EI, is minimally altered by
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transverse cascading and (for negligible longitudi-
nal cascading) a true susceptibility may be simply
extracted from the fringe height and period. Con-
versely, the observation of complex fringing re-
quires an analysis of the sort used below to
separate the true X' ' from the additional cascad-
ing contribution.

B. Anisotropies in a-quartz

In this section specific limitations of the results
of the preceding section imposed by details of the
a-quartz crystal structure will be discussed. The
nonzero matrix elements of X' '( —2co, ro, ro),
X' '( —3ro, 2', co), and X' '( —3ro, co, ro, ro) in a-
quartz are listed in Table I where symmetry condi-
tions of the P3221 (right-handed enantiomorph)
space group have been applied. ' The importance
of such tables cannot be overly stressed since the
equations so cavalierly written in scalar notation
above are, in fact, tensor equations. In addition,
for optically nonisotropic crystals the orientation of
E and P relative to the normal crystal vibration
directions as functions of wave-vector direction
must be properly treated. We avoid the complexity
of nonparallelness of E, P, and D by choosing
principal polarizations and allow the neglect of op-
tical activity by avoiding optic axis propagation.
In quartz principal directions are the z axis or the
x-y plane. Under these restraints the use of Table I

requires

Es"(r)= —[4m/(e2„) ]P "(r) . (2.19)

Since D "=V&„Es (r )+4rrP "(r)=0, the boun-

dary conditions are automatically fulfilled so that
no internal free wave Ef, is generated. The final
result of the preceding section describing the result-
ing third-harmonic fields and intensities applies
with

E3ctl
O (2.20)

to check for symmetry-allowed cascading is merely
an exercise in picking all nonzero
X~~„~ ( 3—ro, 2ro, ro)X„'k't( 2—ro, ro, ro) for each X;q'~

Consulting Table I it is clear that X~ is the
only element for which macroscopic cascading nev-
er occurs. For X~ macroscopic cascading occurs
only through X~X~, which is the simplest case
since the E„ intermediate field is transverse and
no other macroscopic cascades are possible. A
measurement of Xyyyy is nearly equivalent with
k

~
~z, but in this configuration optical activity is a

complicating factor which we wish to avoid here.
A different -ffect arises if one takes k

~
~x; longitudi-

nal E„obtains. For this situation, temporarily
resorting to tensor notation, consideration of the
wave equation (remembering that P " is only the
nonlinear source polarization)

[(VX&X')—(4 '/ ')& 1Es"( )

=(16rrro /c. )P "(r) (2.18)

TABLE I. Nonzero susceptibility matrix elements of a-quartz.

X' '=X„'~I(—2', co,co) X =Xg~ ( —360,2' jN ) X' '=X;Jgg( —3', co,co, co)

xxx = —R t 2y ~2x j
' xxx = —R I2y~2x j Zzzz

xyz = —yxz
=Xzy
= —yZX

xyz= —yxz
xzy = —yzx

XXXX =yyyy
=3R I2y-~2x j

ZXy = —ZyX XXZZ =XZXZ =XZZX

=R I2y~2x j

ZZXX =ZXZX =ZXXZ
=R I 2y ~2x j

yyyz =yyzy =yzyy
= —R I2x~2yj

zyyy = —R I2x~2yj

'R I2y~2x j symbolizes any member of the set of elements obtained by replacing any two x
polarization indices with two y indices.



5526 GERALD R. MEREDITH 24

Es"= —[24n I,"/A(n„+n3„)](E")

XIX' ' —(Sn/e )X' 'X' ' [(E ") /E "]]
(2.21)

The cascaded term containtxl in Eq. (2.21) has
no directly observable consequences, but merely
causes a reduction of the net THG (assuming real
positive susceptibilities). A quick estimate using
Lorentz local fields shows the susceptibility reduc-
tion of X~~z by longitudinal cascading to be only
—1% of the corresponding reduction of X~ in
the transverse case for the particular experiments
reported here. The situation for other polarization
settings can be similarly handled and quickly be-
comes algebraically complicated. A simplification
arises if K.leinmann symmetry is applied. The near
validity of this approximation implies

~
Xi („'z,I'

~

'
~, where PIxyz j signifies all permu-

tations of the three indices.
One can see from the cases explicitly examined

above (e.g., xxxx polarization setting versus yyyy
setting with lt

~
~x) that although each of the indivi-

dual orders of true susceptibility strictly obeys the
symmetry requirements of the crystal (e.g.,
X~=Xz~z„), when an intense plane-wave electric
field is impressed upon the crystal, the responses
which are third order in the field would not be
described overall by an effective third-order suscep-
tibility with the full crystal symmetry [e.g.,
(Eb")~+(E&")z]. The inclusion of the nonlocal,
and therefore symmetry reducing, cascading is
responsible due to the directed wave nature. These
symmetry characteristics are in contradiction to
the earlier conclusion of Flytzanis for the real
cases k+0. In conjunction with the comments at
the end of the last section the magnitude of this de-

viation depends on the relations of the linear,
second-order, and third-order susceptibilities of the
specific crystal at the chosen fundamental frequen-

cy and may be drastic if cascading dominates the
direct third-order response.

C. Effects of gases in third-harmonic
generation

Ward and New' have presented a thorough
treatment of third-harmonic generation with spe-
cial attention given to harmonic generation in in-
Anite media with focused Gaussian beams. Their
conceptually simple presentation of results via vi-

bration diagrams will be followed here to display

(a)

z"=(2n+))1

z = (?n + ~i&) 1

FIG. 1. Vibration diagrams after Ward and New (Ref.
12) to describe THG with focused beams and with thin
solids in gaseous environment. (a) Simple non-phase-
matched harmonic generation with plane waves. {b)
THG in infinite medium from focused Gaussian funda-
mental with hk =0. (c) Similar to (b) with

beak

0.3.
(d) THG from a very thin solid with shorter coherence
length placed at focal position of the fundamental
Gaussian and surrounded by an infinite nonlinear dielec-
tric with 5k+0; X"'/Ak same sign and Ak &0 for both
media. Two cases corresponding to different amounts
of retardation in the crystal are presented. The set of fi-
nal g=+ oo points forms a circle represented with

dashes. {e) Similar to (d) with X' '/hk changing sign
between media. See text for a fuller discussion.

effects pertinent to the generation of third harmon-
ic by a thin solid slab surrounded by a gaseous at-
mosphere. We refer to their work for details of the
vibration diagram method but recall here the sim-

ple interpretative point that the magnitude of the
electric field is proportional to the distance in the
vibration plane between the point on a vibration di-
agram corresponding to the observation point and
its origin point ( —ao ). Some electric vectors are
symbolized for illustrative purposes according to
the Ward and New method with a double arrow in
our diagrams. Also recall that Ak =k& —k& and is
negative for normally dispersive materials.

Figure 1(a) displays the situation of infinite
media non-phase-matched harmonic generation
(single bound wave) in a plane-wave approximation
with hk &0 and real. The sin (el/I, ) dependence
is obvious, The magnitude of the field increases
with the radius of the circle which increases as

~

X/hk
~

. Figure 1(b) depicts THG in an infinite
medium with a focused Gaussian beam for 4k =0.
g is a coordinate normalized for focusing strength
and centered at the minimum waist fg=2(z f)/b—
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where f is the value of z at focus and b the confo-
cal parameter]. Figure 1(c) depicts the same case
but for b Ak —0.3. The amount of curvature can
increase substantially resulting in tightly spiraled
figures for

~

beak
~

&& l. An important point is
that the net third harmonic is always zero for
Ak &0 even though finite values of E "exist be-
tween g= —ao and +oo.

The utility we wish to make of these diagrams is
to portray the influence of the gas surrounding a
crystal being studied via THG. For this end it is
merely a matter of splicing together portions of vi-
bration diagrams such as 1(a) and 1(c). At each in-

terface in the experiment a splice is made of the
appropriate sections and an offset along the corre-
sponding direction of E "must be made to correct
for dielectric transmission factors. One should also
include the effect of reduced fundamental intensity
but possibly increased field strength on passing
through each interface for determining the non-
linear driving elements. To approximate the physi-
cal situation of a thin crystal in a slowly focused
beam the width of the crystal will be ignored in the
gas portions of the diagrams and splices will occur
at /=0. Figure 1(d) shows this situation for gas
and crystal susceptibilities having identical signs.
The set of possible g=+ 00 points create a
(dashed) circle' which does not, but nearly does,
cross the g= —oo point. Figure 1(e) is the case
where the susceptibilities have opposite sign. For
this situation at the interfaces the infinitesimal vi-
bration element reverses direction but Ak &0
preserves the clockwise rotation of the curve. In
both cases A+sin [(irl/1, )+y] intensity behavior
is predicted, but the resultant THG magnitude is
not characteristic of the crystal alone. The addi-
tional contribution depends on b, Ak, and X' ' of
the gas. For this reason experiments of the nature
described here which are intended for calibration
must be done in vacuum.

III. EXPERIMENTAL

flection was split off prior to the focal region and
used in a reference arm where a red Corning glass
filter produced sufficient third harmonic for pulse-

by-pulse normalization. In the sample arm a po-
larization rotator before the sample and gian prism
polarizer after were used to set polarization condi-
tions. No polarizer was needed with the Raman
source since a high degree of polarization was car-
ried over from the polarized 1.06-pm laser. In
both arms glass filters to attenuate the fundamental
followed by 20-cm focal length monochromators
isolated the harmonic. The monochromators were
oriented to reduce polarization dependence of the
throughput; tests showed the intensity differential
between the two polarizer positions to be less than
1%. Photomultipliers were used for detection ex-

cept when silicon photodiodes in homemade opera-
tional amplifier circuits were substituted to detect
the second harmonic. Computer-controlled gated
integration, digitization, and analysis followed.

The two degree wedged crystals of quartz were
placed in the center of a 72-cm vacuum-pressure
optical cell, which was positioned with the center
at the beam waist on a transversely mounted
translation stage. The stage was driven via a
stepper motor under computer control. The
change in thickness of crystal traversed by the
beam was determined by the simple relation
M =2x tan(a/2), where u is the wedge angle and x
the transverse displacement. The large wedge an-

gle of the available crystals and the large beam
waist at focus caused convolution of the resulting
fringing signals. Empirical correction was applied
as described in Appendix B.

The 1.91-pm beam was definitely not Gaussian.
The 1.06-pm beam had a depleted middle and the
nonlinear Raman conversion amplified the effect.
Despite this no detectable THG was seen from the
apparatus, even with the cell evacuated or pressur-
ized to two atmospheres, unless a sample (quartz,
fused silica, glass, etc.) was placed within the focal
region. This shows the validity of the focusing
considerations even for non-Gaussian profiles.

The details of the apparatus used to generate and
detect the third harmonic will be presented else-
where. ' Briefly, the singly Stokes shifted light at
1.9',m resulting from passage of a Q-switched
Nd + yttrium aluminum garnet (YAG) laser 1.06-
JMm beam through a pressurized hydrogen-gas Ra-
man cell was filtered with glass filters and focused
over a distance of 95 cm. ' A 10% single surface re-

IV. RESULTS AND DISCUSSION

In Fig. 2(a) the THG wedge fringes from a two
degree quartz y-cut wedge in vacuum with xxxx
polarization selection are presented. The least-
squares best fit of Eq. (2.17) to the data also ap-
pears. The offset of the minima of fringes from

zero is partially a consequence of the functional
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Fig. 1.
To test the accuracy of the derived parameters

and the formalism, the anisotropy of the THG
fringing was studied and found to be consistent
with the discussion of Sec. II B. High-quality
purely sinusoidal fringes were detected from an x-
cut quartz 2' wedge with yyyy polarization selec-
tion confirming Eb"' ——0 for this case. The same
held for zzzz polarization with either of the two
wedges. By normalizing with the zzzz signals the
ratio of (Eb"), a transverse case, to (Eb")», a long-

itudinal case, was determined to be 0.952+0.031.
From the fit parameters it was established that for
transverse cascading the second term in Eq. (2.11},
the bound-wave cascading term, is 7.4% of the
first. By using appropriate numerical values with
the assumption of a Lorentz local field, the longi-
tudinally cascaded term in Eq. (2.21) is seen to be
a factor of 110 smaller than in Eq. (2.11), thus
showing cascading and the details of the local-field
model to be insignificant for the longitudinal case.
It is important to note that this conclusion could

not have been reached in the absence of the trans-
verse study or prior knowledge of X' ', X' ', and

eq„, clearly, observation of good sinusoidal fringes
does not imply measurement of X' ' without a cas-
caded alteration. Then the agreement between the
cascading diminution of (Es )„as described in Eq.
(2.11) and the difference of (Eb")„ from (Eb")» as
described in Eq. (2.21) is good considering the ex-

perimental difficulties involved in the accurate
comparisons of sequential fringing patterns on two
different crystals and further confirms the interpre-
tation.

One of the objectives of this work was to gen-
erate a reliable standard for THG studies of molec-
ular hyperpolarizabilities being conducted in our
laboratory. The cascading observed here has pro-
vided a direct link to the highly studied second-
order susceptibilities. To obtain a calibration the
following literature data was considered. Choy
and Byer recently performed accurate absolute cali-

bration of d3& in LiIO3 and LiNb03. ' Using Mill-

er 6 formalism they generated recommended d
values for several materials at several wavelengths.

Combining their d3~ (Li103)x ) 06' ——7. 11X 10
m/V and Jerphagnon's' [d3~ (LiIO3)/
d»(SiOz)]~, 06„m ——15.5+0.8 yields

d~~(SiOz)~ ~ 06„——1.095 X10 esu. Also, com-

bining their d36(KDP)~ ~ 06&
——0.630X 10

m/V with Jerphagnon and Kurtz's'

[d&i(SiOz)/d36 (KDP)]a=i.06qm =0 77+0.04 yields

d ~& (SiOz)~, Ds&m
——1.158X 10 esu. The average

value will be adopted here, which results in
X' '( —2co, co,co)=2.25X10 esu at 1.06 pm. To
account for dispersion we also apply the Miller 6
formalism with published refractive index data' to
obtain X' '( —2', co,co}=2.08X10 esu for A,

=1.91 pm and, assuming no additional contribu-
tions in the nonlinearity mechanism for two ap-
plied frequencies (similar to the occurence of an-
tisymmetric components in two-photon transition
tensors), X~ ( —3co,2co,co) =2.18X 10 esu for
co=2mc/(1. 91pm).

Before the magnitude of X' ' can be determined
from the adopted values of second-order suscepti-
bilities, the effect of the local-field cascading must
be evaluated. Using a Lorentz field, L =4m/3 and

f=(a+2)/3, in Eqs. (Al 1) and (A12), one calcu-
lates that the corrections to convert macroscopic to
effective electric fields are —0.94% and —54. 1%
for the transverse and longitudinal fields in our ex-
periments. The resulting value of X' '/X' 'X' ' is

(+8.4+0.3) X 10 . Consequently, X~
( —3',co,co,co)~ ~ 9~„——(+3.81+0.15)X 10
esu not including errors in X' '. The sign is unam-

biguously determined by the fit and is consistent
with the reduction of signals when gases surround
the crystal if one recalls that positive signs are at-
tributed to their susceptibilities. ' We have used
parameters from the fit of Fig. 2(a} for the analysis
since in this case the determination of the ratio of
Eb" to Eb"' allows a precise determination whereas
the sequential polarization setting method used to
test these parameters and the anisotropy would
produce error limits larger than +50%%uo. We see
that the details of the local-field model are inconse-
quential for this analysis as is shown by the fact
that the Lorentz model causes only a 1% alteration
of the cascaded term of Eq. (2.11) which is only
7% of the direct term.

Our value of X' ' compares favorably with the
value determined by Hermann by THG. ' Howev-

er, in his work the calibration was made by com-
paring THG from one crystal with the wave mix-
ing of light of frequencies co and 2' where the 2'
light was produced in a separate quartz crystal, an
experiment which might be called intercrystal cas-
cading. No observation of the intracrystal effect
was made since he apparently only observed one
period of the THG Maker fringing. Referring to
our Fig. 2 one sees that a good fringe might result,
but the amplitude most likely would be incorrect
since there is variation from fringe to fringe. Also,
no mention is made of the more important effect of
the air on his experiment. Therefore, it is evidently
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a fortuitous accumulation of errors which brought
his value so close to ours. He reports 2.96& 10
esu, which we adjust to 2.54&10 ' esu using the
above values for X' " '.

A second calibration of the third-order suscepti-
bility of quartz exists. This is the work of Maker
and Terhune in which they performed a wave

mixing experiment. They used a ruby laser

and a stimulated Raman beam generated in ben-

zene (a ~g. 992 cm ') to calibrate
X'3'( —co3,co~,h~, —co2) relative to the Raman cross
section of benzene. Despite the fact that this quan-

tity is really a separate entity with difIerent contri-
butions from vibrational and electronic motions
than the THG susceptibility, ' their value,

~3»~1»~1» ~2) =4'cia li =4.0X 10 esn»
(3)

agrees very well with ours. It may be unwise to
draw conclusions about the relative importance of
these contributions based on their early work.
Also, we note the work of Yajima, who conclud-
ed that little dispersion of X was introduced in

similar wave mixing experiments due to vibrational
motion. However, this early work includes sizable
error bars which would encompass the deviations
above. In fact, he concluded that cascading of the

type observed here is unimportan. Since both of
the studies cited used colinear focused ~& and co2

beams and the processes were non-phase-matched,
the accuracy of the results are suspect due to air
contributions to the overall generation just as for
THG. However, coherence lengths for this wave

mixing may be many tens of centimeters in gases
so the effect would depend on the details of focus-

ing.
Another determination of the third-order non-

linear susceptibility has been made in the conven-

tional electronics frequency region by Gagnepain
and Besson. Using (3X10 )(3X10 )"e'"'(MKS)
=X'"'(esu) to convert the nth order nonlinear

dielectric constant reported by Gagnepain and Bes-
son in MLS units to the nth order nonlinear sus-

ceptibility in esu units, some of their results are
=6.5+10 esu, X'

X3333—1.2 )& 10 esu. Care was taken to exclude

piezoelectric and electrostrictive effects. Even so it
is clear that nuclear motions dominate the low-

frequency nonlinear polarization.

Finally, wc note that Levine has successfully ap-
plied Phillip's bond-charge concepts to calculate
some second- and third-order susceptibilities.
Considering the atomic size difference in Si02 and
the mechanism described in Ref. 25 involving this
difference which produces additiona. contribution

to X' ', it would be interesting to sce the ability of
the model to fit the linear, quadratic, and cubic
electronic susceptibilities which are now known

with a high degree of accuracy.

V. CGNCLUSIQN

Cascading through the intermediate bound and
free second-harmonic waves has been observed in
the non-phase-matched third-harmonic generation

by o;-quartz. The intermediate free-wave cascading
was observed directly since it creates a nonlinear
polarization wave at the third-harmonic frequency
which has a wave vector different than that de-
scribing the clirect polarization. The latter is due
to true third-harmonic nonlinearity bui in addition
has a contribution from the cascading involving
the bound second-harmonic wave. The interference
of both 3~ bound waves resulting from these polar-
ization waves with the free harmonic wave was ob-
served in a wedge-fringe experiment. %'hen proper
treatment of the atmospheric interference, which is
a major CA'ect, was realized, a calibration of the
third-order susceptibility relative to the well-

studied seconcI-order susceptibilities was performed.
Also, the presence of the cascading term involving
the bound second-harmonic wave was confirmed by
use of the symmetry requirements of the space
group on the various susceptibility tensors. The
problem of cascading through the local fields was
seen to be minor when approximated with Lorentz
fields.

APPENDIX A

In this appendix we wish to give a simple ac-
counting of local and macroscopic fields which
results in the necessity to explicitly apply local-
field cascading to the macroscopic field equations.
Rigorous treatment has been given by Flytzanis
and by Bedeaux and Bloembcrgcn. However, the
simpler notation of Ducuing will be used for this
problem. This treatment presents the basic physics
but removes the complicated anisotropics covered
by the tensorial treatment with its concomitant
non-Abelian algebra.

The microscopic field (E„) acting on the elec-
trons of the material differs from the macroscopic
field E„due to the polarization field:
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where I.„is influenced by electron locahzation and

theoretically by cavity shapes or dipole summa-

tions. Since P„ is expressed in both microscopic,

P.=(X„"') (E„)
and macroscopic terms,

(A2)

(A3)

which requires

(Eq ) =fq [Es +(I-s ~f, )(PNz.s)q ]
on retaining the definition of fz„ in linear terms
from (Al). Using (A6a) in (A5),

and utilizing the formal condition (A4), we have

(PNi.s)q~=Pq~ Xs~Es~=fq~(P—Nr. )q~ .(1)

This is the familiar result that bulk susceptibilities
are amplified by an extra local-field factor caused

by the linear local response to the additional non-

linearly generated local field I z„(PNi s )&„, of (A6b).
Examples are, for SHG and THG,

the relation between (X„"') and X„"'is closed.
Consideration of nonlinearities up to third order

result 1Q harmonics QN, g =0,1,2, 3. Formally, onc
writes the total polarization density for the macro-
scop1c case

(1)
&q~=&q~Es~+ (PNis)s~.

and for the microscopic case

Ps =(Xq")m«sm)m+(PNL)s~ .

(PNi.s)~„ is the macroscopic nonlinear polarization
to be used in Maxwell's equations. It is not the
simple summation of local nonlinear polarization

(PNi )z„, resulting from local fields interacting non-

linearly through thc Imcroscopic susccptibi11t1cs

(hyperpolarisabilities) unless I =0. This situation
arises due to the local-field contributions from

(PNis}. One expects

porating this local-field cascading, and recognize
the bracketed factor of (A6b) as the effective field

(Es„},rr to be applied (self-consistently) when deriv-

ing the P~I s from macroscopic fields. %e adopt
this viewpoint. Only when E&„ is not generated by
a phase-matched interaction and is not an applied
field will appreciable error result from its neglect.
This is the case for cascading of the type we ob-

serve in THG of quartz. The two cases of interest
for cascading in THG, transverse and longitudinal

(PNis)2„, are treated here by inclusion in the
bound second-harmonic wave.
TfRnsvcl sc:

«b }.ir=[1 «2 ~f2—)«2 &)~4~]E—b"

Longitudinal:

(Es"),ir [1 (I-2——„lf2—„)e2 l4~]Eb"

%C emphasize that the value of EI,
" is not

changed. (Eb"),n is only applied for the generation
of I' ".

APPENDIX B

Thc problcID of convolut1on of THG sigQals can
bc qu1tc complicated in RnisotI'opic crystals Rnd

with a fundamental beam which is multimode.
Particularly, we were mindful of the fact that beam
profiles change in a lens wave guide if the beam is
not an eigenmode such as Hermite Gaussians.
Because our fundamental beam was not filtered to
make it single mode and because the precise nature
of the multimode structure was not known, we
adopted an empirical deconvolution procedure.

First, the focusing distance was adjusted to give
optimum fringe contrast for a 2' BK-7 glass wedge.
This was, in principle, a compromise between re-

duced beam waist, depth of focUs, Rnd chang1ng
beam profile. Next, since the theoretical plane
wave or near-field fringe patterns are simply super-
positions of sine waves, some simple convoluting
profiles g(x ) were used in

Xz =f2~(X2~)mf~f~(2) (2)

X'3"=fi (X'3") f f f .

(A9) S(x)= f g(x' —x)sin (2Px')dx'

= Ig(x' —x)—,[1—cos(Px')]dx' . (Bl)

The difficulty which arises is that the nonlinear
local responses involving this additional local field
have not bccn included. Practically, onc might
choose to avoid the complicated formulas of Flyt-
zanis, which produce effective susceptibilities incor- (B2)

Some simple closed-form results for different pro-
files are as follows.
Rcctanglc:

S(x)=—,[1—sine(Pa)cos(Px)] .
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Cosine:

S(x ) = —, [1—cos(Pa )

X[1 (2—Pa/tr) ] 'cos(Px)] . (B3)

Circle:

S(x ) = —, I 1 —J~ (Pa )[Pa /2] 'cos(Px ) ] . (B4)

Hollow circle:

S(x ) = —, I 1 —[(a —c )P/2]

g[J, (pa) —J~(pc)]cos(px)I . (B5)

Here a is the half-width for the first two profiles
and is the larger radius for the second two; c is the

inner radius for the last. J~(x ) is a Bessel function
of the first kind.

%hile all of these model profiles give drastically
different magnitudes of the fringe contrast for fixed

pa, the agreement of relative ratios as p is scaled
are remarkably constant. Therefore, we ran a
number of wedges with different wedge angles and
of different isotropic materials including a very
small angle wedge which gave a near unity con-
trast ratio which shows that beam profile changes
are unimportant as the model requires. The simple
fringe patterns were fit by the computer and the
contrast ratios were found to follow this "univer-
sal" curve. The data reported in this work were
also scaled by this same curve.
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