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Effects of impurity scattering on spectral properties of a two-dimensional electron gas are

investigated within the Born approximation. In particular, the zero-temperature momen-

tum distribution function is obtained and compared with the corresponding function at fin-

ite temperature without scattering. This enables one to conclude that impurity scattering

can be as important as finite temperature in modifying electronic spectral properties. The

importance of the dimension in such a calculation is pointed out, and the relevance of these

results for silicon inversion layers is discussed.

I. INTRODUCTION

Recently it was shown by Stern' that the tem-

perature dependence of the low temperature (l —50
K) resistivity of n-channel inversion layers on Si-

Si02 metal-oxide —semiconductor structures can be
quantitatively explained on the basis of a finite-

temperature modification of the electron screening
of charged impurity scattering at the Si-Si02 inter-

face. This is significant, since earlier theoretical at-

tempts to understand the low-temperature mobility

of these systems on the basis of phonon scattering
alone gave results whose temperature-dependent

parts are much smaller than those experimentally
observed. The electronic polarizability function is

mainly affected by finite temperature for wave vec-

tors around 2k+, where kF is the Fermi wave vec-

tor. This, as Stern explicitly demonstrates, gives rise

to a significant temperature dependence in mobility
even for low temperatures T « T~, since the 2k~
scattering of electrons across the Fermi circle in two
dimensions is a very effective Coulomb scattering
process for transport properties.

Stern's calculation taking into account the finite

wave vector, finite temperature screening of
Coulomb, and surface roughness scattering (but no
phonon scattering) is in good quantitative agreement
with experimental results. One effect not included
in the calculation, however, is the modification of

screening by impurity scattering itself. Impurity
scattering acts somewhat like temperature by pro-
viding a broadening mechanism which smooths out
the sharp discontinuity in the Fermi distribution

function at k = kF. This rounding is then responsi-
ble for modifying the screening function around
k = 2kF. Thus, scattering'is likely to round the

sharp corner in the two-dimensional screening
parameter at very low temperatures in a way similar

to the finite-temperature effect itself. It was already
noted in Ref. 1 that this could modify the calculat-
ed temperature dependence of the resistivity, so in

view of the excellent agreement between the calcula-
tion and the experimental results it becomes impor-
tant to investigate the effect of impurity scattering
on electronic spectral properties and to calculate the
modification of screening produced by scattering.

In this paper we take the first step in that direc-
tion by calculating the effect of impurity scattering
on the momentum distribution function n (k) of a
completely two-dimensional electron gas (2DEG)
comparing the change in n (k) particularly around
k = kF produced by scattering and finite tempera-
ture individually. Thus we do not consider the real-
istic quasi-two-dimensional inversion layer as was
done in Ref. 1. Our intention here is only to com-
pare the relative importance of impurity broadening
and thermal broadening in smoothing the Fermi dis-

tribution function of a 2DEG for realistic numbers
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of electron and impurity density. We find that the
impurity scattering has a rather significant effect on
the distribution function, and its effect on screening
probably should not be neglected in an accurate
mobility calculation.

A calculation of the effect of impurity scattering
on the electronic polarizability of a three-
dimensional electron gas was carried out by de
Gennes. The difference between two and three
dimensions makes a straightforward application of de
Gennes method impossible in two dimensions be-

cause of divergence difficulties. We shall indicate
how a divergence-free calculation can be carried out
in two dimensions. Even though this divergence
problem is of a somewhat technical nature, it makes
the study of the effect of scattering on screening a
more difficult problem in two dimensions than in

three. This is why we restrict ourselves in this pa-
per to the effect on the single-particle distribution
function and leave for future study the screening
problem which involves calculating two-particle
correlation functions. M(k,ico„~co+i r}) = b, (co) —i 1 (co) (3)

The electron-impurity interaction u should be the
screened Coulomb interaction in d dimensions.
Since impurity scattering affects the screening of the

system, the problem should really be solved in such
a way that screening and the scattering potential are
determined self-consistently. Such calculations '

have been carried out for a 2DEG under a strong
magnetic field. For the problem under considera-
tions this would be a difficult task. Here we only

go to first order and follow de Gennes in assuming
a short-range model potential for the electron-

impurity interaction. We shall establish that this

model is rather good for the system we are investi-

gating. A short-range delta-function potential in

real space implies a wave-vector-independent u in

reciprocal space: u (q) = C, where C is a constant
parameter at this stage.

Using this interaction in Eq. (1), we get the fol-

lowing real and imaginary parts of the (retarded)
self-energy:

II. THE DISTRIBUTION FUNCTION
IN BORN APPROXIMATION

The self-energy of electrons in dimension d due to
the electron-impurity interaction alone is given in

Born approximation by

M(kico„)=N; I ~u(k —p)
~(2')

1"(co) = '

mNc/C
/ H(co+ p)[2m (co+ p)]'~ in 3D

2m

mNIiC
i

2
H(co+ p) in 2D

(4)

X Go(p, ico )

1
Gp(k, ico„)=

l co~ —k /2' + p
where p is the chemical potential of the system and
we have assumed a simple parabolic energy disper-
sion.

(2)

where Go is the noninteracting electronic Green's
function and u is the static electron-impurity in-

teraction. iV; is the impurity concentration per unit
d-dimensional volume. The impurities are assumed
to be randomly distributed fixed point charges, and
in Eq. (1) ensemble averaging over all configurations
has been carried out. We take A = 1 throughout
this paper. The noninteracting Green's function Go,
defined at odd imaginary frequencies
i co„=(Zn + 1)mi /IP, where P = (k& T), is given

by

&(co) = '

N;/C[r 2

dp
277 o co+ p —p /2m

Ni[C/
co+ p —p'/2m

in 3D

in 2D

where H(x) is the Heaviside step function.
The short-range model for the interaction makes

the self-energy independent of wave vector. Two
features of the self-energy are evident from Eqs.
(3)—(5): (i) The imaginary part or broadening I (co)
is different in two and three dimensions. I is essen-
tially constant in 2D whereas it increases as the
square root of energy in 3D. (ii) The real part of
the self-energy h(co) is "ultraviolet" divergent in
both cases; the divergence is linear in 3D and loga-
rithmic in 2D. This divergence is of course a result
of the short-range model potential. For very large
wave vectors screening must be ineffective and u (q)
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must fall off as q' for q ~ oo, thus making the
integral for b, (co) —f dp p

' convergent for
both d = 2 and 3.

In 3D, de Gennes circumvented this artificial
divergence by subtracting and adding the
b, (co+ p = 0) contribution to the self-energy.
Clearly

00 p2
b,o ——b, (co+ p, = 0) ~ f dp

p /2m

2m (co+ p)
2

co + p —p /2p72
for 3D,

smaller than q, the self-energy is still independent of
k, and we get from Eq. (1)

Ni fCi'
b, (co) =

2

is the linearly divergent term giving the shift of the
whole band, and we have

mN;
~

C
~

to+ p —q, /2m
5(~) = — ln

2%. 6)+ p
for 2D.

mN;fCi
b, (co) = b,o+

X "dp +",
0 . ~ + p p /2ppg (6)

mN;/Cf
&(o~) = ~o+

co+ p
p ( co + p, —p /2m )

where the integral is now logarithmically divergent

for p ~0. Instead we use a cutoff procedure to
avoid the "ultraviolet" divergence in (5): We as-

sume that u ( q ) vanishes for wave vectors q larger
than some (large) cutoff value q„i.e.,
u(q) = CH(q, —q). For wave vectors k much

where the integral is now covergent and the diver-

gence hidden in the physically irrelevant h0 term
can be neglected in further considerations. This is
the crux of de Gennes' argument, and he could then
solve the problem even for the polarizability.

However, this technique does not work in 2D,
since subtraction of b,o = h(co + p = 0) in Eq. (5)
introduces an "infrared" divergence:

Comparing Eqs. (6) and (8) we see that they are
equivalent in the limit of q, ~ oo with A0 ———q„
so that the cutoff procedure is completely equivalent
to de Gennes' renormalization method as we expect-
ed on physical grounds. On the other hand, for two
dimensions the cutoff gives a convergent result in

contrast to the renormalization in Eq. (7).
We can now obtain the spectral weight function

p(k, co) for the 2DEG from the relation

p(k, co) = —21mG(k, ice„~co+i'), ri~0+
(10)

where G(k,i co„)is the interacting Green s function.
The latter can be obtained from Dyson's equation:

G(k,iso„)= „Go '(k,iso„)—M(k,ice„)]

From Eqs. (10), (11), and (3) we have

p(k, co) = 2I'(ri))

[co + p —k /2m —b, (co)] + I (co)

(12)

Settings = mN;
~

C
~

/2 we obtain from Eqs. (4)
and (9):

p(k, co) = 2AH(co+ p
k co+ p —q, /2m

co+ p — +3 ln
2Pl co+ p

'2

(13)

The momentum distribution function can be found by summing p(k, co ) over the energy:

n(k) = f p(k, co)f(co) (14)

where f(co) = (1 + ei )
' is the thermal weight factor for fermions. In the zero-temperature limit we finally

get
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n(k) = —J H(co+ p, )d
o)+ p —q, /2m

m+ p — + —ln
2m 7T N+ p

2

+A H(co+ p) . (15)

The logarithmic singularity for co = —p and the possible bound states for co & —p suggest that for the nu-

merical evaluation -we calculate

2

n(k) =1 ——I d
co+ p —q, /2m

co+ p — + —ln
2m co+ p

(16)

where we have used the relation

pk, co = 1

III. RESULTS AND DISCUSSION

In order to evaluate n (k) numerically from Eq.
(16), we need to know p, q„and
3 = mN;

~
C

~

/2. The chemical potential p is ob-
tained by requiring that the total number of elec-
trons

d k
1V, =g n k

(2n.)

be equal to the given density, where g is the degen-

eracy factor. The parameters C and q, are obtained
from the long-wavelength statically screened
Coulomb interaction in two dimensions,

presented below we have used these values, taking
e; = e and evaluating n (k) by numerical integration
of Eq. (16).

In Fig. 1 we show our results for the distribution
function n (k) as a function of k/kF for N, = 10
cm and E; = 10" cm . The curve T = 0
shows the zero-temperature Fermi distribution,
n (k) = H(kF —k). The curve denoted nq is the
result of Eq. (16), i.e., the zero-temperature distribu-
tion function in the presence of impurity scattering.
For comparison, we also depict the finite-
temperature Fermi function

nr ——1/I 1+ exp[(k /2m —p)/k~T]I

for a temperature T~ equivalent to the broadening
produced by impurity scattering, i.e.,

(20)

For the parameters chosen Tz ——5.7 K. This is a
ee;

2e (q + qrF)
(17)

where e; is the impurity charge; Y is the static back-
ground permittivity, and q&F, the two-dimensional
Thomas-Fermi wave number, is given (for q & 2kF)
by

N; =lO~~ cm ? T = 5.7 K

Ns=IO' cm
1.0—

me
qTF =8

4m'

A typical wave vector q in Eq. (17) is of the order
of the Fermi wave vector kF ——(4nN, /g)' For an.
n-type inversion layer on Si(100) with g = 4,
m = 0.19m„Y=7.8eo, q&F is much greater than

kz for normal values of N, (1 —3 X 10' cm ) in

the metallic regime. This enables us to neglect the q
dependence in Eq. (17) and take the long-
wavelength limit

ee;
u(q) =-

2&q

Within this model a reasonable value for the cut-
off wave vector q, will be q~F. In the results

—0.5—

0
0

I

0.5 I.O I.5
k k

FIG. 1. Momentum distribution function n (k) of a
two-dimensional electron gas shown as a function of
k/kF, where kF is the Fermi wave vector. The curve
denoted T = 0 is the zero-temperature no-scattering
result; the one denoted nq is the zero-temperature result
with impurity scattering; the curve labeled n& is the
equivalent finite-temperature distribution function.
N =10' cm andN;= 10" cm
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low temperature compared with the Fermi tempera-
ture Tz which is 73 K for N, = 10' cm, and it
turns out that the chemical potential is not much
different from the Fermi energy of the noninteract-

ing system.
From the figure we conclude that the scattering

effect on the single-particle distribution function is at
least as important as the equivalent finite-

temperature effect itself. We would therefore expect
that the contribution of impurity scattering to
rounding the sharp corner at 2k+ in the two-
dimensional polarizability is as important as the fin-
ite temperature itself. Thus one should include
scattering effects in screening along with the finite
temperature in doing an accurate mobility calcula-
tion for inversion-layer carriers.

In this paper we have considered the simplest
short-range model of electron-impurity scattering
that is free from divergence and have shown that
scattering effects are comparable with finite tem-
perature in modifying the single-particle spectral
properties of a 2DEG. We have pointed out the
necessary difference between our two-dimensional
calculation and the earlier work of de Gennes on
three-dimensional systems. An immediate improve-
ment of our work would be the inclusion of the
correct statistically screened interaction for u (q)

rather than the short-range model. This can be
done without much difficulty within the random-
phase approximation. But in view of the large
screening wave vector q~p the result of such a cal-
culation cannot differ much from the results report-
ed here. We are presently investigating the more
relevant question of the effect of scattering on
screening itself in two dimensions.

Very recently Kawaguchi et al. have measured
the temperature dependence of mobility in silicon
(100) n-channel inversion layers in the temperature
range of 1.5 —70 K. They report mobilities having
a power law behavior closer to 1/T rather than the
1/T dependence predicted by Stern' and observed

by Cham and Wheeler. This discrepancy is sugges-
tive of the role played by impurity scattering in

modifying the screening and consequently in affect-
ing experimental mobilities, providing additional in-

centive for studying the role of impurity scattering
on spectral properties of 2DEG.
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