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The electronic structure of a vacancy in A1 has been studied using a sdf-consistent
pseudopotentia1 scheme, in which the environment of the vacancy was simulated by a su-

pcrcc11 containing 27 atomic sites. The chaigc-density perturbation duc to the vacancy
was found to be quite short ranged, indicating that the supercel1 used was large enough to
CAectively isolate individual vacancy potentials. At the center of the vacancy, t4e charge
density was 0.27 electrons per atom; this value is compared with the results of previous
calculations. The local densities of states at a vacancy and its first- and third-nearest-
neighbor shells werc investigated, and evidence for a vacancy-associated resonance state
was found at -0.3 Ry below the Fermi energy. Finally, the vacancy-formation energy
was also calculated in the ideal (unrelaxed) structure using the G-space forma1ism for cal-
culating total energies. A value of 1.9 CV was obtained; this is 2.9 times the experimental
value. The effects of lattice relaxation, the supercell method, and defect potentials on the
electronic structure and the resulting formation energy are discussed,

I. INTRODUCTION

A knowledge of tbc detailed electronic structure
of atomic defects in metals is of considerable in-
tcI'cst for IDany Qlctal phys1cs applications. IQ

spltc of w1dcsp1'cad interest 1Q thc ploblcID, I'ca11st1c

calculations have been scR1cc. Two IDcthods have
been widely used in dealing with defects in simple
metals, (i) jellium calculations and (ii) the pseudo-
potential approach with linear screening. The
I'csults of thcsc calculat1ons have bccn summarized
Rnd discussed by Evans and Finnis. ' Their work
shows that both methods are inadequate for atomic
dcfcct, calculations 1Q 8 polyv81cnt metal w1th high
clcctfon dcns1ty such 8s aluminum. Thc IDcthod of
pair potentials has been applied to the study of de-
fects 1n 81UID1QUID by JRCUcc1 et QI. They conclud-
ed thai rescreening cAccts giving rise to three-body
count for difFcrcnces between their calculated value

of thc vacancy-foITARtion cncI'gy Rnd thc11 cxpcn-
mental value. A completely realistic self-consistent
calculation of the electronic structure of the vacan-

Cy 1Q Al has, to Our knoW1CdgC, QCVCr bCfOrC been
attempted, . The salient features of a realistic defect
calclllatlo11 are (I) self-coIlslste11cy of tile poteIltlal,
Rllow1ng foI' proper clcctron1c scrccn1ng of thc de-

fect, as well as for structural relaxation around the
defect and (ii) accurate treatment of the electronic
structure of the host metal.

Two thcoI'ct1cal approaches have bccn dcvclopcd
which are capable of incorporating these features in
a defect calculation, the supercell and the
Grccn s-funct1OQ IDcthods. Thc augmented-planc-
wave (APW) calculation in Al by Gupta and
Siegd' is the only previous application, to our
knowledge, of the supercell method to lattice de-
fects in metals. However, this calculation was not
self-consistent, a clear limitation when treating the
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vacancy. Slnghal Rnd Callaway have calculated
the energetics of vacancy defect formation in Al by
8 Green 8-fUnctlon method, but, also ln 8 non-sclf-

consistent manner. The electronic structure of
various impurities in Cu have been calculated by
Zeller and Dekrichs using a KKR (Korringa-
Kohn-Rostoker) Green's-function scheme, which

was partially self-consistent in that the charge den-

sity ~i~hin the defect muf5Q tin was treated self-

consistently. Ho%'ever, the electronic redistribution
in neither the interstices nor the neighboring muf-

fin tins was taken into account.
()wing to its Simplicity, thc supcfccll appfoRch 18

very- appealing. Its major disadvantage is that sig-
nificant dcfcct-%'Rvc-function ovcflaps can bc
present that may give rise to spurious defect-
interaction effects. The total charge density and

the resulting potential, however, are considerably

less affected by such effects. The Green's-function

method treats a truly isolated defect, and is superi-

or to the superccll method in that respect. Howev-

er, the calculation of the total energy of a system is

Qot 8 81IIlplc task ln thc Green 8-fUnctlon Rpploach,
whereas it is relatively simple in the supercell

method, once the eigenvalues and cigenfunctions
have been determined. Ouf lntcI'cst ln calculating
formation cncfglcs Gf RtoIIllc defects ln IIlctals

prompted us to choose the supcrcell method for the
present work.

In this paper we present the results of calcula-

tions of the electronic structure of a vacancy in A1

using 8 self-conslstcnt pscUdopotcntlal scheme.
Self-consistency in the present context implies the
self-consistent electronic response to a given struc-

tural model. I.attice relaxations have not been

dealt with completely in the present work, but they
have been estimated and a scheme for self- consis-
tently evaluating t1M I'claxatlons ls presented.

To our knowledge, this is the first self-consistent

calculation of this type for defects in metals. The
method is not restricted to Al; it can also be readi-

ly generalized to treat transition metals. Alumi-

QUIQ was chosen Rs 8 test case bccaUsc of thc
availability of a host of relevant and realistic exper-
imental data, and the simplicity of its electronic
structure.

The remainder of thc papcf 18 GI'gan1zcd Rs fol-

lows. In Scc. IJ the self-consistent procedure and

the method fof evaluating the total energy are re-

viewed. In Sec. III the results for the electronic
stfuctufe and thc fofIIlatlon cnclgy Rfc pfescntcd
and discussed, and in Sec. IV the adequacy of the
method Rnd fufthcf improvements Rfc discussed.

II. CALCULATIONS

A detailed description of thc self-consistent pscU-

dopotential scheme applied to a superlattice of va-

cancies in Si has been presented elsewhere. In this
section wc glvc 8 brief dcscriptlon of thc pfescnt
calculations, which were camed out both I
defect-free Al and in Al containing a regular array
of vacancies. The infinite Al crystal was divided
into large face-centered cubic (fcc) unit cells, each
containing 27 atoms for the perfect lattice, or 26
RtoIIls plus 8 vacancy fofIIllng 8 vacRncy supcI'lat-
tice. Test computational runs with smaller super-
cell sizes indicated that a cell of at least this size is
Qccdcd to pfovldc thc csscntlal physics of tlM sys-
tem. In this supefce11 CGQGgufation nearest-
nclghbof vacancies have common thlfd-ncRlcst-
neighbor Al atoms. Hence, to the extent that the
pcftuI'baton 0%'lng to thc vacancy docs Qot extend
beyond second-nearest neighbors, the supcrcell used
cRQ effectively isolate thc vacanclcs.

Thc self-conslstcnt computational 100p was ini-
tiated %ith an empirical potential fitted to crystal-
line pfopcrtlcs. This potcntlal was of tlM form

U, p(G)=&, p( ( G
~
)S(G), (l)

where 6 is a reciprocal-lattice vector and thc
StfUCtufC faCtof

S(G)=(1/X)+exp( i G ~;—)

describes the positions v; of the N aluminum
atoms in the supercell with or without vacancies.
The form factors Vamp( I

G
I

) were derived f«m a
continuous lntcfpolatlon of tlM foI'IIl

Q)(g —g2)
~emp(9)=

exp[a 3 (q
2 —g~)]+ l

The four parameters a; are given in TRMC I.
Since periodicity is maintained in the system %ith
defects by the usc of a superlattice of vacancies, in-

stead of thc more natUI'Rl iandoIIl distribution,
standard pseudopotential methods could be applied
to obtain the band structure e~ and the wave func-
tion Pk(r ), where k represents both the wave vec-

tor k and the band index n. The total valence
chaI'gc density %'Rs tlMQ cvaluatcd ffom thc cGID-

puted wave functions by summation over the occu-
pied states as
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The Hartree screening potential and the Hedin-

I.undqvist form of the exchange-correlation poten-
tial were, obtained from this charge density. The
total screening potential was added to an atomic
Al + ionic potential, U;»(6) = V;,„(

~

6
~

) S(6), to
form the total input potential for the next iteration.
This process was iterated until the potential was
self-consistent. For the ionic potential, a local ap-
proximation of Rn Abarcnkov-Heine Rtomic model
potential was fitted to the following four-parameter
model

b) 4V;,„(q)= (cosb2q+bs)exp(b4q ) .
2

The results of a self-consistent bulk band-structure
calculation using this potential were in good agree-
ment with those of empirical band-structure calcu-
lations. The parameters are presented in Table I.
Having been fitted to experimental energy bands,
this potential describes wave functions only ap-

a] ——0.611 99
a2 ——1.88
a3 ——0.65
ag ———0.30

b] ———0.77S 98
b =1.04680
b3 ———0. 13389
b4 ———0.029 44

proximately. In Sec. IV we discuss the incorpora-
tion of a first-principles ionic pseudopotential,
better suited for total energy calculations, into the
present scheme.

To calculate the total energy, we applied the re-
cently developed G-space formalism. ' The
density-functional expression for the total energy
associated with the pseudopotential eigenvalue
equation is

TABLE I. Form-factor parameters for the empirical
Al psendopotential [Eq. (2)] and for the ionic Al'+ pseu-
dopotential [Eq. (4)].

Z2OCC

Etot =gek ——,ff, d r d r '+ fp( r )[e„,(p( r ) ) —V„,(p( r ) )]d r +gg-
+m +n

where ek are the one-electron eigenvalucs and the
summation in the first term runs only over occu-
pied states. The Hedin-I undqvist form of the local
exchange-correlation potential V„, is related to the
cxchangc-correlation cncI'gy 6„c by

V„,=e„,+p- (6)
dp

The last term in Eq. (5) is the ion-ion interaction

energy with Z the ionic charge. The momcntum-

space expression for E„„the total energy per unit

cell, developed by Ihm, Zunger, and Cohen, ' is

(1)
OCC

Cy max

~tot gek g Vco t(6)p(6)
k O~0

(1)
&m.x—g V„,(6)p(6)

max

+ X &~«)p«)+&Z+Enwatd*

%'hcic Vcol i is thc electron-electron repulsion term.
The terra uZ is a correction duc to the pseudona-

ture of the potential and measures the repulsiveness

of the potential,

SmZa= lim V;,„(6)+

The term EE„,~d is the Ewald core-core interaction
energy. '1 The

~

G
~

=0 term is excluded from the
(i)sum over Vc,„t(6), and G,„denotes the summa-

tion limit.
The accuracy of the calculated total energy

depends strongly on thc accuracy of both the cal-
culated charge density Rnd the eigenvalue spectra.
In the remaining part of this section w'e discuss the
convergence properties of the various quantities
entering the total energy expression. The computa-
tional conditions which govern the precision of the
calculated total energy are (i) the number of plane
waves (with cutoff 6,„) used to expand the crystal(2)

wave functions, (ii) the number of Fourier com-
ponents (cutoff 6,„) used to expand the potential(3)

and cllal'gc dcflslty, (111) tllc llu111bcr of k points
used to sample the Brillouin zone (BZ) for comput-
ing the charge density [Eq. (3)], and (iv) the toler-
ance criterion for self-consistency. Finally, in the
total energy equation, the various terms have to be
stablized with respect to the cutoff 6,„. The con-
vergence parameter G,„was varied until the(2)

eigenvalues were stabilized to within IIO Ry
(-0.01 CV). This required about 500 plane waves

corresponding to a kinetic energy cutoff' of
El ——

~
Gm, „~ =4.6 Ry; an additional -500 plane

waves werc included via the Lowdin perturbation
scheme. '
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TABLE II. Components of the total energy per atom of a 27-atom Al supercell with and
without a vacancy. All energies are given in Ry. The atomic volume is the same in both
systems, V, denotes the screening field ( Vc,„~+V„,). The vacancy formation energy is ob-

tained by taking the difference in the total energy per atom and multiplying by 26. The
prime on a summation indicates that the

~
G

~

=0 term is excluded.

Quantities Vacancy

2
g'Vc, g(G)n(G)

ge„,(G)n(G)

g V„,(G)n(G)
QV—,(G)n(G)

AZ

EEm aid

Etot

—0.6269

0.0582
—1.6239
—2.1090

1.9926
1.2755

—5.3109
—4.2355

0.14 (1.9 eV)

—0.6026

0.0070
—1.6171
—2.1000

2.0861
1.2755

—5.3898
—4.2409

In aluminum, the variation in charge density
Rcfoss R cell is fclat1vcly smooth compared to tran-
sition metals, and thc number of plane waves nccd-
ed for reasonable convergence of the screening po-
tential is not too large. We found that about 1400
plane ~aves were needed to stabilize the various
screening potential components to within 10 Ry.
Unlike that in a semiconductor, e.g., Si, the total
charge density in Al is not well represented by the
charge density from a single symmetry point, The
nature of the wave functions varies suAicicntly
across the cell to warrant a finer sampling of the
BZ. We used ten fcc special k points to compute
the charge density. The next lower number of two
special k points proved to be insuAicicnt in provid-

ing the required accuracy; any finer sample proved
to be prohibitively expensive. The difference in

chRfgc density between two and tcn special k
points was as much as 10%. The input potential
for the nth iteration was taken to be a weighted
sum of the input and output potentials of the
(n —1)th interaction, to damp out fluctuations aris-

ing from the divergent nature of the small-6 com-
ponents of the Hartree and ionic potentials. The
steps of the self-consistency procedure were repeat-
ed until thc subsequent output potentials were sta-
bilized to within 10 Ry. The number of itera-
tions needed for this stability was —10. For the
total energy summations, it was found that about
1600 plane wRvcs wcfc nccdcd to stab111zc RH thrcc
components of the screening 6eld in Eq. (7) to
within 10 Ry. The repulsive energy was ob-
tained from thc G=o value Qf the 1on1c potcnt1al
Rnd thc Ewald cncfgy was computed as a function

of thc cell volume, valcncc chaI'gc, Rnd Rtomic po-

sitions. In order to get a reasonable result for the
vacancy-formation energy, extreme accuracy is
needed in each of the terms entering the total ener-

gy expression (cf Table D ). ln the following sec-
tion we present our results for the charge density,
local density of states, and the formation energy of
a vacancy in aluminum.

HI. RESULTS

The dectronic structure of the vacancy was cal-
culated in the unrelaxed lattice structure. The
self-consistent valence charge density in the (100)
plane is shown in Fig. 1. A necessary condition
for simulating noninteracting defects is that the
charge density away from the vacancy site resem-
bles the bulk Al charge density. A plot of the
difference between the charge density in bulk,
defect-free Al and that in Al with a superlattice of
vacancies (Fig. 2) iHustrates the predominantly lo-
cal nature of the perturbation, but also gives evi-
dence for some, quite subtle, nonlocal effects.
These are seen most clearly in the regions inter-
mediate between nearest-neighbor vacancies in the
supercell. The magnitudes of these effects, al-
though small [see Fig. 2(b)j, are clearly affected by
the size of the present superccll. W'hilc such effects
could yield a sigmficant contribution to the calcu-
lated energy of the defect system described by the
supercell, their perturbtaion to the calculated elec-
tronic structure is seen to be minimal.

It is interesting to compare the charge-density
calculated here with those resulting from the self-
consistent jellium calculations of Manninen and
Nieminen and the non-self-consistent APT calcu-
lations of Gupta and Siegel. The AP% value for
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C&

co

FIG. 1. (a) Valence charge density (p) g the supercell
volume (Q) around a vacancy in Al on the (100) plane
in atomic units; the vacancy sits at the center of the
plane. In atomic units, the total valence charge in the
supercell is 78; the supercell volume Q=27QO, where Qo
is the primitive unit-AH volume for Al. (b) Contour
plot of the charge distribution shown in (a). The vacan-
cy is marked by V and the atoms by + .

the charge density at the center of the vacancy nor-
malized to the supercell volume is 1.87)& 10 a.u.
(0.21 electrons per atom) as compared to the
present value of 2.48' 10 a.u. (0.27 electron per
atom). The jellium result for the charge density at
the center of the vacancy' is 4.12 X 10 a.u. (0.46

o~
-2

(b)
FIG. 2. (a) Difference in pQ between the lattice

without vacancies and the supercell with vacancies locat-
ed in the center and corners of the (100) plane, in atomic
units. (b) Contour plot of (a) showing only the central
13 atom sites; the atom sites are denoted by + and the
vacancy by V (cf. Fig. 1).

clcctrolls pcl' atolll). Thc 111clus1011 of t11c actual
ionic potential thus causes a significant change in
the charge density; the effect of self-consistency is
smaller. It is interesting to note further that Man-
ninen and Nieminen, '

by including an average
variational potential in conjunction with their pure
jellium (a spherical solid model) calculation, were
able to bring their value for the charge density at
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the center of the vacancy down to 2.5& 10 a.u.,
in excellent agreement with our result.

While the range of the charge-density redistribu-
tion from the vacancy shown in Fig. 2 does not
preclude overlap of individual state wave functions
of neighboring vacancies in the supercell, it
nevertheless does indicate that the supercell used
was large enough to effectively isolate the vacancy
potentials and the calculated electronic structure of
the vacancies. Spherical averages of the various
componets of the vacancy potential are shown in
Fig. 3. The nonspherical contributions are small.
The differences between the starting empirical po-
tential and the final self-consistent potential are
significant. The self-consistent potential is shal-
lower than the empirical potential, and the charge
inside the vacancy resulting from it is smaller than
that from the empirical potential. The long-range
tail of the ionic potential is completely screened by
the Hartree and exchange-correlation potentials
arising from the electronic rearrangement in the vi-

cinity of the vacancy. The total defect potential is
quite short ranged and electively does not extend
beyond the nearest-neighbor atom located at 2.9 A.

The total and local densities of states (LDOS),
gk6(e —eI, ) 8'kj', were calculated using the
tetrahedron method with 128 tetrahedra in —„th

of the BZ. The weights 8'~ ' were chosen to be the
fraction of the charge of the state k within a sphere
of radius R centered at the jth site, with 8'k ——1 for
the total density of states. The value of R was tak-
en to be half the nearest-neighbor distance. The
results for the LDOS from the vacancy and from

l.0-

Vernp

l.0

3.00—

2.25—

I.50—

0.75

0.00—300—

2,25

I.50—

0.75—

~ 0.00
~ 3.00-

2.25
C)

I.50—

0.75

0.00
5.00—

2.25—

VACANCY

FIRST-NEAREST
NEIGHBOR

THIRD-NEAREST
NEIGHBOR

TOTAL

its first- and third-nearest-neighbor shells are
shown in Fig. 4, along with the total DOS for the
supercell containing vacancies. A variety of struc-
ture can be seen in the calculated DOS curves.
Each of the peaks was examined for the presence of
a related vacancy-associated resonance state; only
the peak near —0.3 Ry was found to have one.
On comparing the I.DOS from the first- and
third-nearest-neighbor shells, it can be seen that the
small peak in the energy range —0.38 to —0.28 Ry
(all energies measured from the Fermi energy) di-
minishes in magnitude as one moves further away
from the vacancy; this points to the existence of a
resonance state caused by the vacancy potential.
In a nearly free-electron metal like aluminum, the
repulsive potential of the vacancy can give rise to a
resonance state only in a region of fairly high den-
sity of states, i.e., away from band gaps. Reso-
nance states of this nature have a fairly large ener-

gy broadening, and fall off only as 1/r away from
the scattering site. ' We, therefore, do not expect
to see any sharp structure in the density of states,
but only a broad peak as observed. Unlike a truly
localized state, which falls oA'exponentially with

-5.0
0.0 I.0 2.0 &.0 4.0 5.0

r(E)
FIG. 3. Self-consistent vacancy potentials. The start-

ing empirical potential is V p, the potential of the miss-
ing ion is V;,„, the screening potential due to the redis-
tribution of electrons is V„„and the final self-consistent
potential of V«, .

0.00 I

-I.O -0.8 -0.6 -0.4 -0.2 0.0 0,2 0.4 0.6
ENERGY jRyI

FIG. 4. The local densities of states for the Unrelaxed
aluminum vacancy and the first- and third-nearest-
neighbor shells are compared vnth the total density of
states for the supercell containing vacancies. The reso-
nance region (see text) is crosshatched.



24 SELF-CONSISTENT ELECTRONIC STRUCTURE OF A VACANCY. . . 545i

4.83

6.(8

(9)E i„E„(N,0') ——Eg(N, 0). —
Since 0 is the equilibrium volume, 0 can be re-
placed by 0 in Eq. (9) causing only an error of or-
der (1/N) . For the 27-atom supercell used here,
this amounts to a correction of —1 mRy. Then,

E i„E„(N,A) Es——(N, Q). — (10)

A vacancy-related state of b,
&

symmetry (s-like)

was observed; the state is occupied, and has a
dispersion of -1.35 eV (-0.1 Ry). The position of
this state correlates very well with a sharp change
in the phase shift calculated by Singhal and Calla-
way. The charge density related to the vacancy-
associated resonance state is shown in Fig. 6. The
presence of significant charge near the third-nearest
rieighbors is clearly seen in Fig. 6(b). This charge
lies at the tetrahedrally coordinated interstitial site
of the fcc vacancy superlattice, and thus represents
a superposition of contributions from four separate
vacancies. This clearly indicates that the supercell
used was not large enough to completely isolate the
individual vacancy resonances. However, while

significant spurious contributions to the vacancy-
formation energy could result from this overlap,
the resulting electronic structure would be per-
turbed but little, as indicated also by Fig. 2, since
the peak magnitudes of the charge density associat-
ed with the resonance state from each individual

vacancy is rather small in comparison with the to-
tal charge-density differences associated with an in-

dividual vacancy (cf. Fig. 2).
The total energy calculations were carried out

using the reciprocal-space method. ' The forma-

tion energy (E&„) of a vacancy is the difference be-

tween the energy (E„)of a system of N atoms with

a vacancy occupying a volume 0' and the energy

(Es) of a perfect crystal of N atoms at the equili-

brium volume A. ' ' Thus,

FIG. 5. The energy bands in the I"-Xdirection for a
27-atom unit cell of Al (dashed lines) and Al with a su-

perlattice of vacancies (solid lines); the resonant state,
between 4.83 and 6.18 eV, associated with the vacancy is
indicated by the dotted curve.

distance, these resonance states are fairly extended,
and might give rise to some overlap of states from
neighboring vacancies in the superlattice.

To investigate further the nature of resonance
states associated with a vacancy in Al, states along
the 5 direction were compared with those of a
defect-free superlattice of Al, as shown in Fig. 5.

The supercell containing 26 atoms and 1 vacancy
was thus taken to have a volume equal to that of a
perfect Al lattice containing 26 atoms. This is the
closest approximation to the actual constant-
pressure experimental environment that could be
realized in the calculations. No lattice relaxation
was included in the calculation of the formation
energy. The lattice constant of Al was taken to be

0
4.050 A, the room-temperature value.

The various components of the total energy for
the two systems (27 Al atoms and 26 Al atoms
plus 1 vacancy) are shown in Table II. The total
valence electron contribution to the energy per ion
for Al (4.24 Ry) is in good agreement with the ex-

perimental value of 4.16 Ry, taken as the sum of
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(
Y —+—-~—— --V V + + y + V

FKJ. 6. Charge density of the vacancy-associated resonance state near —0.3 Ry on (a) the (100) plane and (b)

the (110) plane. Vacancies are indicated by V and atoms by + .

the cohesive energy ' and the atomic ionization po-
tentials. The calculated vacancy-formation energy
(1.9 eV) is larger, by a factor of 2.9, than the exper-
imentally observed value of 0.66 eV. ' For com-
parison, the only other ab inito calculation of E&„
in Al, that of Singhal and Callaway, yielded a
value of 6.1 eV for the formation energy. There
are three major factors that could have been
responsible for the present discrepancy: (i) lattice
relaxations around the vacancy, (ii) spurious
defect-defect interactions introduced by the super-
cell, and (iii) inability of the present ionic potential
to accurately reproduce variations in the total ener-

gy, although the latter is most likely the most im-
portant of these. In the next section we discuss
these factors in detail.

IV. DISCUSSION

The question of the eA'ect of lattice relaxation on
the formation energy has not been addressed in the
present work, although it is expected to be small
compared with the discrepancy between theory and
experiment. A method has been developed, howev-

er, which allows the relaxations to be built into the
calculation in a self-consistent manner; it is in the
process of being applied to Al. The forces on the
atoms surrounding the vacancy can be estimated
using the Hellman-Feynman theorem for the pseu-
dopotential Hamiltonian, ' ' once the self-
consistent potential is known. This information
can be used to estimate the relaxation of the atoms,
and the forces can then be recalculated in the new
structural configuration. The process can then be
repeated until equilibrium is reached.

This method was applied to the vacancy in
aluminum. The forces calculated in the unrelaxed

configuration were essentially zero for the second-
nearest neighbors and radially inward for the first-
nearest neighbors. In the subsequent iterations
only the first-nearest-neighbor positions were
changed. The forces on the third-nearest-neighbor
atoms were not calculated, since each third-
nearest-neighbor atom of a vacancy in the 27-atom
supercell is also a third-nearest neighbor of two
other vacancies. The forces on the first-nearest
neighbors were found to change sign between an
inward relaxation of 2% and one of 2.5%, imply-

ing an equilibrium inward relaxation between these
two values.

Minier et al. have measured the nuclear quad-
rupole couplings around a vacancy by the NMR
field-cycling technique. Their results seemed to in-
dicate a significant relaxation of the first neighbors,
but no quadrupolar transitions were detected which
could be associated with the second neighbors.
The present estimate of both first- and second-
nearest-neighbor relaxations appear to be consistent
with their experimental results. Furthermore, the
present results appear to be in reasonable agree-
ment with an estimate of the vacancy-relaxation
volume in Al extracted from the diffuse x-ray in-

tensity at small scattering angles measured in irra-
diated samples. Therefore, the relaxation energy
is not expected to be very large in this system, and
the possibility of its accounting for the large
discrepancy in the vacancy-formation energy ap-
pears to be slim. For this reason, and because of
the uncertainties associated with the supercell size
and particularly the ionic potential in the present
work, the total energy was not recalculated for
each relaxed structure here, since the calculation is
expensive. A more thorough investigation of the
atomic relaxations will be carried out once these
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other uncertainties have been resolved.
The supercell used was not large enough to com-

pletely isolate individual vacancy-related states, as

was mentioned earlier. The magnitude of the in-

teraction energy coming from nearest-neighbor
vacancy-vacancy interactions within the superlat-
tice might be sigificant, but it is not expected to
completely account for the difFerence between

theory and experiment. A comparison of the
present results with those from a larger supercell
would, it is hoped, resolve many of the uncertain-
ties stemming from the supercell method itself;
however, the calculations (e.g., for a 64-atom su-

percell) would be prohibitively expensive at present
in the light of the accuracy required for such a
comparison.

The third and probably the most significant fac-
tor afFecting the results of the present calculation is
the ionic potential used. A potential fitted to
band-structure results cannot be expected to yield
accurate wave functions; this might afFect the cal-
culated total energy significantly. Although the to-
tal valence-electron contribution to the total energy
was in good agreement with experiment, the calcu-
lated bulk modulus was not. We carried out a to-
tal energy calculation for defect-free Al for six
values of the lattice parameter (a). The resulting
values were than fitted to a polynomial in a. The
equilibrium lattice constant obtained was 3.870 A,
which corresponds to 0-K and differs from the ex-

trapolated (0-K) experimental value of 4.045 A. by
4.3%. The bulk modulus was found to be
1.2&10' dyncrn, a value which is 36/o greater
than the experimental value ' of 0.88& 10'

dyncm . The ionic potential used in the present
work is thus seen to fail in accurately reproducing
variations in the total energy. This is most prob-

ably the single largest drawback of the present cal-
culations, but is a situation that may now be im-

proved. upon.
Ionic potentials to be used for self-consistent cal-

culations of total energies must have more strin-

gent requirements imposed on them. Such first-

principles ionic potentials have recently been for-
mulated. ' These potentials have three attractive32, 33

properties for the present type of calculation: (i)
they yield very accurate wave functions outside the
core, (ii) they are norm conserving, hence the use
of pseudocharge densities as real objects in self-
consistent calculations of total energies is justified,
and (iii) they have optimum transferability between
different environments. This latter property
rigorously eliminates the dependence of E~„on nZ
in a constant-volume calculation such as the
present one [cf. Eq. (10)].

A first-principles ionic pseudopotential for
aluminum has recently become available. Using
this potential, the equilibrium lattice constant and
bulk modulus of Al have been calculated by carry-
ing out a total energy calculation at five values of
the lattice constant. A value of 4.047 A was ob-
tained for the equilibrium lattice constant, which is
only 0.05% larger than that extrapolated to 0 K
from the experimental values. The calculated value
for the bulk modulus is 0.99&10' dyn cm
about 13% greater than the experimental value,
The bulk properties of Al have been calculated be-
fore by Janak, Moruzzi, and Williams. Their cal-
culated values for the lattice constant arid bulk
modulus are 4.015 A and 0.801 g 10' dyn cm
respectively. The first-principles ionic pseudopo-
tential is thus seen to yield more accurate results
for the bulk properties of aluminum. This result is
encouraging with respect to using this potential in
vacancy calculations. Therefore, formation energy
calculations for a vacancy in Al are being initiated
with this new potential; the results will be pub-
lished in a subsequent paper.

ACKNOWLEDGMENTS

The authors would hke to thank R. Benedek for
his helpful comments on the manuscript. This
work was supported by the U. S. Department of
Energy.

'R. Evans and M. W. Finnis, J. Phys. F. 6, 483 (1976).
2G. Jacucci, R. Taylor, A Tenenbaum, and N. van

Doan, J. Phys. F 11, 793 (1981).
S. G. Louie, M. Schliiter, J. R. Chelikowsky, and M. L.

Cohen, Phys. Rev. 8 13, 1654 (1976).
4G. A. Baraff and M. Schluter, Phys. Rev. 8 19, 4965

(1979);J. Bernholc, N. O. Lipari, and S. T. Pantelides,
ibid. 21, 3545 (1980).

5R. P. Gupta and R. W. Siegel, Phys. Rev. Lett. 39,
1212 (1977); R. P. Gupta and R. W. Siegel, Phys.
Rev. 8 22, 4572 (1980).

6S. P. Singhal and J. Callmvay, Phys. Rev. 8 19, 5049
(1979).

7R. Zeller and P. H. Dederichs, Phys. Rev. Lett. 42,
1713 (1979).

W. E. Pickett, S. G. Louie, and M. I.. Cohen, Phys.



5454 B. CHAKRABORTY, R. W. SIEGEL, AND W. E. PICKETT

Rev. B 17, 815 {1978).
L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064

(1971).
J; Ihm, A. Zunger, and M. L. Cohen (unpublished).
A. Zunger and M. L. Cohen, Phys. Rev. B 19, S68
(1979).
R. A. Coldwell-Horsefall and A. A, Maradudin, J.
Math. Phys. 1, 395 (1960).
M. L. Cohen and V. Heine, in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic, New

York, 1970), Vol. 24.
~4D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747

(1973).
' M. Manninen and R. M. Nieminen, J. Phys. F 8, 2243

(1978).
G. Lehmann and M. Taut, Phys. Status Solidi 54, 469
(1972).
F. Garcia-Moliner, in Theory of Imperfect Crystalline
Solids: Trieste Lectures (International Atomic Energy
Agency, Vienna, 1971), p. 86.
R. Chang and L. M. Falicov, J. Phys. Chem. Solids

32, 465 (1970).
H. Gollisch and L. Fritsche, Z. Phys. B 33, 13 (1978}.

2 Two aspects regarding this choice of lattice constant
might be considered further in future calculations us-

ing a more appropriate potential (see Sec. IV): (1) The
comparison with experiment would be more appropri-
ate using a lattice constant corresponding to
-250—400'C, from the region in which E~„measure-
ments are made, and (2) the eA'ect of using a mea-
sured lattice constant as opposed to one obtained from
the potential being used in the calculation of E&„
should be explored. Both of these aspects should yield
effects small with respect to the present discrepancy

between theory and experiment.
'C. E. Moore, Atomic Energy Leuels (U. S. National

Bureau of Standards, 1971), 35, Vol. II.
C. Kittel, Introduction to Solid State Physics (%'iley,
New York, 1976).

2 M. J. Fluss, L. C. Smedksjaer, M. K. Chason, D. G.
Legnini, and R. %'. Siegel, Phys. Rev. B 17, 3~".".

(1978).
24A. S. Berger, S. T. Qckers, and R. W. Siegel, J. Nucl.

Mater. 698'c70, 734 (1978).
25J. C. Slater, J. Chem. Phys. 57, 2389 (1972).
2 M. Minier, R. Andreani, and C. Mimer, Phys. Rev. B

18, 102 (1978).
2 P. Jena (private communication); M. J. Ponnambalam

and P. Jena, Phys. Rev. Lett. 46, 610 (1981)~

28W. Schilling, J. Nucl. Mater. 698'c70, 465 (1978).
H. -G. Haubold, thesis, Technische Hochschule
Aachen, Germany, 1972 (unpublished).

3oA linear extrapolation from room temperature [Ameri
can Institute of Physics Handbook, 3rd ed. (McGraw-
Hill, New York, 1972), Table 9a-2], using the tem-
perature coefficient from N. W. Ashcroft and N. D.
Mermin [ Solid State Physics (Holt, Rinehart, and
Winston, New York, 1976), p. 496], was made to
(8D/3) =131 K; this value was taken to be that at 0
K.
Physical Acoustics, edited by W. P. Mason (Academic,
New York, 1965), Vol. III B, p. 84.

D. R. Hamann, M. Schluter, and C. Chiang, Phys.
Rev. Lett. 43, 1494 (1979).

33G. P. Kerker, J. Phys. C 13, L189 (1980).
34%. E. Pickett (unpublished).

J. F. Janak, V. L. Moruzzi, and A. R. %'illiams, Phys.
Rev. B 12, 1257 (197S).


