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The electronic structure of a vacancy in Al has been studied using a self-consistent
pseudopotential scheme, in which the environment of the vacancy was simulated by a su-
percell containing 27 atomic sites. The charge-density perturbation due to the vacancy
was found to be quite short ranged, indicating that the supercell used was large enough to
effectively isolate individual vacancy potentials. At the center of the vacancy, the charge
density was 0.27 electrons per atom,; this value is compared with the results of previous
calculations. The local densities of states at a vacancy and its first- and third-nearest-
neighbor shells were investigated, and evidence for a vacancy-associated resonance state
was found at ~0.3 Ry below the Fermi energy. Finally, the vacancy-formation energy
was also calculated in the ideal (unrelaxed) structure using the a-space formalism for cal-
culating total energies. A value of 1.9 eV was obtained; this is 2.9 times the experimental
value. The effects of lattice relaxation, the supercell method, and defect potentials on the
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electronic structure and the resulting formation energy are discussed.

I. INTRODUCTION

A knowledge of the detailed electronic structure
of atomic defects in metals is of considerable in-
terest for many metal physics applications. In
spite of widespread interest in the problem, realistic
calculations have been scarce. Two methods have
been widely used in dealing with defects in simple
metals, (i) jellium calculations and (ii) the pseudo-
potential approach with linear screening. The
results of these calculations have been summarized
and discussed by Evans and Finnis.! Their work
shows that both methods are inadequate for atomic
defect calculations in a polyvalent metal with high
electron density such as aluminum. The method of
pair potentials has been applied to the study of de-
fects in aluminum by Jacucci et al.? They conclud-
ed that rescreening effects giving rise to three-body
count for differences between their calculated value
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of the vacancy-formation energy and their experi-
mental value. A completely realistic self-consistent
calculation of the electronic structure of the vacan-
cy in Al has, to our knowledge, never before been
attempted. The salient features of a realistic defect
calculation are (i) self-consistency of the potential,
allowing for proper electronic screening of the de-
fect, as well as for structural relaxation around the
defect and (ii) accurate treatment of the electronic
structure of the host metal.

Two theoretical approaches have been developed
which are capable of incorporating these features in
a defect calculation, the supercell® and the
Green’s-function® methods. The augmented-plane-
wave (APW) calculation in Al by Gupta and
Siegel’® is the only previous application, to our
knowledge, of the supercell method to lattice de-
fects in metals. However, this calculation was not
self-consistent, a clear limitation when treating the
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vacancy. Singhal and Callaway® have calculated
the energetics of vacancy defect formation in Al by
a Green’s-function method, but also in a non-self-
consistent manner. The electronic structure of
various impurities in Cu have been calculated by
Zeller and Dederichs’ using a KKR (Korringa-
Kohn-Rostoker) Green’s-function scheme, which
was partially self-consistent in that the charge den-
sity within the defect muffin tin was treated self-
consistently. However, the electronic redistribution
in neither the interstices nor the neighboring muf-
fin tins was taken into account.

Owing to its simplicity, the supercell approach is
very appealing. Its major disadvantage is that sig-
nificant defect-wave-function overlaps can be
present that may give rise to spurious defect-
interaction effects. The total charge density and
the resulting potential, however, are considerably
less affected by such effects. The Green’s-function
method treats a truly isolated defect, and is superi-
or to the supercell method in that respect. Howev-
er, the calculation of the total energy of a system is
not a simple task in the Green’s-function approach,
whereas it is relatively simple in the supercell
method, once the eigenvalues and eigenfunctions
have been determined. Our interest in calculating
formation energies of atomic defects in metals
prompted us to choose the supercell method for the
present work.

In this paper we present the results of calcula-
tions of the electronic structure of a vacancy in Al
using a self-consistent pseudopotential scheme.
Self-consistency in the present context implies the
self-consistent electronic response to a given struc-
tural model. Lattice relaxations have not been
dealt with completely in the present work, but they
have been estimated and a scheme for self- consis-
tently evaluating the relaxations is presented.

To our knowledge, this is the first self-consistent
calculation of this type for defects in metals. The
method is not restricted to Al; it can also be readi-
ly generalized to treat transition metals. Alumi-
num was chosen as a test case because of the
availability of a host of relevant and realistic exper-
imental data, and the simplicity of its electronic
structure.

The remainder of the paper is organized as fol-
lows. In Sec. II the self-consistent procedure and
the method for evaluating the total energy are re-
viewed. In Sec. III the results for the electronic
structure and the formation energy are presented
and discussed, and in Sec. IV the adequacy of the
method and further improvements are discussed.

II. CALCULATIONS

A detailed description of the self-consistent pseu-
dopotential scheme applied to a superlattice of va-
cancies in Si has been presented elsewhere. In this
section we give a brief description of the present
calculations, which were carried out both in
defect-free Al and in Al containing a regular array
of vacancies. The infinite Al crystal was divided
into large face-centered cubic (fcc) unit cells, each
containing 27 atoms for the perfect lattice, or 26
atoms plus a vacancy forming a vacancy superlat-
tice.> Test computational runs with smaller super-
cell sizes indicated that a cell of at least this size is
needed to provide the essential physics of the sys-
tem. In this supercell configuration nearest-
neighbor vacancies have common third-nearest-
neighbor Al atoms. Hence, to the extent that the
perturbaton owing to the vacancy does not extend
beyond second-nearest neighbors, the supercell used
can effectively isolate the vacancies.

The self-consistent computational loop was ini-
tiated with an empirical potential fitted to crystal-
line properties. This potential was of the form

Uenp(G)=Vemp( | G| )S(G), (1)

where G is a reciprocal-lattice vector and the
structure factor

S(G)=(1/N)Jexp(—iG-7;)

describes the positions 7; of the N aluminum
atoms in the supercell with or without vacancies.
The form factors Vep,,(| G |) were derived from a
continuous interpolation of the form

al(q2—a2)

= 5 : 2
explas(g®—ay)]+1

Vemp(q)

The four parameters a; are given in Table 1.2

Since periodicity is maintained in the system with
defects by the use of a superlattice of vacancies, in-
stead of the more natural random distribution,
standard pseudopotential methods could be applied
to obtain the band structure €; and the wave func-
tion ¥ (T'), where k represents both the wave vec-
tor k and the band index n. The total valence
charge density was then evaluated from the com-
puted wave functions by summation over the occu-
pied states as

PO)=3 | ()| (3)
k
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The Hartree screening potential and the Hedin-
Lundqvist’ form of the exchange-correlation poten-
tial were.obtained from this charge density. The
total screening potential was added to an atomic

AP+ ionic potential, U;on(G)=V;on(| G |) S(G), to
form the total input potential for the next iteration.
This process was iterated until the potential was
self-consistent. For the ionic potential, a local ap-
proximation of an Abarenkov-Heine atomic model
potential was fitted to the following four-parameter
model:

Vion(q)=%(cosb2q +by)explbyg?) . 4)
The results of a self-consistent bulk band-structure
calculation using this potential were in good agree-
ment with those of empirical band-structure calcu-
lations.> The parameters are presented in Table I.
Having been fitted to experimental energy bands,

this potential describes wave functions only ap-
J

=St [ [EDPD yeger s [ p(o)lewlp(t)—VyelplD)
k

where € are the one-electron eigenvalues and the
summation in the first term runs only over occu-
pied states. The Hedin-Lundqvist form of the local
exchange-correlation potential V. is related to the
exchange-correlation energy €,. by

Vet pite (6)
(4 XC dp .

The last term in Eq. (5) is the ion-ion interaction

energy with Z the ionic charge. The momentum-
space expression for E,, the total energy per unit
cell, developed by Ihm, Zunger, and Cohen,? is

oce _G’irlu)ax
Eg=e&—7 2 Veoul G)p(G)
k G0

-

g

max

— 3 V,(G)p(G)

G(l)
+ 3 €. (G)p(G)+aZ + Epyaias ™

where Vg is the electron-electron repulsion term.
The term aZ is a correction due to the pseudona-
ture of the potential and measures the repulsiveness
of the potential,

(8)

a= lim
|G |—0

= 8wl
V]OU(G)+ 1612 ‘

TABLE I. Form-factor parameters for the empirical
Al pseudopotential [Eq. (2)] and for the ionic AI** pseu-
dopotential [Eq. (4)].

Vemp an
a,=0.61199 by=—0.77598
a,=1.88 b, =1.046 80
a;=0.65 by=—0.13389
as=—0.30 by=—0.02944

proximately. In Sec. IV we discuss the incorpora-
tion of a first-principles ionic pseudopotential,
better suited for total energy calculations, into the
present scheme.

To calculate the total energy, we applied the re-
cently developed G-space formalism.'® The
density-functional expression for the total energy
associated with the pseudopotential eigenvalue
equation is'!

o Z?
)]dr+22‘i—_:—*:‘“, (5)

Tm“Tnl

—
The term Egy,yq is the Ewald core-core interaction
energy.'? The | G] =0 term is excluded from the
sum over VCOul(G) and Gm;x denotes the summa-
tion limit.

The accuracy of the calculated total energy
depends strongly on the accuracy of both the cal-
culated charge density and the eigenvalue spectra.
In the remaining part of this section we discuss the
convergence properties of the various quantities
entering the total energy expression. The computa-
tional conditions which govern the precision of the
calculated total energy are (i) the number of plane
waves (with cutoff Gmax) used to expand the crystal
wave functions, (ii) the number of Fourier com-
ponents (cutoff é::;x) used to expand the potential
and charge density, (iii) the number of k points
used to sample the Brillouin zone (BZ) for comput-
ing the charge density [Eq. (3)], and (iv) the toler-
ance criterion for self-consistency. Finally, in the
total energy equation, the various terms have to be
stablized with respect to the cutoff Gmax The con-
vergence parameter Gmax was varied until the
eigenvalues were stabilized to within 10~3 Ry
(~0.01 eV). This required about 500 plane waves
correspondmg to a kinetic energy cutoff'> of
E,;= |G}, |*=4.6 Ry; an additional ~ 500 plane
waves were included via the Lowdin perturbation
scheme.!?
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TABLE II. Components of the total energy per atom of a 27-atom Al supercell with and
without a vacancy. All energies are given in Ry. The atomic volume is the same in both
systems. V., denotes the screening field (Vo + Vy.). The vacancy formation energy is ob-
tained by taking the difference in the total energy per atom and multiplying by 26. The
prime on a summation indicates that the |é | =0 term is excluded.

Quantities Vacancy Bulk
Se —0.6269 —0.6026
73 VeoulGn(G) 0.0582 0.0070
S e (GIn(G) —1.6239 —1.6171
SV, (G)n(G) —2.1090 —2.1000
— SV GIn(B) 1.9926 2.0861
aZ 1.2755 1.2755
Egwala —5.3109 —5.3898
E\o —4.2355 —4.2409

Ef, 0.14 (1.9 eV)

In aluminum, the variation in charge density
across a cell is relatively smooth compared to tran-
sition metals, and the number of plane waves need-
ed for reasonable convergence of the screening po-
tential is not too large. We found that about 1400
plane waves were needed to stabilize the various
screening potential components to within 1075 Ry.
Unlike that in a semiconductor, e.g., Si,? the total
charge density in Al is not well represented by the
charge density from a single symmetry point. The
nature of the wave functions varies sufficiently
across the cell to warrant a finer sampling of the
BZ. We used ten fcc special k points!# to compute
the charge density. The next lower number of two
special k points proved to be insufficient in provid-
ing the required accuracy; any finer sample proved
to be prohibitively expensive. The difference in
charge density between two and ten special k
points was as much as 10%. The input potential
for the nth iteration was taken to be a weighted
sum of the input and output potentials of the
(n — 1)th interaction, to damp out ﬂuctuatigns aris-
ing from the divergent nature of the small-G com-
ponents of the Hartree and ionic potentials. The
steps of the self-consistency procedure were repeat-
ed until the subsequent output potentials were sta-
bilized to within 10~ Ry. The number of itera-
tions needed for this stability was ~10. For the
total energy summations, it was found that about
1600 plane waves were needed to stabilize all three
components of the screening field in Eq. (7) to
within 10™° Ry. The repulsive energy was ob-
tained from the G =0 value of the ionic potential
and the Ewald energy was computed as a function
of the cell volume, valence charge, and atomic po-

sitions. In order to get a reasonable result for the
vacancy-formation energy, extreme accuracy is
needed in each of the terms entering the total ener-
gy expression (cf. Table II ). In the following sec-
tion we present our results for the charge density,
local density of states, and the formation energy of
a vacancy in aluminum.

III. RESULTS

The electronic structure of the vacancy was cal-
culated in the unrelaxed lattice structure. The
self-consistent valence charge density in the (100)
plane is shown in Fig. 1. A necessary condition
for simulating noninteracting defects is that the
charge density away from the vacancy site resem-
bles the bulk Al charge density. A plot of the
difference between the charge density in bulk,
defect-free Al and that in Al with a superlattice of
vacancies (Fig. 2) illustrates the predominantly lo-
cal nature of the perturbation, but also gives evi-
dence for some, quite subtle, nonlocal effects.
These are seen most clearly in the regions inter-
mediate between nearest-neighbor vacancies in the
supercell. The magnitudes of these effects, al-
though small [see Fig. 2(b)], are clearly affected by
the size of the present supercell. While such effects
could yield a significant contribution to the calcu-
lated energy of the defect system described by the
supercell, their perturbtaion to the calculated elec-
tronic structure is seen to be minimal.

It is interesting to compare the charge-density
calculated here with those resulting from the self-
consistent jellium calculations of Manninen and
Nieminen!® and the non-self-consistent APW calcu-
lations of Gupta and Siegel.” The APW value for
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FIG. 1. (a) Valence charge density (p)X the supercell
volume ({2) around a vacancy in Al on the (100) plane
in atomic units; the vacancy sits at the center of the
plane. In atomic units, the total valence charge in the
supercell is 78; the supercell volume Q =27, where Q,
is the primitive unit-cell volume for Al. (b) Contour
plot of the charge distribution shown in (a). The vacan-
cy is marked by V and the atoms by + .

the charge density at the center of the vacancy nor-
malized to the supercell volume is 1.87 X 1073 a.u.
(0.21 electrons per atom) as compared to the
present value of 2.48 X 1073 a.u. (0.27 electron per
atom). The jellium result for the charge density at
the center of the vacancy’> is 4.12X 10~2 a.u. (0.46

5449

0 500 60.0

DIFFERENCE IN p&

0.0 100 200 30.0 40

N

(b)
FIG. 2. (a) Difference in pQ between the lattice
without vacancies and the supercell with vacancies locat-
ed in the center and corners of the (100) plane, in atomic
units. (b) Contour plot of (a) showing only the central

13 atom sites; the atom sites are denoted by + and the
vacancy by V (cf. Fig. 1).

electrons per atom). The inclusion of the actual
ionic potential thus causes a significant change in
the charge density; the effect of self-consistency is
smaller. It is interesting to note further that Man-
ninen and Nieminen,'® by including an average
variational potential in conjunction with their pure
jellium (a spherical solid model) calculation, were
able to bring their value for the charge density at
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the center of the vacancy down to 2.5X 1072 a.u.,
in excellent agreement with our result.

While the range of the charge-density redistribu-
tion from the vacancy shown in Fig. 2 does not
preclude overlap of individual state wave functions
of neighboring vacancies in the supercell, it
nevertheless does indicate that the supercell used
was large enough to effectively isolate the vacancy
potentials and the calculated electronic structure of
the vacancies. Spherical averages of the various
componets of the vacancy potential are shown in
Fig. 3. The nonspherical contributions are small.
The differences between the starting empirical po-
tential and the final self-consistent potential are
significant. The self-consistent potential is shal-
lower than the empirical potential, and the charge
inside the vacancy resulting from it is smaller than
that from the empirical potential. The long-range
tail of the ionic potential is completely screened by
the Hartree and exchange-correlation potentials
arising from the electronic rearrangement in the vi-
cinity of the vacancy. The total defect potential is
quite short ranged and effectively does not extend
beyond the nearest-neighbor atom located at 2.9 A.

The total and local densities of states (LDOS),
> Sle—e) Wi, were calculated using the
tetrahedron method'® with 128 tetrahedra in —41—8—th
of the BZ. The weights W}/’ were chosen to be the
fraction of the charge of the state k within a sphere
of radius R centered at the jth site, with W =1 for
the total density of states. The value of R was tak-
en to be half the nearest-neighbor distance. The
results for the LDOS from the vacancy and from

1.01
_ 0.0
&
S0 >
(W)
=
wud
_2‘04 o
_30 T T T T T
0.0 0 20 30 40 50
r(R)

FIG. 3. Self-consistent vacancy potentials. The start-
ing empirical potential is Ve, the potential of the miss-
ing ion is Vi, the screening potential due to the redis-
tribution of electrons is ¥, and the final self-consistent
potential of V.

its first- and third-nearest-neighbor shells are
shown in Fig. 4, along with the total DOS for the
supercell containing vacancies. A variety of struc-
ture can be seen in the caiculated DOS curves.
Each of the peaks was examined for the presence of
a related vacancy-associated resonance state; only
the peak near —0.3 Ry was found to have one.

On comparing the LDOS from the first- and
third-nearest-neighbor shells, it can be seen that the
small peak in the energy range —0.38 to —0.28 Ry
(all energies measured from the Fermi energy) di-
minishes in magnitude as one moves further away
from the vacancy; this points to the existence of a
resonance state caused by the vacancy potential.

In a nearly free-electron metal like aluminum, the
repulsive potential of the vacancy can give rise to a
resonance state only in a region of fairly high den-
sity of states, i.e., away from band gaps.!” Reso-
nance states of this nature have a fairly large ener-
gy broadening, and fall off only as 1/7 away from
the scattering site."” We, therefore, do not expect
to see any sharp structure in the density of states,
but only a broad peak as observed. Unlike a truly
localized state, which falls off exponentially with
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FIG. 4. The local densities of states for the unrelaxed
aluminum vacancy and the first- and third-nearest-
neighbor shells are compared with the total density of
states for the supercell containing vacancies. The reso-

nance region (see text) is crosshatched.
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ENERGY (eV)

FIG. 5. The energy bands in the I'-X direction for a
27-atom unit cell of Al (dashed lines) and Al with a su-
perlattice of vacancies (solid lines); the resonant state,
between 4.83 and 6.18 eV, associated with the vacancy is
indicated by the dotted curve.

distance, these resonance states are fairly extended,
and might give rise to some overlap of states from
neighboring vacancies in the superlattice.

To investigate further the nature of resonance
states associated with a vacancy in Al, states along
the A direction were compared with those of a
defect-free superlattice of Al, as shown in Fig. 5.

A vacancy-related state of A; symmetry (s-like)
was observed; the state is occupied, and has a
dispersion of ~1.35 eV (~0.1 Ry). The position of
this state correlates very well with a sharp change
in the phase shift calculated by Singhal and Calla-
way.® The charge density related to the vacancy-
associated resonance state is shown in Fig. 6. The
presence of significant charge near the third-nearest
neighbors is clearly seen in Fig. 6(b). This charge
lies at the tetrahedrally coordinated interstitial site
of the fcc vacancy superlattice, and thus represents
a superposition of contributions from four separate
vacancies. This clearly indicates that the supercell
used was not large enough to completely isolate the
individual vacancy resonances. However, while
significant spurious contributions to the vacancy-
formation energy could result from this overlap,
the resulting electronic structure would be per-
turbed but little, as indicated also by Fig. 2, since
the peak magnitudes of the charge density associat-
ed with the resonance state from each individual
vacancy is rather small in comparison with the to-
tal charge-density differences associated with an in-
dividual vacancy (cf. Fig. 2).

The total energy calculations were carried out
using the reciprocal-space method.! The forma-
tion energy (ET)) of a vacancy is the difference be-
tween the energy (E,) of a system of N atoms with
a vacancy occupying a volume ' and the energy
(Ep) of a perfect crystal of N atoms at the equili-
brium volume Q.'%!° Thus,

Ef =E,(N,Q')—Ez(N,Q). 9)

Since ( is the equilibrium volume, Q' can be re-
placed by () in Eq. (9) causing only an error of or-
der (1/N)%. For the 27-atom supercell used here,
this amounts to a correction of ~1 mRy. Then,

Ef =E,(N,Q)—Ep(N,Q). (10)

The supercell containing 26 atoms and 1 vacancy
was thus taken to have a volume equal to that of a
perfect Al lattice containing 26 atoms. This is the
closest approximation to the actual constant-
pressure experimental environment that could be
realized in the calculations. No lattice relaxation
was included in the calculation of the formation
energy. The lattice constant of Al was taken to be
4.050 A, the room-temperature value.?

The various components of the total energy for
the two systems (27 Al atoms and 26 Al atoms
plus 1 vacancy) are shown in Table II. The total
valence electron contribution to the energy per ion
for Al (4.24 Ry) is in good agreement with the ex-
perimental value of 4.16 Ry, taken as the sum of
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FIG. 6. Charge density of the vacancy-associated resonance state near —0.3 Ry on (a) the (100) plane and (b)
the (110) plane. Vacancies are indicated by V and atoms by + .

the cohesive energy?' and the atomic ionization po-
tentials.?? The calculated vacancy-formation energy
(1.9 eV) is larger, by a factor of 2.9, than the exper-
imentally observed value of 0.66 eV.?*?* For com-
parison, the only other ab inito calculation of E¥,
in Al, that of Singhal and Callaway,® yielded a
value of 6.1 eV for the formation energy. There
are three major factors that could have been
responsible for the present discrepancy: (i) lattice
relaxations around the vacancy, (ii) spurious
defect-defect interactions introduced by the super-
cell, and (iii) inability of the present ionic potential
to accurately reproduce variations in the total ener-
gy, although the latter is most likely the most im-
portant of these. In the next section we discuss
these factors in detail.

IV. DISCUSSION

The question of the effect of lattice relaxation on
the formation energy has not been addressed in the
present work, although it is expected to be small
compared with the discrepancy between theory and
experiment. A method has been developed, howev-
er, which allows the relaxations to be built into the
calculation in a self-consistent manner; it is in the
process of being applied to Al. The forces on the
atoms surrounding the vacancy can be estimated
using the Hellman-Feynman theorem for the pseu-
dopotential Hamiltonian,'%% once the self-
consistent potential is known. This information
can be used to estimate the relaxation of the atoms,
and the forces can then be recalculated in the new
structural configuration. The process can then be
repeated until equilibrium is reached.

This method was applied to the vacancy in
aluminum. The forces calculated in the unrelaxed

configuration were essentially zero for the second-
nearest neighbors and radially inward for the first-
nearest neighbors. In the subsequent iterations
only the first-nearest-neighbor positions were
changed. The forces on the third-nearest-neighbor
atoms were not calculated, since each third-
nearest-neighbor atom of a vacancy in the 27-atom
supercell is also a third-nearest neighbor of two
other vacancies. The forces on the first-nearest
neighbors were found to change sign between an
inward relaxation of 2% and one of 2.5%, imply-
ing an equilibrium inward relaxation between these
two values.

Minier et al.?® have measured the nuclear quad-
rupole couplings around a vacancy by the NMR
field-cycling technique. Their results seemed to in-
dicate a significant relaxation of the first neighbors,
but no quadrupolar transitions were detected which
could be associated with the second neighbors.

The present estimate of both first- and second-
nearest-neighbor relaxations appear to be consistent
with their experimental results.”’ Furthermore, the
present results appear to be in reasonable agree-
ment with an estimate?® of the vacancy-relaxation
volume in Al extracted from the diffuse x-ray in-
tensity at small scattering angles measured in irra-
diated samples.?’ Therefore, the relaxation energy
is not expected to be very large in this system, and
the possibility of its accounting for the large
discrepancy in the vacancy-formation energy ap-
pears to be slim. For this reason, and because of
the uncertainties associated with the supercell size
and particularly the ionic potential in the present
work, the total energy was not recalculated for
each relaxed structure here, since the calculation is
expensive. A more thorough investigation of the
atomic relaxations will be carried out once these
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other uncertainties have been resolved.

The supercell used was not large enough to com-
pletely isolate individual vacancy-related states, as
was mentioned earlier. The magnitude of the in-
teraction energy coming from nearest-neighbor
vacancy-vacancy interactions within the superlat-
tice might be sigificant, but it is not expected to
completely account for the difference between
theory and experiment. A comparison of the
present results with those from a larger supercell
would, it is hoped, resolve many of the uncertain-
ties stemming from the supercell method itself;
however, the calculations (e.g., for a 64-atom su-
percell) would be prohibitively expensive at present
in the light of the accuracy required for such a
comparison.

The third and probably the most significant fac-
tor affecting the results of the present calculation is
the ionic potential used. A potential fitted to
band-structure results cannot be expected to yield
accurate wave functions; this might affect the cal-
culated total energy significantly. Although the to-
tal valence-electron contribution to the total energy
was in good agreement with experiment, the calcu-
lated bulk modulus was not. We carried out a to-
tal energy calculation for defect-free Al for six
values of the lattice parameter (a). The resulting
values were than fitted to a polynomial in a. The
equilibrium lattice constant obtained was 3.870 A,
which corresponds to 0-K and differs from the ex-
trapolated (0-K) experimental value®® of 4.045 A by
4.3%. The bulk modulus was found to be
1.2 10'? dyncm ™2, a value which is 36% greater
than the experimental value’! of 0.88 X 10!
dyncm™2. The ionic potential used in the present
work is thus seen to fail in accurately reproducing
variations in the total energy. This is most prob-
ably the single largest drawback of the present cal-
culations, but is a situation that may now be im-
proved upon.

Tonic potentials to be used for self-consistent cal-
culations of total energies must have more strin-
gent requirements imposed on them. Such first-

principles ionic potentials have recently been for-
mulated.*”3® These potentials have three attractive
properties for the present type of calculation: (i)
they yield very accurate wave functions outside the
core, (ii) they are norm conserving, hence the use
of pseudocharge densities as real objects in self-
consistent calculations of total energies is justified,
and (iii) they have optimum transferability between
different environments. This latter property
rigorously eliminates the dependence of Ef, on aZ
in a constant-volume calculation such as the
present one [cf. Eq. (10)].

A first-principles ionic pseudopotential for
aluminum®* has recently become available. Using
this potential, the equilibrium lattice constant and
bulk modulus of Al have been calculated by carry-
ing out a total energy calculation at five values of
the lattice constant. A value of 4.047 A was ob-
tained for the equilibrium lattice constant, which is
only 0.05% larger than that extrapolated to 0 K
from the experimental values. The calculated value
for the bulk modulus is 0.99% 10'? dyncm ™2,
about 13% greater than the experimental value.
The bulk properties of Al have been calculated be-
fore by Janak, Moruzzi, and Williams.*> Their cal-
culated values for the lattice constant and bulk
modulus are 4.015 A and 0.801 X 102 dyn cm™2,
respectively. The first-principles ionic pseudopo-
tential’* is thus seen to yield more accurate results
for the bulk properties of aluminum. This result is
encouraging with respect to using this potential in
vacancy calculations. Therefore, formation energy
calculations for a vacancy in Al are being initiated
with this new potential; the results will be pub-
lished in a subsequent paper.
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