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Griffiths singularity in ferromagnetic alloys
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Griffiths's result for percolating Ising ferromagnets is extended to the case of binary fer-

romagnetic alloys. The results indicate that the Griffiths singularity is a general and characteris-

tic phenomenon in random Ising systems. This lends strong support to the contention of
McCoy and Wu that a single length-scaling picture is not adequate to describe phase transitions

in quenched random magnets.

I. INTRODUCTION II. EXISTENCE OF THE GRIFFITHS SINGULARITY

It is now over ten years since Griffiths' proved that
the magnetization of a bond-diluted Ising ferromag-
net is a nonanalytic function of the magnetic field at
H =0, for all temperatures less than or equal to
T,(1), the critical temperature of the undiluted fer-
romagnet. Subsequent work revealed that the non-
analytic behavior was due to an essential singularity
at H =0. On this basis, it was concluded" that the
Griffiths singularity is too weak to be experimentally
observable. This was used as an argument4 to sup-
port the contention that renormalization-group calcu-
lations ' for the phase transition in random fer-
romagnets were essentially correct, even though they
did not contain a Griffiths singularity.

On the other hand, it is known that the Griffiths
singularity is closely related to the Lifschitz tail in
the density of states of an electron in a random po-
tential, as both phenomena arise from essentially the
same mechanism. ' Few people should argue that
the Lifschitz tail is an inessential and unimportant
detail of the problem of the electron in a random po-
tential. Furthermore, the work of McCoy and Wu, '

although it is based on a special and perhaps some-
what anomalous model, gives rigorous results which
are not consistent with the starting assumptions of a
naive renormalization-group approach. In this paper
we extend Griffiths's arguments to show that the
Griffiths singularity occurs in a wide class of random
Ising ferromagnets. From this we conclude that the
Griffiths singularity is a characteristic phenomenon of
random magnetic systems. Any theory which ignores
this phenomenon is seriously deficient. A
renormalization-group calculation which does account
for the Griffiths singularity in the one-dimensional
diluted Ising chain has been given by Grinstein
e& al. " Chalupa" has presented nonrigorous argu-
ments which indicate that the effect is also present in
one-dimensional ferromagnetic alloys.

We will explicitly consider Hamiltonians of the
form

H = —XJja;og
(o'&

(2.1)

where (ij) means a sum over nearest neighbors on a
lattice, the (o;] are Ising variables, and the (Jjj are
uncorrelated quenched random bond variables with
the probability distribution

P(J) =xs(J —Ji) + (1 —x) 5(J —J2) (2.2)

III. TWO-DIMENSIONAL CASE

It is widely believed although not rigorously prov-
en" that when the Griffiths singularity occurs in the

We will assume 0 «J2 & J&, and, of course,
0«x «1.

The case J2=0 is the randomly diluted model con-
sidered by Griffiths. ' Using the Lee-Yang circle
theorem, ' he showed that H =0 is an accumulation
point of the zeros. of the magnetization function
M(H) for any nonzero value of x, if the temperature
satisfies T ~ T, (1), the critical temperature of the
x =1 model. Now, because of the GKS inequali-
ties, '4 the zeros of M(H) can only move toward
H =0 if T is decreased or if J2 is increased. There-
fore H =0 is an accumulation point of the zeros of
M(H) for any non-negative value of J2, if
T ~ T(1).

Bergstresser'5 has proven that if J2 & J~ and x ( 1,
then T,(x) & T,(1). [The critical temperature, T„ is
the temperature at which the spontaneous magnetiza-
tion, M(0), disappears. ] Therefore if x & 1 there is
a finite range of temperature below T,(1) in which

. M(H) is nonanalytic at H =0, but M(0) =0, for any

J2 which satisfies 0 «J2 & J~.
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magnetization, the free energy, F, will also be nonan-
alytic. This expectation has been confirmed in the
one-dimensional randomly diluted Ising model by the
calculation of mortis. ' In this section, we will as-
sume that the presence of the Griffiths singularity
will cause the free energy to be nonanalytic, and we
will analyze the implications of this for the quenched
random-bond binary-alloy Ising ferromagnet on a
square lattice. This is an interesting thing to do be-
cause of the duality relation which is satisfied by this
system" for JI and J2 positive.

The duality relation works as follows. Let KI
= J~/kT, and K2= J2/kT. Then the free energy is a
function of the variables KI, K2, and x.' F
= F(KI,K2,x). [The F we are talking about is the
ensemble average free energy, which is a probability
one object. This means that all Hamiltonians of the
form (2.1) for a given lattice structure which satisfy
the same bond probability distribution function (2.2)
have the same free energy per site in the infinite
volume limit, except for a set of measure zero. ] De-
fine the dual variables K~' and K2' by the Kramer-
%annier-Onsager relations"

tanh(K~') =exp( —2KI)

tanh(E2" ) = exp( —2K2)

(3.1a)

(3.lb)

These relations are symmetric: K2 = KI' if and only
if KI =K2". The result of the duaIity transformation
1s

F(KI",K2', x) = F(K),K2,x) + r (3.2)

F(K),K2,x) = F(K2,K), 1 —x) (3.3)

These two relations allow us to relate the high-
temperature behavior of a system with a concentra-
tion x of strong bonds to the low-temperature
behavior of a system with a concentration 1 —x of
strong bonds. This is because relations (3.1) imply
that if K~ )K2, then K~' & E2', since tanh(E) is a
monotonically increasing function and exp( —2E) is a
monotonically decreasing function.

Because of this relation, if the free energy is non-
analytic for a finite range of temperatures below

T,(1) for 0 & x & 1, as we have proven the magneti-
zation is, then the free energy must also be nonanal-
ytic for a finite range of temperatures above T,(0).
It seems likely that the free energy is nonanalytic at
all temperatures between T, (0) and T,(l). We will

show that this is actually the case for the special
1

value x --.2'
The case x = —, is self-dual. ' This is because for

x = 2, relation (3.3) maps the free energy of the sys-

tem back onto the energy of the same system at a dif-

where r is a trivial (analytic) term. Inspection of the
probability distribution function (2.2) gives us the ad-

ditional relation

ferent temperature. The self-duality temperature,
T', is the temperature for which the relations
K2= KI' and KI = K2" are satisfied. It obeys the
equation

sinh(2J~/kT') sinh(2J2/kT') =1 (3.4)

Therefore a Griffiths singularity exists for all tem-
peratures between T" and T,(1). Using the assump-
tion that this implies a nonanalyticity in the free en-

ergy, and the duality relation (3.2), we find that, for
x = —,, F is nonanalytic for all temperatures between

T,(0) and T,(l). [Note that T,(0) and T,(l) are
dual temperatures; i.e., J2/T, (0) =J~/T, (I ).]

The reason why T, ( —,) ~ T" is because it is not

possible for the expectation value of a spin variable
(o ) and the expectation value of a dual variable (p, )
(often called a disorder variable'9) to both be
nonzero at the same temperature. Let rl and r2 be
any two points on the lattice. Then

(o(rt)p(r2)) =0, (3.6)

because a.p, is a spinor operator" (i.e., it goes into
minus itself under a 360' rotation). But if we let the
distance between ri and r2 become large, the opera-
tors must decouple:

lim (a(r~) p(r2) ) —(o (ri)) (p, (r2) ) =0
~'a

(3.7)

Putting (3.6) and (3.7) together, and using the fact
that our choices of rl and r2 were essentially arbi-

trary, we obtain

(~(rt)) (u(r2)) =0 (3.8)

for any rl and r2. This can only be true if either
(o(r~)) =0 for any choice of r~, or (p, (r2)) =0 for
any choice of r2, or both.

Due to the GKS inequalities, "if (a) =0 at some
temperature, it must also be zero at all higher tem-
peratures. Since the magnetization is precisely the
configuration average of (o ), and since for x =

z

the (o.) and the (p, ) are related to each other by the
duality transformation, the result, (3.5), follows.

IV. CONCLUSION

In this work we have sho~n that the Griffiths
singularity is present not only in the diluted random-
bond Ising ferromagnet, but also in the random-bond
binary-alloy Ising ferromagnet. It seems straightfor-

It is likely that T, ( 2 ) = T'. While we cannot prove

this, we can prove the inequality

(3.5)
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ward to extend our results to any bounded probability
distribut&on of ferromagnetic bonds. Further, it is
not apparent why mixing in some antiferromagnetic
bonds should cause the result to fail. (Of course, the
presence of antiferromagnetic bonds makes it essen-
tially impossible to prove anything, since then one no
longer has either the Lee-Yang circle theorem" or
the GKS inequalities' to work with. ) In the two-

dimensional case we have been able to show
(although not entirely rigorously) that the Griffiths
singularity is present for a range of temperatures on
both sides of the critical temperature.

These results demonstrate that the Griffiths singu-
larity is a characteristic phenomenon of random Ising
ferromagnets, and perhaps of an even larger class of
magnetic systems. Any theory which does not take
this phenomenon into account cannot be considered

to be an accurate description of these systems. Thus
we are supporting the contention of McCoy and Wu'
that random ferromagnets are too complicated to be
properly described by a single length scaling picture.

In closing, we would like to make a comment
about the relationship, to which we have already al-
luded, between the problem we have studied here
and the problem of the electron in a random poten-
tial. It is often remarked that the Griffiths singularity
is analogous to the Lifschitz tail. It is also widely be-
lieved that the dc conductivity is an order parameter
for the electronic problem" analogous to the magnet-
ization in the ferromagnet. Therefore it is reasonable
to expect that an understanding of the nature of the
ferromagnetic transition in the presence of the Grif-
fiths singularity will lead to a better understanding of
the nature of electronic states close to the mobility edge.
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