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TiBe2, a test material for spin-fluctuation theories
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Precise magnetic susceptibility measurements for TiBe2 indicate that X(H, T =0) and

X(T,H =0) vary initially like H and T, in formal agreement with the "paramagnon" model.
Logarithmic terms H lnH and T lnT are found to be inadequate. There is apparently a discon-

tinuity in the low-temperature differential susceptibility at H = 55 kOe, which may be indicative

of a spin-density wave.

Little was known before 1978 about TiBe2, a cubic
Laves phase (C15) compound. '2 The prediction by
Enz and Matthias' that this material might be a weak
ferromagnet like ZrZn2 started a rush at the problem.
Specifically, Enz and Matthias suggested that the fer-
romagnetism of ZrZn2 was due to a positive
electron-phonon contribution to the Stoner factor.
This controversial point4 apparently set the tone for
subsequent developments. The first low-temperature
susceptibility measurements for TiBe2 ruled out fer-
romagnetism and were interpreted as evidence for
itinerant antiferromagnetism. ' The achievement of
TiBe2 „Cu„ferromagnetic compounds soon en-
couraged the advocates of exchange enhanced
paramagnetism in TiBe2.' Meanwhile, a peak in the
specific heat' at 1.9 K was analyzed in terms of
spin-density-wave antiferromagnetism (phasons) ."
Metamagnetism was also proposed' on the basis of
the variation of the susceptibility with field. A bib-
liography may be found in Ref. 13.

Clearly, no consensus has been reached yet,
although the paramagnetic interpretation seems to
gain support. ' At this level the motivation of the
present work was the controversy about the tempera-
ture and field dependence of the susceptibility, X, for
a Fermi liquid, which, instead of T' and H', "was
claimed to be T2lnTand H2lnH. '6 Earlier X(T) and
X(H) measurements for TiBe have been fitted with
the above logarithmic formulas ' but these data are
not precise enough for reliable conclusions to be
drawn. A more definite answer is given by the
present measurements, provided that the description
of TiBe2 ln terms of enhanced paramagnetism is ade-
quate. However, some features of the magnetization
M(H, T) are still not well understood.

The sample used was spherical, 5 mm in diameter. '
Its magnetization M was measured to 0.1'/0 with a

moving sample magnetometer' down to T =1.45 K
and up to H =69 kOe. Measurements to about
0.01'/0, of X(T) in three constant fields (0.12, 0.5,
and 5 kOe), between 1.68 and 20 K were performed
in Geneva, using a newly built superconducting
quantum interference device (SQUID) susceptome-
ter."

Figure 1 shows that below 46 kOe the magnetiza-
tion of TiBe2 at 1.45 K varies with the applied field
according to the relation

—=X '(0) +BM',H
M

with B (0. There is possibly a small upturn of the
susceptibility below 10 kOe. A fit of the data with
Eq. (1) defines X(0) =9.70 && 10 3 emu/mole and
B =—4.96&10 ' emu/mole. Above 46 kOe the Ar-
rott plot devrates from a straight line and H/M goes
through a minimum, at H (1.45 K) =55 kOe, as
found previously. 7 The present measurements are
precise enough to define a differential susceptibility
hM/AH as a function of field (Fig. 2). The calculat-
ed quantity dM/dH = [X '(0) +3BM2] ' [derived
from Eq. (I), curve a] diverges at H, = 57.2 kOe
(vertical line) with the present values of the parame-
ters. The lower the temperature, the higher is the
field above which the data deviate from curve a and
the sharper is the peak in hM/hH. Even by intro-
ducing higher-order terms CM4 and DM6 in Eq. (1)
it is by no means possible to describe the measured
/tM/d, H below and above H = H, with one set of
parameters (see curves a and a'). Curve b was
calculated with the formula dM/dH = X(0)
—cH2 (1 +3 lnH/H') derived from Ref. 16. Ob-
viously, the fit is very poor.

The variation of X with temperature in a fixed field
(0.5 kOe) is shown in Fig. 3. Such detailed measure-
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FIG. 1. Arrott plot (M vs H/M) of the magnetization,
in fields between 10 and 46 kOe, for TiBe2 at 1.45 K.

ments were repeated for H =0.12 and 5.0 kOe. The
data below 3.5 K were fitted with the expression
X(T) =X(0)(1+ttT'), yielding a strong variation of
a .with H (insert). For H 0 we find n =6.0 && 10~
K 2. It is likely that for H = 25 kOe X will be practi-
cally constant, up to about 10 K. Further measure-
ments are planned around H where X increases rap-
idly with decreasing temperature.

If one takes for granted that the magnetic proper-
ties of TiBe2 are those of a Fermi liquid, Figs. 1—3
indicate that the correct initial variations of the sus-
ceptibility with field (T 0) and temperature
(H 0) for such a system are, respectively, H' and
T', which differ markedly from H'InH/H" and
T'inT/T'. Obviously an apparent T' variation at low
temperature may only be obtained by taking two or
more a„T"inT/T„ terms. This introduces at least
four parameters and the fit is not unique. %e wish
to mention that a T' law possibly holds at low tem-
perature for all the materials' '6 for which X has
been tentatively described with a T21nT/T' law. The
low-temperature data are rather scarce, but they devi-
ate characteristically from the calculated curves. A
small variation of X with H has been reported for
YCo2 and LuCo2." Although the data for YCo2 ap-
parently follow a H2 law, a fit with H'lnH/H' has
also been tried.

Seal-Monod recently confronted the calculated
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FIG. 2. Differential magnetic susceptibility EM/hH as a
function of field for TiBe2 at 1.45 and 4.17 K. Solid curves
are calculated: Curve a, from Eq. (1); curve a, from Eq.
(1) with a CM4 additional term; curve b, from Misawa's
logarithmic formulas (see text).
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low-temperature variation of X in the paramagnon
model and in the Stoner model with earlier data for
TiBe2.' The pararnagnon formula, "which essentially
differs from the Stoner result by a factor S (Stoner
factor), was shown to be the most adequate. t4 It
should be noticed, however, that the paramagnon
prediction for the coefficient of T' in X( T), the
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FIG. 3. Magnetic susceptibility, X =M/H, as a function of

T for TiBe2 in a field of 0.5 kOe. Insert, variation with

field of a in X(T) =X(0)(1+eT2).
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present experimental value in low field and the Ston-
er value are approximately in the ratios 100:10:1.In
Ref. 14, S was taken to be 61.4 and the values for
the derivatives of the density of states at the Fermi
energy were estimated from recent band-structure cal-
culations. 23 The coefficient of H2 in X(H) cannot be
easily obtained in the paramagnon model. "

Coming back to Figs. 1 and 2, we wish to point out
some similarity between the low-temperature magnet-
ization curve for TiBe2 and for the cubic compound
MnSi. 24 In both cases dM/dH has a singularity25 at a

critical field (=1 kOe for a MnSi powder). A helical
spin-density wave was detected in the itinerant elec-
tron magnet MnSi by low-angle neutron diffraction
on a single crystal, four years after the second un-
successful investigation with neutrons (second of
Ref. 24). Keeping in mind that spin-density wave
antiferromagnetism was already proposed for
TiBe2, "' further low-temperature low-angle neutron
diffraction studies of this fascinating compound
might prove rewarding. If the spin-density wave is
longitudinal, however, its detection could be prob-
lematic '7 28

Finally, we want to mention that the small down-
turn in H/M for H decreasing below 10 kOe (Fig. 1)

is in qualitative agreement with the fact that d X/dH is
very small in low fields while d X//dT decreases rapidly
with increasing field. If the Arrott plot at T 0 is to
be perfectly straight (retrograde) there will be a shal-
low maximum in H/M = X ' versus field at finite
(low) temperature. However, this effect (AX/X
=0.1% at 4 K) is about 10 times smaller than the
observed one which may be due to the uncertainty in
0 or to a small impurity contribution.

In conclusion, it appears that the nature of the
magnetization in TiBe2 is still not fully elucidated.
While the low-field, low-temperature susceptibility of
this compound can be described by the paramagnon
model, the presence of a spin-density wave may be
inferred (in particular) from higher-field data. Based
on a recent electronic structure calculation for Pd in
megagauss fields, the possible occurrence of
itinerant metamagnetism in TiBe2 also remains an
open question.
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