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The value of the dynamical critical exponent z is calculated for various one-dimensional kinet-

ic Ising models using simple physical arguments. The values agree with all known exact results

and with the lower bounds obtained by Haake and Thol.

The most important states of the one-dimensional
Ising model at low temperatures consist of large
domains with lengths of the order of the correlation
length g, separated by sharp domain walls. The
characteristic time for the decay of a domain is pro-
portional to P where z is the dynamical critical ex-
ponent, In this paper z is evaluated for several dif-
ferent kinetic Ising models using simple physical ar-
guments about the motion of domain walls. In each
case there is one dominant process governing the de-

cay of domains and the rate for this process can be
found from simple random walk results.

Glauber' introduced a simple single-spin-flip model
with nearest-neighbor interactions. This model can
be solved explicitly and yields z =2. Deker and
Haake' and Kimball' independently devised a modifi-
cation of the Glauber model which has z =4. The
essential difference between this model and the
Glauber model is that the motion of domain walls is

strongly suppressed at low temperatures. This model
has been extended by Haake and Thol' to a continu-
ous set of models with z between 2 and 4. Another
class of models is the double-spin-flip models in
which nearest-neighbor pairs of spins flip together.
The most important model of this type is the con-
served order parameter model- in which only pairs
containing opposite spins can flip. Haake and Thol,
using a variational principle, obtained a lower-bound
inequality z «5 for this model.

The method of this Communication is to find the
time for a domain to decay by finding the fastest way
for a domain wall to move one correlation length by
random fluctuations. The resulting values of z agree

with all the above exact results and with the lower
bounds found by Haake and Thol.

The static properties are determined by the equili-
brium distribution function

P(o)=Z 'exp( —H{oi),
where 0 is the usual nearest-neighbor Ising Hamil-
tonian

H f(r}=—It $a;a;+) .
I

The correlation length grows exponentially as
T =E ' approaches zero'.

(2)

g ~ exp(+2It)

The single-spin-flip rate in the Glauber model is

W; = I"(1 ——y a.;(a, ) + (r;~)) ]
1

(4)

where y = tanh2E. I" ' defines the unit of time. A
spin at a domain wall which has one neighbor up and
the other down has a flip rate l. An up spin in the
middle of an up domain has a much slower flip rate,
I'(1 —y) ce I'f 2. The dominant way for a domain to
decay is by the random motion of the domain wall

which occurs at one step every I ' in a random direc-
tion. Random-walk arguments show that the wall

must move g' steps on the average to move a dis-

tance g. The time for this to occur, I 'g', is the
characteristic time for the decay of a domain, and we
obtain Glauber's result, z =2.

The flip rate in the Glauber model can be modified
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to slow down the motion of domain walls, 3

W/ = I' [I + ( I —ce "")o, /o /+~]

x [1 — y—/r/(/r/ /+o/+])]j.

If crI j and 0.;+~ have opposite signs 0-~ is on a
domain wall and has a flip rate 1 cexp( —2///lt. ). The
time for the wall to move a distance g by random
steps is gz times the time for one step. The charac-
teristic time for decay of the domain is thus
//. "I' 'e 'exp(2p, l/) ~ g'+/'which gives z =2+ p, . At
low temperatures the Deker-Haake-Kimball model is
equivalent to p, =2.

If JM, & 2 a new feature occurs. The motion of
domain walls by single steps is so slow that it is faster
for the wall to move through an intermediate
higher-energy state. First, a spin-one lattice spacing
from the wall flips. The rate for this is I (1 —y)
~ I'g z [in W& the first factor is O(1) rather than
0(( ")]. Now the spin at the original boundary has
a probability

~
of flipping before the newly flipped

spin returns to its original value. The domain eall
has moved two steps in a time I' '//'. This must oc-
cur (z times for the wall to move a distance g by a
random walk, so the time for decay of a domain is
I" '//4. Thus, in agreement with the lower bound of
Haake and Thol, we find z =4 instead of 2+ p. for
p, & 2. This illustrates the fact that the correct z will

only be obtained if the fastest mode is used.
If magnetization is to be conserved only pairs of

spins of opposite sign can flip. The simplest flip rate
1s

1x [1 , y(~/ i~—/+—~/+/~/+z)1

Domain walls cannot move independently and con-
serve magnetization so it is simpler to study the
motion of spins. The easiest way for a domain to de-

cay is for it to move a distance //:. This can occur by

spins moving through the domain from one side to
the other.

In the first step the spins at a domain wall ex-
change. The large energy required for this gives it a
slow rate I'(1 —y) ~ I'g ~. The next step is for the
spin to move through the domain and come out on
the other side. Only a small fraction of the spins
which enter the domain leave on the other side. The
probability of this can be found from a random walk
problem: What is the probability, P~, of a random
walk starting at 1 arriving at N before it arrives at 0?
The answer is found by solving for P~ in terms of

PN —1

1 +PN —1

PN X z P/// 1[ g
(I -PN 1)~—1 1

n 0

The solution of this which satisfies the condition
P~=l &s PN=N

The rate of spins moving through a domain is thus
P&I g

z ~ I'//: 3. In this process the whole domain has
moved one space in a time I '//. ". To move one
correlation length by a random walk this must occur
//;~ times. The time for the domain to move one
correlation length is thus proportional to I' '//. " which
means z =5, in agreement with Zwerger. 5

The method used in this paper allows the value of
z to be determined from physical arguments. In each
case it is possible to understand the value of z in
terms of random-walk arguments once the fastest
way for the domain wall to move has been identified.
The suppressed domain-wall motion model with

p, & 2 illustrates the necessity of finding the correct
mode of motion of the domain wall. If a slower
mode is chosen (e.g. , motion by one step at a time in
the case p, )2) then the value of z found will be too
large. In this sense the value of z found by our cal-
culation is an upper bound. The fact that we always
agree with the lower bound of Haake and Thol con-
firms that we have found the fastest modes in each
case.
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