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Theory of the magnetic polaron
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We construct exact Green's functions for a single electron in a ferromagnetic semiconductor,
including both spin-conserving and spin-flip processes at T =0. We contrast two cases: fer-
romagnetic and antiferromagnetic coupling of the electron's spin to the lattice. In the former
case, a small-k electron will have its spin totally polarized in the predominant direction, whereas
in the latter, deviation from saturation polarization is to be expected. Crucial differences
between bound- and scattering-state contributions to the electron's spectral weight are highlighted.

I. INTRODUCTION

The properties of the rare-earth chalcogenides EuO
and EuS have been the subject of several recent stud-
ies, both experimental' and theoretical. ' " These
materials are ferromagnetic semiconductors. Concep-
tually, they are simpler than itinerant ferromagnetic
Fe, Ni in that a clear distinction can be made
between localized moments and itinerant conduction
particles.

In the present work, we present a detailed analysis
of the one electron Green's function zero tempera-
ture. Similar techniques could be used to extend the
theory to low temperatures, in the sense of an
asymptotic expansion in powers of T, but we shall
not pursue this here.

%'e quickly dispose of the Green's function of a
spin-up el'ectron, which is trivial. The spin-down arid
off-diagonal (spin-flip) Green's functions are non-
trivial, but exactly calculable at T =0. They are the
principal objects of our study and may be viewed as
the magnetic analogs of polarons; the basic process
involving repeated emission and reabsorption of mag-
nons with consequent recoil of the electron. For the
case of ferromagnetic coupling of the electron's spin to
the lattice, we find that the electron and the magnon
effectively repel. After a characteristic time yk', the
electron, which initially has its spin down inevitably
finds itself with spin up and a magnon is radiated out.

In the converse case of antiferromagnetic coupling
to the lattice, the electron and magnon effectively at-
tract and a bound, polaron-like state ensues. In the
weak-coupling limit the electron is perfectly antiparal-
lel to the predominant polarization. The greater the
coupling constant of the electron spin to the lattice,
the denser becomes the magnon cloud and the less is
the degree of polarization of the electron spin in the
antiparallel direction.

Evidently then, the qualitative and quantitative
features of the electron dynamics depends sensitively

on whether the coupling is ferromagnetic or antifer-
romagnetic; yet most theories have ignored this sub-
stantial difference, arriving at conclusions that are
qualitatively unsatisfactory. There. are many experi-
ments, especially on photoemitted electrons from
these materials, and an unambiguous theoretical.
context is desirable and motivates the present investi-
gation.

The paper is organized as follows: in Sec. II we set
up the secular equation and obtain the eigenvalue
condition. We point out the essential difference
between bound and scattering states in terms of the
amplitudes. In Sec. III we work out the electron
Green's functions exactly. In Sec. IV we introduce a
simple band structure which enables us to calculate
various quantities analytically. The numerical results
are given in Sec. V and in Sec. VI we discuss our
results.

II. %AVE FUNCTION

In this section we construct the low-lying eigen-
states of the s-d-like Hamiltonian for a magnetic
semiconductor. H =Ho+H~, where

Hp= XEktlk ttk —
~ XJlt(S; SJ S )

In the above equations, ~k is the single-particle
(band) energy

+ Cg

—Iq. R.t' a
CTq = ~Qk~Qkyqj, Sq = ~e

k N

0 q
= +Z&Qk+Qk+qtg Zt = + 1p Z) 1

k, o
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The SI are the spin operators for the localized spins
and a's the same for the conduction electrons. The
anisotropy parameter y can be varied from zero to
unity and changes the coupling between the Ising
("Hartree") and the Heisenberg limits.

The Hamiltonian commutes with S;,t and hence we
construct the low-lying eigenstates as linear superpo-
sitions of eigenstates of St,t. In the zero particle sec-
tor the ground state of the model is readily seen to
be

we find

1]2

Ek = ek+ ——yJ XfJs s
2 2N q

Js sf Ek —ek +——ru -—yJ
2

1(2

(10)

where l4) is the ferromagnetic state. On adding one
conduction electron to the system, we may examine
the S,'„=Ns + 1/2 subspaces separately.

The S„,= Ns +1/2 subspace is trivial since it is
easy to verify that an exact eigenstate of 0 is provid-
ed by the state

l
k t;0), where we use'the notation:

It is obvious at this stage that for y & 0, the Hartree
energy ek+ Js/2 is not, in general, close to the exact
eigenvalue Eq. A straightforward calculation gives

1+(J/2) A(k;E„)
12

where

Sqlk~;q&—=a,' lvac&
'

le& .
2s

A(k, ru) =—1 1

N Xak q+cos —Js/2 —cu
(13)

Hlk1;0) = (ek —Js/2) lk t;0) (5)

This is a stable state for J & 0. But for antiferromag-
netic coupling (J (0) it is a highly excited state.

We now turn to the S„,=Ns —1/2 subspace. Here
the appropriate basis is lk j;0) and lk —qt;q) corre-
sponding to a down-spin electron and an. up-spin plus
a magnon, respectively. By direct application of 0,
we find

The transverse part of Eq. (2) annihilates lkt, 0) and
hence

The solutions of Eq. (12) may be classified as
bound or scattering solutions. The bound state solu-
tion (there is only one for either sign of J) is charac-
terized by the fact that fs =O(1/JN ) for every q
and the co'efficient of f, in the left-hand side (LHS)
of Eq. (11) is nonzero for all q. Thus the conduction
electron magnetization

1- Xlf, l'

»+Xlf, l'
'

H l k j;0) = (ek +Js/2) l k j;0)
-yi(s/2N)' ' Xlk -q t;q),

Hlk —q t;q) =(ek—,—Js/2+cod) lk —qt;q)
+ J/2N Xlk -pt;p)

—yJ(s/2N)'~2l k j;0)

where coq is a magnon energy

(6)

is —1/2+O(1) for the bound state.
The scattering solutions are, on the other hand,

characterized by

Ek =ek s Js/2+coq +eq /N
(qp) (15)

where e~ /N is a small'energy shift. Thus the scatter-

ing states (there are N of them) have, essentially, the
energy of a spin-up electron plus a magnon. Equa-
tions (15) and (11) require that

co, = s [J(0)—J(q) )

We construct a linear combination

(8) O(1/JN ), q W qo

O(JN ), q=qo . (16)

1
t

I~.) = —„ lkj;o&+If. lk-qt;q& .
q-

where 2 -(1+X, lfsl2)' '. Requiring Hl+'k)
= El, l%'I, ) and using the orthonormality of the basis,

Thus the conduction-electron magnetization in the
scattering states is +1/2 —O(l/N). The electron in
these states must be pictured as having essentially
spin up. The electron spectral weight (see Secs. III
and IV) contains contributions from both bound and
scattering states apd there is no a priori way to esti-
mate their relative importance. We wilJ show that in
the case J )0 (i.e., ferromagnetic coupling) the
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III. GREEN'S FUNCTION

In this section we calculate the one electron
Green's function by a straightforward approach. %e
define the conventional (retarded) Green's functions
as follows:

G (k, c0) =
te+oo

dte'"'G (k t)

FIG. 1. Schematic illustration of the conduction-electron
spin polarization in the lowest energy state for J )0 (fer-
romagnetic coupling) and J & 0 (antiferromagnetic coupling
of electron spin to lattice) showing discontinuity at J =0,
and screening for J &0.

scattering states essentially exhaust the spectral
~eight whereas for J & 0 the bound state dominates.
The qualitative aspects for an electron in or near the
ground state are shown in Fig. 1. Perturbation theory
in J would fail because of the discontinuities in the
physical properties as J changes sign.

G.(k, t) =- itt(t) «1 (ak (t),ak' (0))~0&,

where ao is assumed to contain a small damping term
(co —= co+i0+) In ad. dition, we find it expedient to
introduce an anomalous (off-diagonal) Green's func-
tion L:

L, (k, t) —= —ie(t)e ' (q ~ [ak+, t(t), aki (0) j~0&

lq &
—= Ivac&S /~2s )cP& and [0& = )vac&ld'&.

The up-spin Green's function is trivial to compute.
On taking the time derivative of Gt(k, t) we find

X(-;)e(t) (0~ [«+„S,«),«', })0&-—' (- I) t)(t) g(01 (a,+,p:,(t),akt II0&

The third term on the RHS of Ecl. (19) vanishes on
using the property of the ferromagnetic ground state
(0 ~ S, =0. Hence we find

1
Gt(k, ~) =

+J /2

This is precisely the result of the Hartree approxima-
tion as well.

In the case of spin down, the transverse terms are
nontrivial. %e find after taking a single time deriva-

tive
' 1/2

(21)
The anomalous Green's functions are each of
0(I/JX ) in the thermodynamic limit, but their sum
over all q is non-negligible. %e proceed by taking
the time derivatives of L~(k, t). The first time
derivative gives rise to a vanishing inhomogeneous
term and hence we proceed to the second derivative
and find

1

i —e, ———Gt(k, t) =8(t) —yJ XL (k, t) .
. 8 Js" s
Bt 2

'
2N

i——co, L,(k t) =8(t) (q) {[a„+„,HI, a,'l&(0&+(—i)e(t) (q( [[[ak+,t H1,Hi, akjII0&e
'"'

(22)

The inhomogeneous term is readily seen to be 8(t) [—yJ(s/2X)'i2]. The next term is expanded out and after
taking the commutator with 0we obtain a very long expression. %e have found it possible to evaluate it exactly
by using the following identities involving the Heisenberg operatorS S (t):

(q(S*,(t) =sJ1V 8-, , (q~ —- e' " " ' '(p+q( (23)
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(q [$:p(t) = e ' J2s 5, ~-, (((0[ (24)

Using these we find, after tedious algebra, the following expression for the Fourier transform of L:

(

(«( —«(~) —eke& —— L&(k, «() =-Js
2

t
(/2

yJ +
2N XLp(k «() &k+q+ek+p+«(p «(((+ +(y —1)Js

1(/2 T

—yJ G((k, «() ek+ +ek —«( +-S J (25)

The exact solution of the problem rests on the obser- .

vation that L~ can be expressed in terms of G( (and
L ) alone. In order to proceed further, we define a

e
vertex function E~ through the relation

where the self-energy is given by

J2s
X(k, «() = y'—XE,(k, (0)

2N
q

(28)

L (k, ) =—y(J's/2N)'('Gi(k, «()E (k, «() (26)

%e can find an equation for E, by combining Eqs.
(25) and (26). It is convenient to factor out an ener-

gy denominator and define a reduced vertex function
I, through

Combining with (21) we find

Gi ( (k, «() = [«( —ek —Js/2 —X(k, «() ) (, (27)

I', (k, ~)
E,(k, «() =

«( «(& —ek+& + JS/2

where I ~ obeys a linear integral equation

(29)

J Ip(k, «()
r, (k, ) —1—

2N & «( —
cd&

—eke +Js/2

J I ((k, «()
I ——XI ((k, ~) +——X- -- — — . (30)

2(«( —«(& + sky& —Js/2) N, 2N ( «( —(0( —ek+(+ Js/2

On summing over q we find

J I",(k, «() 1—Xr, (k, «() —1 — X 1+ X— -- =-0 .
N

& 2N
&

«( «(& ek+&+ Js/2 ' 2N
&

«( «(&+ ek~q Js/2
(31)

The second bracket in the LHS is nonzero in general
and the solution is seen to be I', (k, «() = I'(k, «(),
i.e., independent of q. Therefore,

I'(k, «() = 1+—A(k, «()
J

where A is given in (13). Combining with (29) and
(2S) we find

, J2s A(k, «()

2 I+(J/2)A(k, )
(33)

Equation (33) combined with (27) and (26) essential-
ly completes the formal solution of the Green's func-
tions. It is seen that the equation Gt '(k, «() =0

coincides with Eq. (12) and hence the Green's func-
tion has a branch cut at the scattering solutions and
an isolated pole at the bound state.

In Secs. IV and V we evaluate the various integrals
for a simple band structure and a simplified spin-
wave dispersion.

IV. SIMPLE SAND STRUCTURE

In this section we introduce a simple parabolic elec-
tron band structure and parabolic spin-wave disper-
sion which enables us to carry out most of the re-
quired integrals analytically. The Brillouin zone is
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further replaced by a sphere of radius q such that
the volume ih conserved. The spectra are then com-
pletely specified by the bandwidth 8'of the conduc-
tion electrons and the maximum magnon energy ~ .
This approximation is very good for states at the bot-
tom of the conduction band and is expected to be
reasonable throughout the range of relevant energies.

It fails at high energies because of neglect of the ap-
propriate van Hove singularities —but that is of little
consequence to the problem at hand.

We first address ourselves to the evaluation of
A(k, cu) [Eq. (13)]. Writing uk = Wk~, cuu = cu q2

(i.e., moments in units of the maximum wave vector
q ) we may write

1

A(k, cu) = —X
'

k ———cu —i0 + q(cu + W) i—~~ W.
2 q o)~+ 8' 2

'2] —1'
kW

( .+w)'i'
c

(34)

In this equation we shift q by an appropriate amount
to eliminate the term linear in k in the denominator
and then restrict the new sum over q to q ( q . This
approximation is expected to be fair for values of
k && q . We define a new variable

I

and

J's
J J21+—A] +—A2
2 4

(43)

Js
Pk = CjO+ 6k

2 o)~+ W

in terms of which we get

(35) The spectral weight function is defined as

pl(k, cu) = ——ImGl(k, cu)
1 (44)

A(k, cu) =—,. (36)1 1

N
u (W+cu )q2 —vk —iv)

and is given as

pl(k, m)

Separating into real and imaginary parts we find

A=A)+i A2

A2(k, «)=,i, vg"e(vk)
2 W+cu

x e( W+ cuuc
—vk)

(37)

(3s)

0+—X2(k, cu)
c

1

[0+—X2(k, cu) ] + cu —uk ———X&(k, cu)

I i

(45)

In terms of pt(k, cu) the downspin quasiparticle pic-
ture can be given a quantitative meaning. It obeys
the normalization condition

~k &0:
lvkl'"

Ai(k, cu) = 1—
( w+ .) ( w+ .)»'

W+ o)~x tan (39)

~OO

pt(k, cu)dcu= 1

and further, a density of states may be defined as

pt(cu) =—Xpl(k, cu)
1

N k

(46)

(47)

~k +0:
1/2

In Sec. V we present detailed numerical results for
the various quantities listed above.

At(k, cu) = I —— Vk

(W+cu ) 2 W+cu

Qw+cu~+~vk
xln

)Q w+ ~ —~i„)

In terms of A~ and A2 we find the self-energy

X(k, cu) -Xt+i X2

1+—Ai
J
2

Xi= Jsy 2

J J
1 +—A) +—A22

2 4

(40)

(41)

(42)

V. RESUI TS

In this section we present the computational-results
for the down-spin density of states and the quasipar-
ticle spectral weights for values of parameters that
may be regarded as typical of the rare-earth chal-
cogenide family. We choose the parameters (Ref.
16):

J =0.2 eV, W=2 eU, cu =0.002 eV, s =—7

(4s)

The unit of energy is chosen by setting (J ~
=1 (hence
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W'=10, m =0.01). The two case J =+1 and
J =—1 are discussed separately.

0.8—

0.7-

A. J &0

This case is believed to be appropriate to several
materials in the rare-earth chalcogenide family. In
Fig. 2, we plot the spectral weight function for k =0
(i.e., band bottom). Several features are worth not-
ing about Fig. 2: the spectral weight is largely dom-
inated by the broad peak located at approximately the
Hartree value (the Hartree approximation yields a
delta function at cu = sk+ Js/2). The bound state lies
above the band edge and has very little spectral
weight since the area under the scattering state con-
tribution almost saturates the sum rule, Eq. (46). It
may, anyhow, be the artifact of our sharp cutoff at
q . The scattering continuum extends down to the
bottom of the spin-up conduction band implying- that
the total density of states of the down-spin band has
a lower threshold than the Hartree value. The fact
that the quasiparticle peak is fairly sharp (it has a
width yq = y J /IV x const) lends some meaning,
however, to the Hartree approximation, although not
at the lowest energies or temperature. We discuss
this further in Sec. VIB.

In Fig. 3 we plot the spectral weight for a sequence
of band energies (ak = O,J, 3J) to illustrate the quali-

tative trend. It is seen that the linewidths increase
with increasing k which is related to the greater phase

0.6-

3 05-
a

0.4—

BOUND
STATE~

0.2-

space available for emission of a magnon. In all
cases, the Hartree approximation does reasonably
well in locating the peaks.

In Fig. 4 we present the total density of states for
the down-spin band and compare with the up-spin
band and the Hartree approximation. The remark-
able feature is the nonvanisging density of states at

O.l-
I I I ~

'
- J.

0 I 2 5 4 5 6 7 8 9 lO

cu/0+ 0/2

FIG. 2. Down-ipin spectral weight for k =0, J & 0. The
Hartree approximation reproduces the peak position reason-
ably but predicts a delta function spectrum. The bound state
above the conduction band in this case is.irrelevant since
there is very little area under it. The half-width of the dis-
tribution characterizes the rate at which a spin-down elec-
tron decays into spin up, with a magnon being emitted (see
text).

0.7

0.5

0.5
3

0y

0.5

0.2

O. I

-I 75 -I 0 I 2 3 4 5
QJ/ J

5 7 8 9 IO

FIG. 3. Down-spin spectral weight for J & 0 at a series of values for ~k/8'(=O, J, 3J). The Hartree approximation is accurate
in predicting the peak positions. The linewidths, i.e., decay rates increase with increasing ~k/J.
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1.2

I.I

~o 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.5
0.2
O. l

0 I 2 3 4 5 6 7 8 9 IOII 12131415 16

2.8—
2.6—
2.4—

3 22
2.0
1.8
1,6
1.4—
1.2

I.O

0.8
0.6
0 4
0.2

-2 -I

REE

I I

I 2
fsJlJ

4)/J + s/2

FIG. 4. Total density of states for spin-up and spin-down
quasiparticles for J & 0 contrasted with the Hartree result.
Notice that the down-spin density is nonzero where the Har-
tree approximation shows a spurious gap.

energies below the Hartree threshold. In fact, it is
seen that there is no "gap" in the spectrum at all.
Although at higher energies the Hartree density of
states is fairly close to the exact result, it is only the
lowest part of the spectrum which counts at low tem-
perature and this part is never given correctly in the
Hartree picture.

FIG. 5. Down-spin spectral weight for J & 0 for k =0,
corresponding to the polaronic state. The width of the peak
is artificially produced by adding a small imaginary part to
the frequency. In reality the bound state near —2 is a 5
function and accounts for almost all the spectral weight.
(Note change in vertical scale compared to Fig. 2.) In com-
paring this case (J (0) with Fig. 2 (J & 0), note the three-
fold change in vertical scale.

J & 0. In the former case J & 0, important for the
chalcogenides, the spectral ~eight is roughly a
Lorentzian peak of width ~y'J2/ W located at approx-
imately the Hartree value for the energy.

B. J&0

J2
~g =1.S—8' (49)

independent of k. This formula works reasonably for
the binding energy at small k, for the parameters in
Eq. (48).

To summarize, we find that scattering states dom-
inate the spectral weight for ferromagnetic J & 0, and
that the bound state dominates for antiferromagnetic

In this case the up-spin band is pushed up and the
down-spin band is lowered in energy. Figure 5 shows
the quasiparticle spectral weight for k =0 (i.e. , states
at the bottom of the band). In this case the bound
state lies below the scattering states and in fact ex-
hausts most of the spectral weight. %e have intro-
duced a small imaginary part to the frequency in or-
der to display the spectrum, for in reality, the bound
state is a 5 function. The position of the peak lies
below the Hartree value by a small amount which we
denote by as (the binding energy). The binding en-

ergy can in fact be found analytically in the weak
coupling limit 1J ~

&& W where we find

VI. DISCUSSION AND CONCLUSIONS

A. Sum rules

((o)k —— supt(k, cu)du=ok+ Js/2

The analyticity of Gt(k, co) in the upper half plane
implies

(~ac )
Gi(k, cu) = —+ +0

co~oo QJ Cd QP

(51)

From our equation for Gi(k, co) [Eqs. (27) and
(33)], we see that Eq. (50) satisfied exactly [since
X(ro) =„y2J s/oP+O(1/r»2)]. Now it has been
argued that since the bound state does not fulfill the
sum rule, other states must lie beneath the bound
state for J & 0. In fact, these states are precisely the
scattering states discussed at length in Secs. II, IV,
and V.

It is easy to show (Ref. 16) that the spectral weight
obeys several sum rules, one of which reads
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$. Meaning of a nonvanishing pl(k, ~)

pt(x, t) =
I Gi(x, t) I' (52)

pf(x, t) = IL,(x, t) I',1
(53)

We have seen in Secs. III, IV, and V that the na-
ture of bound states is very different from those of
scattering states. A nonvanishing pt(k, co) simply
implies the existence of an eigenstate and we need to
inquire further, whether it is an isolated peak or part
of a continuum. In the present example we are for-
tunate in that the wave functions" as well as the
spectral weights are available. Our main conclusion,
in this regard, is that for a bound state (i.e., an isolat-
ed peak) a nonvanishing pt(k, cu) is indicative of the
existence and persistence of a down-spin state. How-
ever, in the case of scattering states a nonvanishing
pt(k, co) does not imply a spin-down electron at alL

From Eq. (14) we see that a scattering state yields
1/2(o.*) =1/2 —0(1/1V) and hence, if the electron
spin could be measured, as in a "gedanken" emis-
sion followed by a polarization analysis, we would
find the spin to be up. This state contains just a
small admixture of the spin-down state, sufficient to
be an eigenstate of H.

It is natural to query, in connection with the above,
the results of a gedanken wave-packet experiment. If
we construct, at t =0, a pure spin-down state
e' " ' " (~) such a state evolves under the Hamiltonian
into one with spin down as weil as spin up at a later
time. The probability amplitudes at subsequent times
are given in terms of a convolution with the Green's
function which were calculated in Sec. II. The proba-
bility densities may be readily found to be

malizes to unity, i.e., the down-spin electron gets
converted to one with spin up and appropriate mag-
nons are emitted. The number of lattice points the
down spin transverses before converting to an up-
spin state is of the order ( W/y J)2. For typical values
[Eq. (48)] this implies that for J )0 a down-spin
electron irected into the semiconductor would
transverse —100 lattice constants before converting
to an up-spin state. This of course means that thin
films would be partially "transparent" to spin-down
electrons but bulk materials would not be. In con-
clusion we may view the criterion for validity of the
Hartree picture as ( W/yJ) « JL when L is the
length of the sample. Thus, the Hartree approxima-
tions must fail for bulk systems. For thin films and
sandwiches, the physics is reasonably accounted for
by the Hartree picture, as it is in the case of J & 0.

C. Relevance to photoemission experiments

In Sec. VI B above, we have elaborated in some de-
tail, the physical significance of the down-spin spec-
tral function in order to address the question of spin
polarized photoemission. As mentioned in the Intro-
duction, several experiments have established that
electrons emitted from ferromagnetic EuO, EuS
where J )0 do not show the expected 100% spin po-
larization. But, electrons in the scattering states have
in reality spin up, with a vanishingly small admixture
of spin down. Hence the explanation must lie else-
where; the possibility of surface paramagnetic impuri-
ties seems to be the most promising one, and effects
of thermal fluctuations at T )0 also should decrease
the observed polarization. Finally, the photoemitted
particles may not have had time to convert before be-
ing emitted from a thin film.

where pI" is conditional to emission of a magnon
with wave vector q. Now, the analyticity of 6 in the
upper half plane implies that we may write

Gt(k, t) ~ e+'"'pt(k, c )d~ (54)

and hence the scattering states correspond to
~k'

pt(x, t) cc e ", i.e., a decay to the spin "up" config-
uration after a characteristic (life) time W/y'J'.
Conservation of probability implies that at any time t,
the space integrals over [pt(x, t) + X,pI~~(x, t) ] nor-
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