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%e investigate the relation between magnon, magnon bound states, and the classical soliton
solutions in the isotropic, the anisotropic-exchange, and the easy-'axis ferromagnetic Heisenberg
chains. The Dyson-Maleev boson representation is used to study the interaction between mag-

nons, and bound states are investigated in terms of two-spin Green's functions. For easy-axis
and anisotropic-exchange magnets, a mapping to the Bose gas with attractive 8-function interac-
tions is established, and it yields the eigenvalues of the magnon and the m th bound state in the
weak-coupling and continuum limits. The classical limit of the two-spin Green's function re-
veals that, to leading order in temperature, the bound-state resonance and the associated effects
on the two-magnon continuum survives. An important result is a T dependence of the "bind-
ing" energy of the bound-state resonance. As a consequence, in a classical description the
bound states enter only in order T . Finally, we quantize the soliton solutions according to the

Bohr-Sommerfeld and de Broglie rules. This approach is found to be exact for the s =
2

isotropic Heisenberg chain and for sufficiently small wave numbers for all s values. In the

anisotropic-exchange and easy-axis models, it agrees with the results obtained from the mapping

on the Bose gas, for large quantum numbers and in the easy-axis case for s ))
2

in addition.

On this basis, we conclude that the envelope solitons considered here lead to bound-state reso-
nances and associated effects in a classical treatment. Moreover, their semiclassical quantization

gives remarkably accurate energy levels.

I. INTRODUCTION

The quantum and classical properties of ferromag-
netic linear chains, including the eigenvalue spec-
trum, the soliton features, the dynamics and thermo-
dynamics, are important subjects of theoretical and
experimental studies. '

Classical results include: transfer integral calcula-
tions for thermodynamic quantities and static correla-
tion functions, '~ computer simulations of dynamic
properties, ' exact results for the dynamics in the
isotropic Heisenberg chain at low temperatures to
leading order in T, 9 computer simulations of continu-

, um models, revealing soliton characteristics, ' "and
discovery of the exact integrability of various contin-
uum models by means of the inverse-scattering
method. '2 "

The quantum aspects have been studied extensive-
ly since the pioneering work of Bethe in 1931 (Ref.
14) on the spin- —, Heisenberg chain. He classified

the states in terms of magnons and magnon bound
states. The lattice method developed by Baxter for
the eight-vertex model, inspired by Bethe's eigen-
functions, also led to the eigenfunctions and the
eigenvalue spectrum of the spin- —, LYZ model by

Baxter, "Sutherland, '6 and by Johnson, Krinsky and
McCoy. " Recently, a close connection between
Baxter's technique and the quantum-mechanical ex-

easy-axis Heisenberg chain (EAH)

X=—J XSI+) SI —D x (Sl*)2+h X Sf (2)

with

D~O;
and anisotropic-exchange Heisenberg (AEH)

(3)

X=—J X ~I*+i&I*+ (Sl"+1S'+Sr+—1SI) +" X
i 1 i 1

with

S; denotes the spin operator at the ith site, and a fer-

tension of the inverse-scattering method has been es-
tablished. .

'8'
In this paper, we make a comparative study of

some classical and quantum aspects of discrete and
continuum Heisenberg ferromagnetic chains. The
discrete versions are defined by the Hamiltonians:
isotropic Heisenberg chain (IH)

N N

X=—J XS;+) S;+h $S;*;
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romagnetic coupling

J&0 (6)

is assumed.
Since the Hamiltonians given by Eqs. (1), (2), and

(4) commute with the total z component of the spin

AEH:

J gS +1 —g
2 Bx g

es" Os~+
Bx Bx

m, p= XS,*—So
i

so that

(7)
The classical vector field S(x) satisfies

S(x)'=S', (16)

[gC, m, p] =0,
the stationary states can be classified according to the
eigenvalues of m p

and the length will be measured in units of the lattice
spacing. The equation of motion for the classical
spin field is '

m=0, 1, 2, . . . (9) ~dS =S
dt

denoting the number of spin deviations. So [Eq. (7)]
corresponds to the ground state, so that

1So= —sN, s= —,1, . . . (10)

H=
i Hdx

~here the Hamiltonian densities are given by IH:

'2

e=—' " +~s
2 Qx

EAH:

'2

H=-J 9S
2 Qx

—D (S') z + hS*, (14)

m =0 corresponds to the ground state, and the m = 1

space is diagonalized by simple magnons. For the IH
and the AEH models, m =2 corresponds to a two-
magnon-exchange bound state, as shown by Bethe, '4

Wortis, ' and Hanus" for the IH, and by Orbach22

and Gochev for the AEH. In the IH, also the
m =3, 24 and in the AEH, even the m th bound-state
energies have been derived. The m =2, 3, 4, 5
bound states have been observed by Torrance and
Tinkham2' in the strongly anisotropic chain
CoC1 2H20, which seems to be well described by the
s =

2
AEH model. The m =2 bound states of the

EAH have been studied by Silberglitt and Torrance. 2

There is an exchange and a single-ion bound state.
Recently, the AEH with s = —, was also treated with

the quantum inverse-scattering method. '9

The.classical and continuum limit of the Hamil-
tonian [Eqs. (1), (2), and (4)] is obtained by replac-
ing the spin operators S( by vectors with slowly vary-

ing orientations from site to site, so that

8S(x)S(,1
—S( —— a

Bx

and

which is, according to Eqs. (13)—(15) dispersive and
nonlinear.

A remarkable feature of the classical equation of
motion associated with the continuum version of the
IH-, AEH-, and EAH-continuum systems is the exact
integrability, as demonstrated by the inverse-
scattering transform. ' ' In fact, the systems con-
sidered here represent special cases of the exactly in-
tegrable Landau-Lifshitz model. " Accordingly, there
exist one-soliton and multisoliton solutions, the
Hamiltonians can be expressed in terms of action an-
gle variables and an infinite series of constants of
motion can be constructed. '

This short and certainly incomplete revie~ is
enough to indicate that the IH, the EAH, and the
'AEH chains represent suitable models to investigate
the connection between the quantum-mechanical ex-
citation spectrum and the soliton solutions of the as-
sociated classical continuum models. The purpose of
the paper is to clarify this connection. In Sec. II A,
we use the Dyson-Maleev boson representation
of the Hamiltonians, classify the states, and revie~
the one- and two-spin deviation problems from the
point of view of the eigenvalue spectrum. In Sec.
II B, we introduce a two-spin Green's function to
study the two-magnon bound states and some of
their implications at T =0. In Sec. IIC, wc treat the
continuum and weak-coupling limits and establish the
mapping of the AEH and EAH model~ on .ne Bose
gas with attractive 8-function interaction. On this
basis, the eigenvalues of the m th bound state can be
calculated. Section II D is devoted to the classical
and low-temperature limits. It is shown that the
bound-state resonance in the imaginary part of the
two-spin Green's function survives the classical limit.
Its separation from the bottom of the two-magnon
continuum is shown to be proportional to T2. More-
over, as in the quantum case, the presence of the
bound-state resonance removes the singularities oc-
curring in the noninteracting case at the bottom and
top of the two-magnon continuum. The T2 depen-
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dence of the bound-state resonance implies that, in
calculations of the magnon self-energy, performed to
order T only, 9 the bound-state effects, resulting from
the nonlinearities (solitons) are not yet included.

In Sec. III A, we consider the classical continuum
counterparts of the IH, AEH, and EAH models, and
summarize those properties of the one-soliton solu-
tions, necessary to quantize them according to the
Bohr-Sommerfeld —de Broglie rules. This quantiza-
tion of the classical one-soliton solutions is per-
formed in Sec. IIIB. In the IH model, for s = —, we

find exact agreement with the full quantum results.
We also substantiate the conjecture that the agree-
ment remains for general s, provided the wave
number is sufficiently small. In the AEH and EAH
models, the agreement with the quantum results, as
obtained from the mapping to the Bose gas in the
continuum and weak-coupling limit, is complete for
large quantum numbers m, and in the EAH case, for
s && 2, in addition.

We conclude, therefore, that the envelope soliton
solutions considered here give rise to bound-state
resonances and associated effects in a classical treat-
ment. These effects include the removal of square-
root singularities in the continuum of the two-spin
Green's function and well-behaved magnon self-
energies. In fact, the existence of well-defined mag-
non resonances at finite temperature can be ex-
plained only by taking the "bound states" into ac-
count. Moreover, the semiclassical quantization of
the envelope soliton. solutions leads to remarkable
agreement with the exact energy eigenstates. Be-
cause the existence of the bound states in the IH,
AEH, and EAH models is not restricted to one space
dimension, ' we conjecture that the bound-state
soliton correspondence might also persist in the two-
and three-dimensional counterparts. In these dimen-
sions, however, soliton solutions have not yet been
found.

found to survive the classical limit, but the binding
energy is proportional to T', in leading order.

A. Dyson-Maleev representation and
classification of the states

The Dyson-Maleev transformation gives a
correspondence between any operator 0 on the Hil-
bert space of the spin system, and an operator 0 on a
boson Hilbert space. In particular, for the spin
operators we have the following corresponding boson
operators:

S = —s+a;a; (lg)

S,t =S,"+iS»= (2s)'/2a;t I—
S

S& =S~—iS; = (2s)' a;

where

[a,,a/] =81/, [al,a/] =[a, ,a/] =0t t t

(20)

(21)

A limitation of this transformation consists in un-
physical states, where a given spin may effectively be
flipped more than 2s+1 times. This issue will be
discussed in Sec. IIB.

Using the Fourier transformation

a(= g~e- ak,—ikl

N
(22)

+ X v(kl k2~q)ao/2+k ao/2-k(
k~,k

q/2+k2 q/2-k2 (23)

we write the Hamiltonians (I), (2), and (4) in terms
of bosons, and obtain

+=~o+ Xkak ak.
k

II. MAGNONS AND BOUND STATES

In Sec. II A, we introduce the Dyson-Maleev
representation and summarize the classification of
the states of the model system in terms of magnons
and bound states. Two-spin Green's functions are
introduced in Sec. IIB to study the two-magnon
bound states and their implications at T =0. Contin-
uum and weak-coupling limits and the mappings on
the Bose gas with attractive 8-function interaction are
considered in Sec. IIC. In these limits, the eigen-
value spectrum for the AEH and EAH systems is
determined for the mth bound state and any s value.
In Sec. II D, we discuss the classical limit of the two-
spin Green's function in the continuum and weak-
coupling limits for the AEH and EAH models to
leading order in T. The bound-state resonance is

where the corresponding ground-state energies and
magnon frequencies ~k are listed in Table I. The
magnon interactions v(k~, k2, q) are listed in Table II.
Since the Hamiltonian commutes with
m„= g,. (S,*—So ) [Eq. (7)], the states of the system

can be classified according to the eigenvalues m of
m,„, representing the number of spin deviations.
m =0 corresponds to the ground state Eo, and the
m = 1 space is diagonalized by the magnons with fre-
quency co~, as listed in Table I.

For the IH and AEH chains, the m &1 states cor-
respond to m-magnon-exchange bound states, resu1t-
ing from the magnon interaction v(k~, k2, q). The as-
sociated bound-state energies were obtained by solv-
ing the associated Schrodinger equation by the I;-

matrix or Green's-function techniques. ' ' "Some
results for the exchange bound-state frequencies for
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TABLE I. Magnon frequencies 0)~ and ground-state energies Ep.

Ep

IH

EAH

h + 2JS (1 —cosq)

h +2D (s ——) +2Js (1 —cosq)
1

2

—JN 2 —hNs

—JNs2 —DNs 2 —hNs

AEH
1

h +2Js 1 ——cosq
J——Ns2 —hNs
g

1

case(q) =2h + 2J 1 ——cos—q
1

g 2
(24)

s = —, are summarized in Tables III and IV. The

two-magnon bound-state frequency may be compared
with the bottom of the two-magnon continuum,
which occurs for the AEH and s = —, at1

to

J for q =n. (27)

In the AEH model, however, there is a gap in the
magnon spectrum, so that the binding energy ranges
from

The two-magnon bound state lies lower than this by a
binding "energy"

to

J1—— for q=01 (28)

~B(q) ~BC(q) ~ -2«) J for q =or (29)

( f t

=2J 1 ——cos—q —J 1 ——cos' —q . (25)1 1

g 2 g 2 2

In the IH, where g =1, the binding energy ranges
from

4 J(
2

q)4 for q &( 1

The small-q behavior of the binding energy reveals
that the two-magnon-exchange bound states appear
for arbitrarily small wave numbers. Hence, there is
no range of momentum space where the associated
nonlinearities can be neglected.

In the EAH chain, the bound-state problem is
more complicated, due to the presence of the single-
ion anisotropy. This case and the extension to gen-
eral s values will be considered in Sec. II B.

TABLE II. -Magnon interactions [Eq. (23)j.

v(k&, k2, q)

TABLE III. Frequencies of the two- and three-magnon-

exchange bound states in the IH for s =
2

(Refs. 14, 20,
1

and 21). For comparison, we included the magnon frequen-
cy (m =1).

1—Jcosk2(cosk~ —cos
2 q

EAH

AEH

1—Jcosk2(cosk) —cos
2 q) —D

1—J cosk2 cosk& ——cos—q

h +J(1—cosq)

2h +
2
J(1—cosq)

3 h +—J(1 —cosq)
1

3
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TABLE IV, Frequencies of the two- and three-magnon-

exchange bound states in the AEH for s =
2

(Refs. 22, 23,
1

and 25). For comparison, we included the magnon frequen-
cy (m =1).

description can be clarified.
We consider the Green's function

G (q, rv) = ((aq/2+paq/2 p', a a ) ) (30)

which, according to Eq. (20), is related to the two-
spin Green's function by

1h+ J 1 ——cosq ((S» Sq:p;St St, ) ) =4s'G, (q, cu) (31)
'1

2h +J 1 ——cos2—
q

1

g2 2

1 2g+cosq3h+J1 ——
4g2 —1

where we neglected the a ata term in Eq. (19). The
equation of motion reads"

1—coG (q, o)) = ([aq/2+paq/2 p, a a ])

B. Two-spin Green's function approach + (([aq/2+paq/2 »X]'a
/
-~a

/2
~ ) )

For our purpose, it is most convenient to study the
bound-state problem in terms of the singularities of
the two-spin Green's function. In fact, on this basis
the significance of m =2 bound states in a classical

(32)

The exact result for the Green's function on the right-
hand side is

( ( [aq/2+paq/2 pX]'a &—a & ) )t

2(~q/2+» + qq /2- )G, (q, qq ) +—g u (//, k2, q )G, ( q, ~ )
2

+—X u(k], k2, q )(8 ((a aq/2~»a, a;a a ))
k),k2q

t",/2;, /2. k, ( (', /2 k, "/2 ",/2-, ', / -k,",/2-,/2-, »-
and the commutator term yields

([aq/2+paq/2 p a
/2+

ta
/2

I ]) =(8 I+8 i)(1+ (aq/2+paq/2+p) + (aq/2 —paq/2 p)) (34)

At low temperature, we may decouple the six-particle Green's function in Eq. (33), according to

((a i aq/2+pa I a;a ia i)) =8 i8-k, +pnq/2+»Gk ' q (35)

where

np ——(ap ap) p
= (expPcop —1) ' (36)

Here, we neglected the other two decoupling terms
corresponding to the pairing of at with the other two
operators. It is easily verified that these terms are
proportional to 6 and merely renormalize the bare

pp

magnon frequencies in the first term of Eq. (33).
The equation of motion (32) then reduces to the in-

GO
1 + P2q/2+p + flfI/

OJ + Gt)q/2+p + QJq/2 p

(38)

I

tegral equation

G, (q, ~) = G~q(q, cu)8

2m+ G~(q, co) Xv(p, k2, q) G (q, ru)
N

2

(37)

where
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The decoupling [Eq. (35)] and the resulting integral
equation (37) are exact at T =0, due to the antinor-
mal ordering of the operators, and the fact that the
ground state is the boson vacuum. For finite but low

temperatures, the approximation is valid to leading
order in a magnon-density expansion.

In this section, we consider the zero-temperature
case only, where ns =0 [Eq. (36)1. Introducing the

kernel

u(ki, kq, q) = J—coskq coski ——cos q-D—, (39)1

g 2

which includes the IH, EAH, and AEH kernels as
special cases (Table II), the solution of the integral
equation (37) is readily obtained,

Go(q, ru) [1 +2n JR (q, co) ] —2 m JC (q, cu) 8 (q, co)

1+L (q, a))
(40)

tG(e, , = ~a p ~a n ~, Xa p a I~ ~)) (41)

Go(q, cu) =—XG~(q, ao), Gss(q, co) = ———1 0 0 1 1

N P 1F OJ + Ct)g/2+P + Cdq/2

(42)

8(q, cu) =—XGss(q, co) cosp, C(q, ra) =—XGss(q, co) cosp ——cos q—1 0 1 o 1

P P

R(q, ao) = —XG (q, cu) cosp cosp ——cos—q
1 0 1

w g 2
P

1 + L ( q, ru) = [I + 2 n DG0( q, co) ] [ I +2 n JR (q, co) ] 4''JDC (q—, ~)8 (q, cu) (44)

ro =h+2D(s ——+2Js 1 ——cosq
1 1

P 2
(45)

To estimate the limitations of Dyson-Maleev representation [Eqs. (18)—(20)], namely, the appearance of unphys-
ical states where a spin may effectively be flipped more than 2s +1 times, we calculated the Green's function de-
fined by Eq. (31) also direct at T =0, again using the equation-of-motion technique. Following Wortis, we ob-
tain

SqP+PSq/2 p' S
/

tS
/

I = si e' ', sI e
P P q

2 1=4s~ 1 ——G(q, cu)
2$

where G(q, ~) is given by Eq. (40). From Eqs. (19), (20), (30), and (31), it is seen that the (1 —I/2s) pre-
factor is missing by using the Dyson-Maleev representation and by neglecting the a a a terms in Eq. (19). We
note, however, that the inclusion of this term leads to Eq. (46) so that the Dyson-Maleev representation becomes
exact at T =0 and even for s =—.7

2'
To unravel the resonance structure of the imaginary part of G(q, ro) we substitute

Cal ~CO —I C (47)

and perform the sums in terms of integrals. Setting D =0, we obtain

G "(1+2m JR ') +4m ~J~R "C'8' —2n' J(1 +2m JR ') ( C'8" +8'C")
(I +2~JR')'+4~'J'R" (48)
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—cv «2h +4JS I ——cos—q = case(q)
1 1

g 2

where

8"(q, «)) = G"(q, o)) a (q, co)

C"(q, a)) =G'"(q, o)) a(q, «)) ——cos ,'q-
g

(49)
8—

I

o
0 4—

2—

0

R "(q, cu) = G"(q, cu) a(q, a)) a(q, co) ——cos 'q—

(50)

G«" (q, m) = —— cos—q [1 —a'(q co) ] ' '4JS
g

(51)

FIG. 1. Frequency dependence of the imaginary part of
the two-spin Green's function [Eq. (51)] for the AEH chain
for s =1, g =2, h =0, and q =0. The square-root singulari-
ties occur at ~/J =2 and 6. These values correspond to the
bottom and top of the two-magnon continuum,

ao+2h +4JS
a q, co =g

4JS cos—q

8 (q, cv) =C (q, co) =— cos-q1 4JS
g

R '(q, co) =8'( q, cu) a ( q, co) ——cos—'q

G«'(q, o)) =0

Belo~ the bottom of the continuum,

~ac(q)

we find

G"(q, —co) =—2n'JC'(q, —co)8'(q, —~)

(52)

(53)

From Eq. (54), we see that the energy of the two-

' ~

~

agnon-exchange bound state follows from the con-
ition

1+2m JR'(q, m) =0 (56)

In the noninteracting case G"(q, ra) [Eq. (51)] ex-
hibits square-root singularities at energies corre-
sponding to the bottom and top of the continuum.
These features are illustrated in Fig. 1 for the AEH
chain. The profound modifications resulting from
the interaction are seen in Fig. 2 for the same sys-
tem. Not only is there the bound-state resonance
[Eq. (56)], but also the continuum resonance is
dramatically modified, due to the removal of the
square-root singularities [Eq. (51)].

The bound-state energy resulting from Eq. (56) is

the easiest to calculate analytically when s = —,, in

x g(1+2m JR'(q, —co)), (54)

0.20—

8'(q, —«)C'(q, cu)

m4Js cos—q
1

a(q, ca)

[a'(q, co) —I ]'~'

1 1
cos2 q a(q, a))x l+—

g [a2(q, ru) —I]'~ [a (q, m) —I]'~2,

(55)

0.16—
3
I

0.1 2

0.08—

0.04—

0.02
4 6

(d

a(q, ~)
2n JR'(q, —ru) = ——1—

2s [a'(q, cu) —I]'~'

ga(q, «) '

x
1

cos2 q

FIG. 2. Frequency dependence of the imaginary part of
the two-spin Green's function fEqs. (48) and (54)], for the
AEH chain for s =1, g =2, h =0, and q =0. The 5 func-
tion represents the bound-state resonance occurring at
(u/J =0.75 [Eq. (S7)].
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which case we find

—cu=2h +J 1 ——cos —q'
g2 2

(57)

As pointed out by Silberglitt and Torrance, there
are two bound-state solutions for q 40. This is easi-
est to show for q = m, where C(q, cu) and 8(q, &o) in

Eq. (44) vanish. From Eqs. (45), (46), and (58), we

find

consistent with the corresponding expression given in

Table III.
In the IH chain (g =1), the effect of the bound-

state resonance on G"(q, f«) is quite similar to g &0.
For q = 0, however, there is no bound state in this
case [Eqs. (24) —(27)].

Finally, we turn to the EAH chain, where D &0
and g =1. Here, in analogy to Eq. (56), the bound-
state frequencies follow from

I +L'(q, —co) =0

~0+ X~kakuk
k

where

q/&+k q/&-k) ~q/2+k ~q/2-k
k),k~, q

(64)

—D: EAHr= —J(l —1/g): AEH .
(65)

(66)

In this limit, the solution of the integral equation
(37) becomes trivial, because the originally nonlocal
interaction v(p, k~, q) becomes a constant. The solu-
tion is

Bose gas with attractive 8-function interactions. The
continuum limit is obtained by replacing the magnon
frequencies 'listed in Table I by the Taylor expanded
expressions up to second order. Moreover, we re-
place the interaction terms v(kq, kq, q) (Table II) by
their long-wavelength limits.

Hamiltonian (23) then simplifies to

and

—a)~ =2h +4Js +4D (s —
~ ) —J1

—o)~ „=2h+4Js+4D(s ——) —2D1

(59)

(60) where

G«(q, co)

1 —2n rG«(q, co)
(67)

At q =0, however, only the single-ion bound state
survives. In the weak-coupling limit defined by

«1,D
2Js

(62)

we find from Eqs. (44), (45), and (58), the solution
r 'I

D~ 1—cu~~ =2h +4D(s ——) — I ——
2Js 2s

(63)

corresponding to the energy of the single-ion bound
state. A numerical solution of Eq. (58) reveals that
for h =0, D = 1, and s = 1, the exchange bound state
does not appear until q & —m." The essential effects
of the bound states on G "(q, —««) are according to
Eq. (40), similar to those outlined in the AEH chain
(Figs 1and 2). .The appearance of the bound-state
resonances removes the square-root singularities oc-
curring in the continuum of the noninteracting case.

C. continuum and ~eak-coupling limits;
mappings to the Bose gas

The first expression is the energy of the two-
magnon-exchange bound state, while Eq. (60) corre-
sponds to the two-magnon single-ion bound-state en-
ergy. For q = m, the top and the bottom of the two-

magnon continuum merge to the single energy,

—«), =2h +4Js +4D(s —T~)

fa+h dp
G«(q, a)) =-

27/ QJ + o)q/gyp + cUq/p p
2 j

and according to Table I,

, (68)

h +2D(s —-) + Jsq~: EAH (69)
O)q=' 2

h +2Js(1 —I/g) +(Js/g)q~: AEH . (70)

6 denotes a cutoff. The bound-state condition (58)
then reduces for q =0 to

I —2srrG«'(0, —o)) =0 (71)

by replacing cu in Eq. (68) by co —i e Using Eq.s.
(68)—(71), we find for the bound-state frequencies,

2h +4D(s —
&

) —D /2Js: EAH (72)

2h +4Js(1 —I/g) —J(1—1/g)~g/2s: AEH

(73)

These results can now be compared with the corre-
sponding exact expressions given in Eqs. (57) and
(63), where relation (63) is valid only in the weak-
coupling limit (D/2Js « 1).

Considering first the EAH case, we see from Eqs.
(63) and (72) that the continuum limit is valid in the
weak-coupling limit for 2s && 1. The latter condition
can be removed by introducing the "renormalized"
single-ion anisotropy constant

In this section, we treat the continuum limit of the
AEH and IH models to establish a mapping on the

D D1 ——1

2s~,
(74)



24 SOLITONS AND MAGNON BOUND STATES IN FERROMAGNETIC HEISENBERG. . . 5335

in the D' term of Eq. (72). In the AEH case, we in-

troduce

g =2e2+1 (75)

and assume small exchange anistropy

e«1
In this case, Eq. (73) reduces to

(76)

—co =2& +SsJe 1 —26
1

4s2
(77)

This expression agrees for s = —, and to fourth order

in e with the expanded exact result [Eq. (57)].
In both cases, therefore, the continuum limit

reproduces the exact bound-state expressions at q =0
in the appropriate weak-coupling limits [Eqs. (62)
and (76)], where in the EAH case, D has to be re-
normalized [Eq. (74)]. This behavior may be under-
stood by recognizing that the continuum approxima-
tion assumes spatially slowly-varying spin fluctua-
tions, guaranteed only for weak coupling, or in other
words, close to the Heisenberg limit. The effect of
the bound state on the imaginary part of the Green's
function also becomes particularly transparent in this
limit. Using Eqs. (47) and (67), we find

For q =0, it follows from Eq. (68) that

Go"(0, —cu) =0, —o) (2cu~~,

Go'(0, —o)) =0, —o) )2',~,
so that for —co & 2aoq~,

(79)

G"(0, —o)) = 8(1+2nrGo'(0, —ro)), (80)
2 vlf,

G"(q, —ru)

Go"(q, —a))

[1 2n rGO'—(q, —ru) ]~+ [2rrrGO" (q, —cu)]2

(78)

and for co & 2~q~,

Go'(0, —a)G" 0, —~ '2
1+ 2mrGO"(0, —cu)

Equation (80) describes the bound-state resonances,
and Eq. (81) the modified resonance structure of the
two-magnon continuum at and above cu =2aoq~. The
denominator in Eq. (81) removes the square-root
singularities appearing for r =0. This behavior has
already been illustrated in Fig. 2, but the present
analysis extends the picture to the EAH model at

q =0.
Finally, we turn to the mapping of the AEH and

EAH models on the nonrelativistic m-body
Schrodinger equation with attractive 8-function in-
teraction. The Hamiltonian of this system reads

N
1 g2 N

X=ma+ X ——,—b X 8(x~ —x, )
i 1 2 ~+i j)i 1

(82)

t t
2

~ ~ q/2+k q/2-k ~q/2+k q 2 k2
k)k2q

(84)

which is equivalent to Eq. (64), with cok replaced by
the continuum expressions (69) and (70). This
equivalence establishes the mapping of the EAH and
AEH models to the Bose gas with attractive 5-
function interaction. Clearly, the mapping only holds
in the continuum and weak-coupling limits. Using

where m denotes the nuRber of Bose particles. The
associated Schrodinger equation has been solved ex-
actly by McGuire. " He finds that, in addition to the
elementary boson, the system possesses a single
bound state of m bosons for each value of m, with

energy

cu(m) =ma —
—,2

b2m(m~ —1) . (83)

In the second quantized form, the Hamiltonian (82)
reads

X =ma + Xk akak
k

TABLE V. Frequencies of the magnon (m =1) and m-magnon bound states for q =0, in the
weak-coupling [Eqs. (62), (75), and (76)] and continuum limits, according to the mapping on the
Bose gas with attractive 8-function interaction.

(q =0)

EAH
D2 1

mh +2mD (s —' —) ——m (m —1) 1 ——
Js 2s

AEH 2 (m2 1)e2
mh +4Jsm e 1 —2e—

12$
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Eqs. (64) —(66), (69), (70), (83), and (84), the fre-
quencies of the m th bound state in the EAH and
AEH systems are now readily calculated. The results
are given in Table V and are used later on for com-
parison with the Bohr-Sommerfeld quantized soliton
energies. Moreover, these results extend the former-
ly known s = —, bound states in the AEH model ' to

general s, and in the EAH model, the known single-
ion bound state to arbitrary bound-state configura-
tions.

D. Classical limit

n, = (expPa, —I) ' T
Mp

np+1 T.
COp

(85)

We note that solution (40) of the integral equation
(37) also holds at finite Tto leading order in the
magnon density, provided G~o~ in Eqs. (40) —(45) is
replaced by Eq. (38). The classical limit is then easily
obtained by setting

Substitution into Eq. (38) yields the classical result

G~, (q, co) =——o T 1 1 1+
q/2+p q/2-p + q/2+p + q/2-p

(86)
valid to leading order in T. It is important to em-
phasize that from a quantum-mechanical point of
view, Eqs. (85) and (86) represent a high-
temperature approximation (Pro, ((1). In this
sense, the classical limit becomes somewhat academic
at low T. Nevertheless, for theoretical, purposes, it is
still useful to consider the classical limit at low T, to
clarify the connection between quantum-mechanical
bound states and solitons, to compare with classical
low-temperature expansions, and to interpret
molecular-dynamics results. 6 The classical limit of
G(q, co) is then obtained by substituting Eq. (86)
into Eqs. (40)—(45). Because the condition for a
bound-state resonance remains unaltered [Eq. (58)],
it is clear that its occurrence in G(q, —m) will sur-
vive the classical limit. This is the most easily
demonstrated in the continuum and weak-coupling
limits for the AEH and EAH systems. From Eqs. (67),
(69)—(71), and (86), we find to leading order in T,

r

2h +8Jse 1 —2e ——2 2 6 T
4s2 h

r

D 12h +4D(s —-) — 1 ——
2Js 2s

AEH

2T: EAH
, 2h +4D(s ——,),

(87)

(88)

The existence of these solutions confirms the ex-
istence of two-magnon bound-state resonances in
G "(q, cu) in the classical limit. The only, but crucial,
difference from the quantum case at T =0, is the T
dependence of the binding energy for q & n. As a
consequence, any classical calculation of the magnon
self-energy needs to be correct at least to order T', to
include the bound-state effects. Thus, these effects
were not included in the work of Reiter and
Sjolander9 for the IH chain, where the magnon self-
energy was calculated to order T.

As illustrated in Fig. 3, the presence of the bound-
state resonances affects G"(q, a&) as in the quantum
treatment (Fig. 2) by removing the square-root
singularities appearing in the two-magnon continuum
by neglecting the magnon interaction. Moreover, the
high-frequency part of the continuum is considerably
reduced in comparison to the T =0 quantum case
(Fig. 2) due to the thermal weight 2 T/o&~.

At this point, it is important to emphasize again
that the bound-state resonance and the associated ef-
fects are a consequence of the magnon interaction or,
in other words, of the inherent nonlinearity, which

0.50—

3o3 025
C9

0 I

4

FIG. 3. Frequency dependence of the imaginary part of
the two-spin Green's function [Eqs. (48) and (86)] for the
AEH chain for T/J =0.1, h/J =0, s =1, g =2, and q =0 in

the classical limit. The "bound-state energy" is given by

co/J = 2 ——( TIJ)'.1

4
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also gives rise to the soliton solutions in the continu-
um limit. From the structure of G"(0, ao), it now
becomes clear that in the classical limit the origin of
the bound-state resonances and their effects on the
continuum may also be identified as soliton features.

TABLE VI. Boundary conditions and value of the
momentum Lagrange multiplier.

III. SOLITONS AND BOHR-SOMMBRFBLD-
DE BROGLIE QUANTIZATION

IH

AEH
EAH

@ =0
@ =0

e„=0, e=0
e =0, e=0
e„=0, e=0

WO

0
0

In Sec. III A, we consider the classical and continu-
um counterparts of the IH, AEH, and EAH chains,
and summarize those properties of the one-soliton
solutions necessary to perform the Bohr-Sommer-
feld —de Broglie quantization, outlined in Sec. III B.

and the equation of motion (17) reduces to

1 ~+ 1 s3'.tu =+—,t@=——
s S@ s Su

(92)

A. One-soliton solutions

The classical counterparts of the Heisenberg chains
treated in Sec. II, are defined by the Hamiltonian
densities given in Eqs. (13)—(15), the equation of
motion (17) and conditions (16) for the classical spin
field. A remarkable feature of all three models is the
exact integrability, ' "associated with soliton solu-
tions and an infinite number of conservation laws.

For our purpose, it is sufficient, however, to con-
sider the one-soliton solutions, and as far as con-
served quantities are concerned, we consider the en-
ergy, the magnetization, and the field momentum.
Introducing the polar coordinates

S = s [(I—u2) & cosP, ( I —u2) ~ sing, u], (89)

where

By symmetry, conserved quantities are the magneti-
zation [Eq. (8)],

M'=s (I —u) dx =—
i . dx1 ~BL

h
(93)

the field momentum

P= P„-. dx=st J dx@ (1 —u)J (94)

and the energy. Introducing the Lagrangian multi-

pliers 0 and v, the governing equations of motion
can also be obtained by minimizing'

I(II, y;u, $) =
~ Kdx —tIIM' —u(P —Pp) (95)

with respect to u and $. In fact, if we compare

sac 8$—stO + vhs =0
Su Su gX

u =cos8,

the Lagrange density is

(90)
5~ g3.'
S@ S@ Bx

(96)

L =ts(1 —u)P —K (91) with the equations of motion (92), we see that we are

TABLE VII. Energy E and magnetization M' associated with the one-soliton solution, consistent
with the boundary conditions given in Table VI.

IH

EAH

E= Js sin +hM'
4sk

2Ds
I i

' 1/2

E =4$ (2DJ) /
2D

'i/2 ' "i/2
2DsM'=4s arccosh

AEH As in EAH with D J 1 ——1
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essentially finding solutions of the solitary wave form

u(x, t) =u(x —vt), @=At+rp(x —vt)

turn frequency, ' valid for large m,

=n(E) .1 dE
A dm

(100)

The boundary conditions of interest and the value of
the Lagrange multiplier associated with the momen-
tum are given in Table VI. The resulting envelope
soliton solution in the IH model is well document-
ed ' ' and we merely quote the associated energy in
Table VII. In the EAH and AEH models, we consid-
er solitons with u =0 only (Table VI). The solution
consistent with the boundary conditions (Table VI),
together with the associated energy and magnetiza-
tion are given in Table VII. Up to the substitution
D ~J(1 —1/g) the results for the EAH and AEH
systems are identical. The soliton corresponds to a
bound kink-antikink pair, where the energy of the
sine-Gordon-like kink is given by 2S2(2DJ)' 2.

These kink solutions do not exist, however, for
e W0.33

B. Bohr-Sommerfeld —de Broglie quantization
of the solitons

In view of the fact that both the soliton solutions
of the classical equations of motion and the bound
states of the quantum-mechanical description are a
consequence of the nonlinearity, we expect the soli-
tons in the systems considered here to be closely re-
lated to the quantum bound states. This conjecture
has already been substantiated in Sec. II 0, ~here we
found that the bound-state resonance survives the
classical limit. Moreover, in the case of the IH
model, it was shown that the %KB quantization of
the envelope solitons leads to the quantum energy
states. ' Fortunately, there is a much simpler ap-
proach at hand for this, namely, the Bohr-Sommer-
feld —de Broglie quantization rules of the old quan-
tum theory.

In the EAH and AEH models, where the linear
momentum P does not enter the soliton energy
(Table VII), because we assumed u =0 (Table VI),
we might use the following Bohr-Sommerfeld quanti-
zation rule: If we have a family of periodic motions,
labeled by the period T = 2m/0, then an energy
eigenstate occurs whenever

Applying this formula to the EAH and AEH soli-
ton energies (Table VII) and using as a boundary
condition that E =0 for m =0, we find

i/2

E(m) =4s'42DJ tanh
t

(101)

The requirement of a positive classical oscillation fre-
quency leads to

&/2

m 2D
2S J (102)

so that the integers m can assume any value. This
property is very different from the sequence of quan-
tum states associated with the sine-Gordon breather,
~here m is bounded by the coupling constant. ' As
indicated in Table VII, Eqs. (9S) and (100) also apply
to the AEH model by replacing D by J(l —1/g).

The same quantum energy levels are obtained by
using the quantization rule

M'( 0) = m, m =0, 1, 2, . . . , (103)

P =hq (104)

TABLE VIII. Sequence of quantum states, obtained from
the Bohr-Sommerfeld —de Broglie quantization of the classi-
cal soliton solution (Table VII). In the EAH and AEH
models, the results correspond to the weak-coupling limit.
EAH: D/2JS «1 [Eq. (62)]; AEH: g =2e2+1, e2 «1
fEqs. (75) and (76)].

that is to say, the spin deviation can adopt only in-

teger values [Eqs. (7)—(9)]. From the soliton rela-
tions for M, (Table VII), one then obtains 0 = Q(m).
Substitution into the soliton energies yields E =E(m),
which turns out to be identical to Eq. (101), as
obtained from the Bohr-Sommerfeld procedure.

In the IH case, where the classical oscillation fre-
quency 0 has already been eliminated in the soliton
energy, we may simply use Eq. (103), and for the
momentum, the de Broglie rule

dt dx P&P =2@m
a! 0 aJ

m =0, 1, 2, 3, . . . , (98)
E(m)

where

P = . =tts(1 —u)
(jL (99)

IH

EAH

—Js3 sin2 —+ hm
16 . o

m 4s

D2
2mDs ——m3

12 Js

is the canonically conjugate momentum to $. For
our purpose, it is more convenient to use the related
correspondence between classical energy and quan-

AEH m
4Jms e 1 -2e— 2

12s2
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The resulting quantum states are listed in Table VIII.
In the AEH and EAH systems, weak coupling is as-
sumed [Eqs. (62), (75), and (76)].

By comparing these results with the correct quan-
tum expressions, it should be borne in mind that, in
the systems considered here, the solitons are particu-
lar solutions only. In this view, it is really remark-
able that in the IH case and s = —,, the Bohr-

Sommerfeld —de Broglie energies (Table VII) agree
exactly with the full quantum results given in Table
III, including the magnon. A numerical solution of
the bound-state condition (56) indicates that the
agreement extends for q small to general s values.
This is obviously the case for m =1. In the EAH and
AEH models, it is appropriate to compare with the
quantum results, as obtained from the mapping on
the Bose gas (Table V), valid in the continuum and
weak-coupling limits. Comparing Tables V and VIII,
it is seen that in both cases, agreement is obtained

for large quantum numbers, .

m )&1
and for the EAH model for

(105)

(106)
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in addition. Nevertheless, also in these models, the
success of the Bohr-Sommerfeld quantization is quite
impressive if applied to the soliton solution,
representing a bound kink-antikink pair. The re-
striction to large quantum numbers excludes, howev-
er, the magnon and the small m bound states.
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