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Exact ground-state behavior of a four-atom generalized Hubbard model
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The exact ground state of a four-atom system described by the generalized form of the Hub-

bard Hamiltonian is obtained. Next, the solution is used to extract relevant physical informa-

tion on the dynamics of the cluster states and also to check on the applicability and validity of
approximations commonly invoked in the treatment of Hubbard-type models.

I. INTRODUCTION

The study of quasi-one-dimensional systems of the
tetrathiafulvane-tetracyanoquinodimethane (TTF-
TCNQ) type has received a great deal of attention,
both by experimentalists'~ and theorists, ' during
the last decade mainly because of their remarkable
electric conductivity. The model due to Hubbard, '
originally intended to describe narrow-band metallic
magnetism, has proved to be useful in the quest to
understand the physical properties of these quasilin-
ear organic substances. However, long-range
Coulomb interactions seem to play an important role
in relation to the magnetic susceptibility" ' and
anomalies of the phonon spectrum" of these quasi-
10 systems, which led to the introduction of a gen-
eralized version" "of Hubbard's model (GHM),
which incorporates Coulomb repulsion between
neighbors.

While an exact solution for the ground state (GS)
of the original Hubbard model is available"'6 for
the 1D case, the only procedure known at present to
obtain exact results for the GHM is to restrict oneself
to investigating small clusters of atoms.

Work along this line has been carried out by Fal-
icov and Harris, ' and by Visscher and Falicov. ' The
first studied a two-electron homopolar molecule and
tested it for spin- and charge-density waves; the latter
considered the Pariser-Parr model' Hamiltonian,
which is slightly more general than the GHM, found
exact solutions for benzene and used them to deter-
mine correlation functions, oscillator strengths, and
transition probabilities.

In this contribution we obtain an exact solution for
the GS of a GHM four-atom system; this solution is
then used to evaluate relevant physical parameters of
the system, which provide interesting information on
the dynamics of the cluster states. Finally, our exact
results are employed to check on the accuracy of ap-

proximations commonly invoked 0 " in dealing with
Hubbard-type models.

II. MODEL AND GROUP-THEORY TREATMENT

The system we consider consists of four atoms lo-
cated on the vertices of a square and is described by
the Hamiltonian
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where ci (cj ) is the creation (destruction) operator
of a Wannier state associated with atom j and with

spin cr, nj =
c& c&, t is the hopping matrix element

between states on nearest-neighbor atoms, and I and
V are the strengths of the intra- and interatomic
Coulomb repulsions, respectively.

In this contribution we focus our interest on the
important special case of only one electron per atom
(i.e., we restrict our attention to a four-electron sys-
tem). Having thus excluded orbital degeneracy, we
are left with two allowed single-electron states per
atom and consequently with

8
4

=70

linearly independent many-electron states for the
whole system. But, since the Hamiltonian H of Eq.
(l) is invariant under the operations of its symmetry
group G (H), the 70D '(dimensional) associated Hil-

bert space can be decomposed into a direct sum of
subspaces of irreducible representations of G(H),
with the consequent. drastic simplification in the treat-
ment. For the case under consideration G(H)
= C4„ S4 (in the notation of Ref. 22); the group
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TABLE I. Dimensionality of the Hamiltonian block matrices H~~~ of Eq. (2). I = (P,S) labels
the irreducible representations of C4„ S4, P =A&,A2, Bi,B2,E, and S =0, 1, 2. The degeneracy of
each irreducible representation is the number enclosed in parentheses.

C4„
S4

S =0(l)
S =I(3)
s =2(5)

3
1

0

C4„ is formed by the eight operations which leave a
square invariant, while S4 is the permutation group
of electron coordinates. The irreducible representa-
tions of S4 are labeled by the three different values
the total spin S can take, i.e., S =0, 1, and 2.

%e use the notation

(2)

ly, we evaluate the following physical parameters:

»3! —= (»»3+Ng )

y =—(4Jqi+3)

»t4
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(4a)

(4b)

(4c)

(4d)

(B»,S=0}, for I &2V

{A3,S=0}, for I & 2V (3b)

These results are valid for all values of t and both
states have the same energy eigenvalue for I =2 V.

III. DYNAMICS OF THE SYSTEM

In order to understand the behavior of the system
in its GS not only kinematically, but also dynamical-

where il', j, y) is the Hilbert-space-basis vector which
transforms according to the jth row of the irreducible
representation labeled by I . Finally, y is an enu-
meration index whose range is the dimensionality of
the Hamiltonian block matrices 8

Because of the low dimensionality of the latter (see
Table I) it is possible to obtain most of the relevant
physical. information analytically; in this way we
found that the GS energy of the system corresponds'
to

where mj plJ+ llj —is the local z-direction magneti-
zation operator at site j and jj= ~&++ii is the corre-
sponding charge operator. The parameter 0, gives the
double occupancy probability or intra-atomic correla-
tion at site j, awhile y and p, describe the charge and
magnetic moment correlations between neighboring
sites. Finally, ~ parametrizes the degree of hybridiza-
tion between localized %annier states; thus its mag-
nitude reflects the delocalization of the electron states
and is related to the reduction in total kinetic energy
associated with electron hybridization.

An important feature of the above-defined parame-
ters is that they are independent of site and spin in-
dices, due to the form of the irreducible representa-
tions given in Eqs. (3a) and (3b).

It is useful at this point to exhibit explicitly some
features of the GS state vectors of the system; intro-
ducing the notation

(clcr c2mc3o, c4~ ) (A ~ B~ C~ Dn )t t t t t t t

o = (+, —), and i0) for the vacuum state, we have

i»1»os) =Pr(k)A+B+C D +k2A JA B+C +k3A+A B+B +k4A+A C+C ) i0)

where ihe k&'s are real coefficients and I'r is the projection operator on the irreducible representation labeled by
I'. In the t =0 limit all k»'s vanish except k4 for I' = (A», S =0 } (i e., when I & 2 V), and kt for I'=

I B3,S =0 }
(i.e., 1 & 2 V); thus, in this limit

l»i»os' ) = (A&i t C4t. Ct +B+tBtD+tDt )10) (6a)

I

) = [A+BtC+D +AtB+tC D+t — (A+B+CtDt +A—+tB C D+t +AtBtC+D+t +AtB4tC+tDt )]}0)

(6b)
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Consequently, in the localized t =0 limit two cases
can be distinguished: (i) For I & 2 V the GS energy
is 4 V and the wave function is of Heitler-London
type, with no double-electronic occupancy at any
atomic site (i.e., a =0, y =1), and (ii) for I & 2 V

the GS energy is 2I and the electronic configuration
consists of two doubly-occupied non-neighboring
sites, thus originating a charge-density wave (CDW)
characterized by o. =0.5, y=0. In the first I & 2 V

case, as (r ) becomes nonzero, i.e., 0 & (t
~

&& I, the
24 or 16 Heitler-London states become nondegen-
erate through weak hybridization, which brings about
some delocalization and a reduction of the total
kinetic energy of the system.

The magnitude of the delocalization is strongly in-
fluenced by the spatial spin configuration of the sys-
tem and consequently by the values of JM, , since the
Pauli principle allows hopping only between neigh-
bors in opposite spin states. In effect, electron
transfer is blocked in the (B~,S = 2 ] states, for which

p, =+1, while it is an important feature of the
A+tBt C+tD+ ~0) configuration, contained in Eq. (6b)
and usually referred to as a spin-density wave (SDW)
and which has p, = —1. In consequence, large mag-
netic correlation (p, 1) implies strong localization
while the tendency to form a SDW is associated with
some degree of delocalization of the Wannier states.

It is also interesting to point out that in the limit

~
t

~
&& 2 V & I the Heisenberg Hamiltonian is related

to that of Eq. (1) by means of a unitary transforma-
tion;, in fact'
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where S& is the total spin operator associated with site

j and which was defined after Eq. (4). We also no-
tice that the denominator (I —V) is precisely the en-

ergy required to excite the system from a Heitler-
London GS to a configuration with one electron-hole
pair on neighboring sites; since a CDW consists in

periodically repeating such an electron-hole structure,
this type of excitation plays the role of a seed for a
CDW.

We now turn our attention to the more general
case of arbitrary t values, for which the results are
displayed in Figs. 1—5. Again we distinguish two re-
gimes: I ) 2 V and I & 2 V, keeping in mind that Eqs.
(3a) and (3b) are valid for all t. (i) In the I &2V
case the GS belongs to the irreducible representation
1"= (B~,S =0]. As ~t~/I grows from zero to infinity
the parameters e, p„y, and v vary monotonically
between [0, —„],[——,, ——, ], [1, —,], and [0, ~ ],3

' '2'
3 7 1

respectively, as can be observed in Fig. 1. Qualita-

tively, these results are analogous with those ob-
tained ' in the unrestricted Hartree-Pock approxi-
mation (UHF) for an infinite system (Ã ~).
However, in order to make the comparison more sig-

FIG. 1. Exact and Hartree-Fock values of the parameters
o., y, p, , and v as function of t/I, i11ustrate their behavior in
the V &2I regime.

nificant, we have included in Fig. 1 the UHF results
for N =4. There are two surprising features of Fig.
1: (a) The values of a obtained exactly and within
UHF tend to different limiting values in the absence
of particle correlations (i.e., as ~t~/I ~); in fact,
UHF yields a = (nj+) (ri& ) = ~, while the exact limit

is A ]6 This discrepancy originates in the fact that

the noninteracting (I= V =0) four-electron system
is sixfold degenerate; this degeneracy is removed by
arbitrarily small values of J or V and a well-defined
nondegenerate GS emerges; nevertheless, UHF fails
to yield such a GS correctly. However, for N &) 1

the physical consequences of an eventual degeneracy
become irrelevant. (b) As [t (/I 0 we obtain

p, = ——, and —1 for the exact and UHF solutions,

respectively; this discrepancy is due to the loss of
spin isotropy of the UHF solution.

A more relevant magnitude to characterize first-
neighbor spin correlations is (S~ S,+~), which tends to
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—
~

and —
4

for the exact and UHF solutions,
1 1

respectively. (ii) The second case, namely, I ( 2 V

has a GS belonging to the {At, S =0 ] irreducible
representation; as { t {/I grows from zero to infinity n,
p, , y, and v vary monotonically in the intervals

[—,', —,
' ], [0, ——,

' ], [0,—'
, ], and [0,—,

' ], respectively, as

displayed in Fig. 2. For {t{/I(( l the exact and
UHF results are in perfect agreement, while for
{t{/I ~ UHF yields 4, ——,—,and

4
for n, tt„

1 1 7 1

y, and ~, respectively. Again we understand that the
small discrepancy in the asymptotic values of o. and y
are due to degeneracy effects.

In spite of these small differences between UHF
and the exact solution, both emphasize the fact that
the system undergoes an important qualitative change
for I =2 V, which is akin to a phase transition. In ef-
fect, for I & 2Vthe {8~, S =0] irreducible represen-
tation implies some sort of short-range order charac-
terized by the values o. & o.„„,= 4, y & y„„,= —,,

1 =7

p, ( p,„„,= ——,, where the subscript unc stands for un-

correlated; this short-range order is closely related to
a SDW, but it occurs without symmetry breaking
(i.e., the values of the parameters are site-index in-

dependent) in contrast with UHF. For I ( 2 V on the
contrary o. & o.„„„y& y„„„and p, & p,„„„thus giving
rise to a CD% of similar site-independent character

as the SDW mentioned above. The results shown in
Fig. 3 further underline the fact that UHF is well
suited to tackle this problem, because of the close ap-
proximation it yields to the exact values of the GS
energy.

The behavior of the delocalization parameter v pro-
vides additional information of interest; in Fig. 4 a
plot of r vs V/I, for a fixed value of t/I is given.
We observe that large values of either the intra- or
interatomic repulsion parameters V and I tend to
favor localization; however, v has a sharp maximum
for I =2 Vindicating that I and Vhave compensating
actions just at the transition point.

On the basis of the above results we notice that if t
is small and I & 2 V, the dynamics of the system is
fundamentally governed by the intra-atomic correla-
tion parameter o, , which implies that the approxima-
tion suggested by Gutzwiller" should work success-
fully. This approximation consists in assuming the
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FIG. 2. Exact and Hartree-Fock values of the parameters
o., y, p„and ~ vs t/I, for the V & 2I case.

FIG. 3. Exact and Hartree-Fock results of the ground-
state energy vs t, for values of Vsmaller ( V =0), equal

( V =0.5), and larger ( V =0.7) than the critical value, with

all energies measured in units of I.
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where A. is a parameter between 0 and 1, to be deter-
mined variationally, and

~ P) is the state constructed
as a product of the four Bloch states with lowest-lying
energy eigenvalues.

The numerical results obtained using Gutzwiller's
scheme, as displayed in Fig. 5, show that his method
is reliable when intra-atomic correlation is the dom-
inant factor. Further improvements could be at-
tained, without much additional effort, by imple-
menting the refined version of the procedure pro-
posed by Stollhoff and Fulde.
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FIG. 4. Plot of the degree of hybridization r vs V/I
evaluated both exactly, using the iB~, S =0 I and

lent, S =0 j eigenstates, and in the unrestricted Hartree-

Fock (UHF) approximation.

IV. DISCUSSION AND CONCLUSION

The study of a four-atom system, described by a
generalized Hubbard Hamiltonian, which we have
carried out above (1) yields useful information in re-
lation to some physical properties of an infinite sys-
tem of the same nature; and (2) it allows us to check
on the validity of approximations usually employed in
the treatment of macroscopic systems.

Regarding the properties of infinite systems
(N ~), it is apparent that the N =4 case contains
in a qualitatively correct way most of the relevant
ground-state properties. Quantitative disagreement,
which is small indeed, can partially be traced to ef-
fects directly related to the correlation between de-
generate states in the four atom system, which be-
come totally irrelevant in the N ~ limit.

As far as checking on approximate methods is con-
cerned, we have been able to determine quantitative-
ly the accuracy with which the ground-state energies
and other relevant physical parameters are calculated,
in the unrestricted Hartree-Fock (UHF) and in the
Gutzwiller approximations, finding that they yield
very good results in their realm of,applicability.

Moreover, we have established that our four-atom
system shows a spin-density wave (I & 2 V), or
charge density wave (I (2 V), ground state with a

sharp transition between the two regimes at I = 2 V in
agreement with previous UHF results.
. Finally, we mention that finite-temperature proper-

ties of this system may be worth investigating.
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