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An admittance for localized physical quantities is generally related to a random walk on the

basis of linear-response theory. A coherent-medium approximation is introduced to solve a

master equation which is assumed to govern the random walk. The general formalism is spe-

cialized to ac hopping conduction and applied to the bond-percolation model in one- and three-

dimensional systems and to a lattice model for impurity conduction in doped semiconductors.

For the one-dimensional bond-percolation model, the ac conductivity obtained by the coherent-

medium approximation is in good agreement with exact results for both the frequency depen-

dence and the critical behavior. The present method predicts a percolation transition and

several critical behaviors of the ac conductivity at the transition point for the bond-percolation

model in a simple cubic lattice. In particular, lim„oRe[a(«0) —a-(0) ]/«0 diverges as

(p —p, ) 3 2 when p =p, +0 and lim„oRe«T(co)/0) diverges as (p, —p) when p =p, —0 and

in the static limit Reo-(cu) vanishes as cu for p (p, and as 0)' at p =p, . The present approxima-

tion also succeeds in reproducing the typical frequency dependence of the ac conductivity of the

hopping conduction in doped semiconductors, namely, the transition from the dc behavior

through an 0)' dependence to a plateau as the frequency «u is increased. The theoretical results

are shown to be in good agreement with experiments.

I. INTRODUCTION

The transport of physical entities (hereafter re-
ferred to as electrons) such as electrons, excitons,
and phonons in disordered media is affected greatly
by the nature of randomness. If the degree of ran-
domness is sufficiently large, the electronic wave
function is localized in a small region in a sense
described by Anderson' and transport of electrons
takes place by hopping among these localized states
with the assistance of other degrees of freedom. The
hopping rate between two localized centers depends
on several physical parameters associated with these
centers, especially on the spatial distance between the
centers and the energy difference between the initial
and final states. These parameters fluctuate from
center to center, since the environment of each
center is statistically distributed. Because hopping is
assisted by other degrees of freedom as well as en-
vironmental fluctuations, the site-to-site transition
probabilities are random variables.

To obtain the ac conductivity for the stochastic
transport described above, Scher and Lax' (hereafter
referred to as SL) first constructed a tractable model
system on a discrete lattice which simulates actual
disordered systems and employed the continuous-
time random walk (CTRW) formalism due to Mon-

troll and gneiss. Their result for the frequency and
temperature dependence of the ac conductivity is in
excellent agreement with experiments for doped
semiconductors and spinel-type MnCoNiCu complex
oxide semiconductors' for a wide range of frequency.
The SL procedure in the original form, however,
treats all sites as equivalent and independent, and
hence it may not be an appropriate approximation for
a certain type of randomness in which the microscop-
ic structure plays an important role in the problem.

In the present paper, we develop a new approxi-
mate procedure for the evaluation of the ac conduc-
tivity due to hopping in random media. In Sec. II,
the relation between the ac conductivity and a ran-
dom walk which SL have used as a basic equation is
rederived from a general view point on the.basis of
linear-response theory. The frequency-dependent
admittance is expressed in terms of' the Laplace
transform P( s, u

~ so) of the conditional probability
P( s, t

~ so, 0) of finding a moving particle at a point
s at time t if it was at a point s 0 at t =0. This rela-
tion holds quite generally if the physical quantities
entering the admittance can be assumed to be diago-
nal for a set of local basis functions.

In the expression for the ac conductivity of a
discrete lattice in terms of P ( s, u

~ so), randomness
appears only in the probability function P ( s, u

~ so)

5284



24 COHERENT-MEDIUM APPROXIMATION IN THE STOCHASTIC. . . 5285

which is assumed to obey a master equation. In Sec.
III, we show that master equations can be solved by a
generalized application of the coherent potential ap-
proximation, i.e., a kind of scattering T matrix
produced by a disordered unit embedded in a
coherent medium is forced to be zero on the average
to self-consistently determine 'the coherent medium
and hence the coherent transition probability. In a
sense, the coherent potential approximation consti-
tutes a formal expression of earlier effective-medium
approximations used to obtain the conductivity of a
resistor network. '

The new method is applied to several representa-
tive examples for hopping conduction problems in
Sec. IV: the bond-percolation model in one dimen-
sion and three dimensions and a model lattice system
for topologically disordered systems. The present ap-
proximation gives fairly good agreement with exact
results for the bond-percolation model in one dimen-
sion. Moreover, the present method predicts a per-
colation transition for the bond-percolation model in
three dimensions as is physically expected. In this
scheme, the critical bond-percolation probability p, is

3
for a simple cubic lattice. Several critical behaviors

of the ac conductivity at the percolation point are also
predicted.

For the topologically disordered system, our pro-
cedure also succeeds in reproducing the qualitative
behavior of the frequency dependence of the experi-
mentally observed ac conductivity. "' Namely,
the real part of the obtained ac conductivity shows a
power law dependence ~' on frequency between the
static limit and the saturated value at higher frequen-
cies and a gradual transition from one to another as.
the frequency is increased. The results will be com-
pared with experiments for doped semiconductors. 4

Section V is devoted to discussion while in Appendix
A we discuss the effective medium derived from the
SL procedure.

gence of this transformation.
In linear-response theory, ' "

pa~ (t) is given by

y„(t) =—J Tr[8(t)A(itiX) p]dX
0

(2.3)

In these expressions, P = I/kT is temperature in-
verse, 8 (t) = e'H' «Be 'H' a is the Heisenberg
representation of 8, A (titan) = e "HAe"H, and

p =exp( —PH) is the equilibrium density matrix,
where 0 is the Hamiltonian of the system without
the external field and k is Boltzmann's constant. By
introducing P —X as a new variable the cumulative
response can be shown to obey 'the identity

r& pP
Tr[8(t)A (itX) p] dh. =

&I Tr[A ( itic)—B(t)p] dX

(2.5)

Equations (2.3) and (2.4) can then be rewritten,
respectively, into

4B~(t) = +B~(P t)—8
9t

(2.6a)

and

9P,„(t)=,+B~(P,t),2

where

(2.6b)

f'P

+BA (p. t) =—' Tr[ IB(t) -A (-iti&) I'P] dx

(2.7)
differs by a constant from Eq. (2.5). Here, we have
used the stationarity of the system. Insertion of Eqs.
(2.3) and (2.4) with (2.6) and (2.7) into (2.2) and in-
tegration by parts yield

If the time derivative of B is observed, the response
function pa„(t) is written as

r&
@B„(t)= —

2 Jl Tr[B(t)A (ilia. )p] dX . (2.4)

II. FLUCTUATION-DISSIPATION THEOREM
FOR LOCALIZED QUANTITIES

X»(~) = +»(P, 0)+—i~ e '"'e»(P, t) dt (2.ga)

and a Similar fOrm fOr Xa„(to):

Suppose that an external field F(t) =Focostot adds
a perturbation AF(t) to the Ham—iltonian of a sys-
tem and we observe the response of the system
through the change 48(t) of a physical quantity 8
The response (bB(t) ) is written in the form

—oo e '""Pap (p, t) dt
40 (2.8b)

(58(t)) =Rexa~(~)Foe

The complex admittance Xa~ (a&) is expressed in
terms of the response function pa& (t) as

(2.I)

Xag (to) =
o

fag (t) e '"'dt (2.2)

The frequency ~ should be understood to have an in-
finitesimal negative imaginary part to ensure conver-

(s IA I
s') =A-, &(s, s ),

(s IBI s ) =8-, 5(s, s )

(2.9a)

(2.9b)

Now, let us assume that the physical quantities A

and 8 are diagonal in the Hilbert space spanned by a
set of orthonormalized local basis functions I s )
=—$,( r —s ), where s denotes a localized site as well
as a position vector. Explicitly, we assume
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where 8( s, s ) is a Kronecker 8 function. In addition, we assume the density matrix p is also diagonal with

respect to the localized basis set;

(2.10)

Then, the admittance Xtt& (t«) and Xs„(t«) can be rewritten as

Xsg((«) =—+ X(B-, —3-, )'f(s)+ '
X (B-, —3-, )'P(s, icu~sp)f(sp)S S (2.11)

2

X,„(~)= —& X(B-, —A-, )[2(B-,—A-, )+i'(B-, —A-, ))f(s) — g (B-, —&-, )'P(s, i~(sp)f(so)
S S, Sp

(2.12)

Here, P( s, u(sp) is the Laplace transform of the ab-
solute square of the Green's function P( s, t (sp, 0)
—= (G( s, t( 8 p) ('

P(s, u(sp) =
J e "'P(s, tbsp. 0) dt

where the Green's function G( s, t ( s p) is defined by

(2.13)

(2.14)

with the Heaviside step function

(2.15)

It should be remarked that the assumption Eq. (2.10)
does not imply G(s, t(sp) —8(s, sp), since we are
concerned with low frequencies cu such that @co/kT« 1 and a typical time scale we will deal with in
Eq. (2.14) is I/ca.

For the specific case of B =A, Eqs. (2.11) and
(2.12) are reduced to simple forms

The quantity P( s, t
~
s p, 0) means the probability

density of finding the particle at site s at time t if it
started at site sp at time 0, as stated before. The
probability density describes the stochastic motion of
the particle in a given sample. To get the admittance
actually observed, we have to average Eq. (2.16) or
(2.17) over the ensemble of samples. The ensemble
is determined by what we are studying. In topologi-
cally disordered systems, the configuration of sites
(s) differs from sample to sample and one must car-

ry out an average over all possible configurations of
sites (s). In cellular disordered systems, the set of
sites (s) forms a fixed array of lattice points and
hence the average is taken over transition probabili-
ties rather than {s). The expressions (2.16) and

XAA(t«) = i
" g (~-. -W-, )'P( s. t t«l so)f ( so)

(2.16)
and

2

X„„(t«)=.— X (3-, —3-, ) P(s, ice(sp) f(so)
Sp Sp (2.17)

(2.17) also contain a sum over the initial particle lo-
cation through g«, f ( so). If the ensemble average

is carried out, however, the averaged quantity
((A-, —3-, )'P( s, it«( s p) ) is independent of the in-

itial site sp. Consequently, the term X-, f(sp) in

Eqs. (2.16) and (2.17) simply gives unity and we
have, for example,

2

X„„(c«)=—B X((A-, —A-, ) P(s, it«~ so))

(2.18)
where ( ) denotes the average over the distribu-
tion of random variables. " As shown in SL, a sys-
tem with the fixed array of sites together with an ap-
propriate distribution of other variables can serve as a
useful and tractable model for topologically disor-
dered systems. Therefore, in the succeeding part of
the present paper we assume a fixed array of sites
(s).

To be specific, Eq. (2.18) implies that the scalar ac
conductivity tr(t«) for an isotropic random media
with the fixed array of sites is given by the general-
ized Einstein relation as follows':

~(~)- "„' D(~),
2

D(t«) = — X( s —sp) (P( s, it«~ sp) )2d -,

(2.19)

(2.20)

where d is the dimensionality of the system, e is the
electronic charge, n is the number density of carriers,
and D(t«) denotes a generalized diffusion constant.
Here, use has been made in Eq. (2.18) of
A = X-, (s ) es (s (, s being a Cartesian component
of s, and (s —s

' )' = ( s —s ) '/d in isotropic media.

III. MASTER EQUATION AND COHERENT
MEDIUM APPROXIMATION

Although the expression for the ac conductivity
(2.19) and (2.20) has a simple form, it is still difficult
to evaluate (P(s, it«(sp)) on the basis of first princi-
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where

I'-, = Xw
~l
8

+ X w, P(s, tl sp, o)

(3.1)

(3.2)

Then, the Laplace transform P(s, ul sp) obeys

(u + I"-, )P(s, u I s p) — $ w, P( s, u
I sp)

=5(s, sp) . (3.3)

I
The transition rate w, from s to s is a properly

chosen random quantity which describes all of the
stochastic nature of the process and is assumed for
the sake of simplicity to satisfy ~

8 I 8 8 I 8

For later convenience let us introduce the opera-
tors'8

P(u) = X Is&P(s, ulsp)(spl
8, Sp

(3.4)

ples. Instead, we set up a master equation which
expresses the essential features of the actual stochas-
tic time dependence of the probability density
P(s rl s o) ""

Let us assume now that P(s, r
I s p, 0) obeys the

following master equation:

aP(S.rlaarO)
S

=-I-P s, t sp, o

A

where the coherent Hamiltonian operator X is de-
fined by

((ul —H) '& —= (ui —X) ' (3.9)

Hg =X+ V, (3.10)

where X is the coherent part, defined in Eq. (3.9)
and

V= II&(wc w2]) &11+ ll&(w12 wc) &21

+12) (wet —wc) &11+12&(wc —wt2) &21 (3 11)

So far, we have not specified the structure of the
coherent medium described by X. The structure of X
should be determined by the nature of actual system
which we treat. In the present paper, we restrict ou~r

discussion to a case where the set of sites ls ) forms a
regular lattice and the transition rate ~, is zero

S, 8

unless two sites s and s are nearest neighbor to
each other. Though this model system is a very sim-
plified one, it will work well if the hopping probabili-
ties ~, are given a suitable distribution.

8 I 8

Now, let us introduce an approximation to obtain
the coherent medium. Suppose that in a coherent
(average) medium all the transition probabilities as-
sociated with a given pair of nearest-neighbor sites
(say I and 2) are given their specific rather than
average values, The effective Hamiltonian H~ for
this system is

H = —XI s &I'-, & s I+ X I
s ) w

8 ~ ~~/

Then Eq. (3.3) can be written in a form

(ul —H)P(u) =I

(3.5)

(3.6)

is the localized perturbation produced by using real
rather than average values on the 1—2 bond. The as
yet unknown coherent transition rate wc

—= wc(u) is
introduced to describe the effective Hamiltonian as

P( s, u I s p) = ( s 1(u 1 —H) 'I s p& (3.7)

To evaluate the ac conductivity by Eqs. (2.19) and
(2.20), we must calculate the ensemble average of
P( s, u I sp) which is written formally as

which makes P(u) behave as a propagator or resol-
vent, and H plays the role of the corresponding
Hamiltonian. Of course, H bears no simple relation-
ship to the Hamiltonian H of the underlying problem,
as used following Eq. (2.4). We may call P (u) a
random-walk propagator.

However, we exploit this analogy to the usual
Hamiltonian formulation to construct a coherent-
medium approximation for master equations. In par-
ticular, the formal solution for P is (ul —H) ' so
that P(s, u lap) is given by the s sp matrix element
of the propagator:

X= —zwc Xl s & (s I+ wc X I s & (s I (3.12)

where z is coordination number of the lattice. We
determine the unknown parameter'~c in a self-
consistent manner by the condition

&(ul H„) '& =(ul —X) '- (3.13)

where & & denotes the average over the distribu-
tion of ~~2. The situation is schematically shown in
Fig. 1. In this figure, circles and bonds represent,
respectively, the diagonal and off-diagonal matrix ele-
ments of H~ and X. The diagonal element of a site is
a sum of off-diagonal element of bonds connected to
the site, which is designated by a partition of the di-
agonal element.

The explicit form of condition Eq. (3.13) is rewrit-
ten as a matrix equation:

&P( s, u I s,) &
=

& s 1(u i —X)-'I s,&, (3.g) (V(1 PV) ') =0— (3.14)
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where g-, sums over nearest neighbors of site so
and X is the total number of sites in the system.

Specifically, it is apparent that the generalized dif-
fusion constant D(0)) in the coherent medium ap-
proximation becomes

D(ru) =a'we(i')

where a is the lattice constant.

(3.21)

IV. APPLICATIONS

FIG. 1. Schematic illustration of the coherent-medium
approximation. The hatched region denotes the coherent
medium. The partition of the diagonal part (circle) denotes
that the diagonal part is minus the sum of the off-diagonal
parts (bonds) connected to it.

The present formalism for the admittance is quite
general and applicable to various quantities. As a
representative example, we shall consider the ac con-
ductivity due to hopping which is governed by the
master equation (3.1) with several kinds of distribu-
tion of w, . %'e are interested in the frequency

dependence of the ac conductivity a (0)), Since
cr(0)) always bears a factor neza2wo/kT, we shall be
concerned with the dimensionless ac conductivity
a.(co) —= o(o))/(ne'a. 'wo/kT) or equivalently the
dimensionless diffusion constant D (cu) —= D (0))/
a'wo, where wo is a certain scaling factor of w

where A. Bond-percolation model in one-dimensional chain

w ~2
—wc

V=
W]2,

(3.15) Let us consider the bond-percolation model in a
one-dimensional chain in which w, is distributed

S J S

according to the following function:

P=
P22

)

(3.16) P(w, ) =pg(w, —wo) +(1—p)n(w, )

=0wc w~2

) 2(pii —P12)(IVC W12) ) (3.17)

Here, we have used the symmetry P~2 = P2]„
P~~ = P22, and w~2 = w2~. From the definition of Pj,
we have an identity

Pt t
—Ptz = (1 —uP)) )/zwc

It is easy to see that P ( s, u ( s 0) is given by

-i k ~ ( s-so)
P(s, u(so) = —X

1 e
W -„u +zwe(1 —f-„)

with

(3.18)

(3.19)

with P&=P( i, u( j ) = ( i ((ul —X) ( j ) and 1

denotes the 2 && 2 unit matrix. Since PJ is a function
of wc, Eq. (3.14) must be understood as a self-
consistent condition for w~. A straightforward calcu-
lation shows that the matrix equation (3.14) ends up
as a single condition

(4.1)

P(s, u(s) = [u(u+4wc)] ' z (4.2)

the self-consistency condition (3.17) with distribution
function (4.1) yields

wc/wo= —(u +2(1 —p)' —(1 —p)
'x [(u+2) +4p(p —2)]' '], (4.3)

where u =u/wo. Therefore, the dimensionless dif-
fusion constant is given by

IJ(ru) =—(ao —2(1 p)'i + (1 —p)—
x [(2+i0))'+4p(p —2)]' 'i] (4.4)

In other words, a bond is broken randomly with pro-
bability (I —p) and loses its ability to transfer elec-
trons through it.

Since the diagonal element P ( s, u ( s ) of the pro-
pagator for the coherent medium of one dimension is
given by

ik (s —so)f-=—Xe
Z

S

(3.20) with 0) = cu/wo. The real and imaginary parts of
D (cu) are plotted in Fig. 2 for various values of the
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l.O

p =0.9

and

D( ) p — +i, (

3
iu 0.5
K

0.5
0.9

.7

.5

.3

(4.6)

The dimensionless diffusion constant, Eq. (4.4), is in

good agreement with exact results for both the fre-
quency dependence and the critical behavior. '

S. Bond-percolation model in a simple cubic lattice

Next, let us apply the present method to the
bond-percolation model in a simple cubic lattice. The
transition rate ~, between nearest-neighbor sites

Sp S

again obeys the distribution (4.1). In order to obtain
simple analytic results we approximate P ( s, u

~
s ) for

the simple cubic lattice by

P ( s, u
~

s ) = 2 [u +zwc + [u (u +2zwc) ] ' z) ' . (4.7)

3

M
E

This approximation is equivalent to assuming that f-„
[Eq. (3.20)] for the simple cubic lattice has a simpli-
fied density of states

0
0 l0

2(1 —e')'"
k

(4.8)

FIG. 2. Frequency and probability dependence of tQe real
and imaginary parts of the dimensionless ac conductivity for
the one-dimensional bond-percolation model.

probability p. As is expected, the static limit of the
diffusion constant is always zero except for p =1. It
is straightforward to observe the limiting behavior of
D(ao), namely,

IJ(~)- P P, m'+ P P, ~i (~-0)
8(1 -p)' 4(1 -p)'

(4.5)

with the appropriate behavior at the band edges.
Then, the self-consistency condition to determine ~~
is reduced to an algebraic equation of fourth order.
%e can easily find the physical solution which is a
branch continuous to the proper solution at p =1.
Figure 3 shows the frequency dependence of the dif-
fusion constant D(co) Using a se. ries expansion, we

obtain the limiting behavior of D(ao): (i) as ~

+.2p(1 —p) . p(1 —p)(7p +4) (4 9)
Alar A' 2

and (ii) as co 0:

—(p —p)+ ~i+'
i ru (1 —i) forp)p,3 F(1)(1—p) . . C(1 —p) -3/z

12 p-p, 36 2 p-p, 'i'

D(cu) = au (I +i) for p. =p,
VF(I) vz

2 6
1 —J3(p, —p) + [2+3(p, —p) —3J3(p, —p) 3 2](1 —p) 2

Call + for p (p,
9 pc p 162 p, —p '

(4.10)

(4.11)

(4.12)

where p, = —, (=2/z), and F(1)=2 and C =2v2. If we use the exact expression for P( s, u
~

s ) of the simple cubic'

lattice, F(1) and C must be replaced by 1.516 3&, '0 and 3J6/2m, " respectively, and Eq. (4.12) is rewritten as

D(co) =aevi +
a"(I -p)

OJ
2

a'(p, —p) + F'(1+1/6a)/108
(4.13)
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1.0

p=0.9

0.7

3
~~ o.s—
K

0.5 O
)o 0.5—
K

3

E

0.1

o.5
Pc& 'I/5

FIG. 4. Probability dependence of the static dimension-
less conductivity for the bond-percolation madel in the sirn-

ple cubic lattice.

0
0 10

1S

3(p p. )/2 (p ~p, )—
D(0) ='

,
o (p ~p, ) . (4.17)

FIG. 3. Frequency and probability dependence of the real
and imaginary parts of the dimensionless ac conductivity for
the bond-percolation model in the simple cubic lattice.

where n is a solution of the implicit equation

Therefore, the critical bond-percolation probability p,
for this model is —,. The dependence of the static

diffusion constant on p is shown in Fig. 4.
At p =p„ the system shows several critical

behaviors. First of all, the static conductivity van-
ishes linearly at p p,+, as in Eq. (4.17). In the stat-
ic limit, we have

F(1+I/6a) =18(p, —p)a .

Here, F(g) is defined by

I ~ ~ ~ dxdy dz

(—
3

(cosx +cosy +cosz)

(4.14)
Re[a (ao) —o (0) ] I

( )3/2 r i3/2 P &Pc
Ol ~0 Ccj (p pc&

(4.18)

(4.15)

and F'(() =dF(f)/d( Near p =p„.both coefficients
in Eq. (4.13) become very large and their leading
terms are again expressed in terms of F(1):

F(1)D(co)
( )

tel

and

lim, —,(p (p, )
Re(r(~) I

CO pe p
(4.19)

(4.20)

+F(1) (1 —p) 2
( )

324(p, —p)'
(4.16)

Obviously, the static diffusion constant D (0) and
hence the static conductivity is nonzero for

p & p, —= —,, while it is identically zero for p ~p„ that

As we can see from Eqs. (4.10)—(4.12), the quantity
Re[a(co) —o.(0)] vanishes as cu3~z above p, and as
cu2 below p„and 1m[a (ru) —o.(0) ] vanishes linearly
in frequency near the static limit. At p =p, these
quantities approach zero as cu

' with frequency.



24 COHERENT-MEDIUM APPROXIMATION IN THE STOCHASTIC. . . 5291

C. Impurity conduction

I 8 8 ll&g
, =—w()s —s f) =w, e

Sp S
(4.21)

and the Hertz distribution for the nearest-neighbor
I

distance r =
( s —s

~
in the homogeneous random

media

Let us now apply the present procedure to impurity
conduction in an n-type compensated semiconductor
at a low temperature where transport takes place by
an electron hopping from a neutral donor to an ion-
ized donor.

In order to simplify the problem, we first construct
a lattice model which simulates the actual doped sem-
iconductor. First, consider a simple cubic lattice
whose lattice constant is a ~ (3/4srN&)', where No
is the donor concentration. The nearest-neighbor
transition rate ~, is assumed to obey a certain

8 ~ 8

distribution, which is derived by combining a transi-
tion rate

10

1O-6

O

Al

10

3
O~io8

I I

104 103 10 ~

I

1O 6
10-"0 i

1O 8 1O ~

(6/ W

FIG. 6. Comparison of the theoretical and experimental
values of ReD(co) for ND =1.2 & 10' cm . Symbols are
the same as in Fig. 5. According to SL, a is assumed to be
0.9 (4eND/3) ' in this plot.

4rrND 2 4wNn
N r) = r2exp- rz, 3z

(4.22) 10

Here, Re is half the effective Bohr radius, z (=6) is
the coordination number of the lattice and, wo is a
function of the temperature. '

Now, we can easily apply the procedure described
in Sec. III to obtain the ac conductivity. In fact, Eq.
(3.17) reads as

N(r) (wc w (r) ~

dr =0 . 423
1 —2(Ptt —Ptz) [wc —w(r)]

Using Eq. (4.7) as the Laplace transform P( s, u
~
s )

of the transition probability in the coherent medium,
the self-consistent simultaneous Eqs. (3.18), (4,7),
and (4.23) with the distribution (4.22) have been nu-
merically solved. Figures 5 and 6 show the frequency
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FIG. 5. Comparison of the theoretical and experimental
values of ReD(co) for ND =2.7 &10 cm . The solid line
is the present result and the broken line is the SL result.
The latter and experimental data for Reo.(~) are taken from
Ref. 2. The dimensionless ac conductivity or diffusion con-
stant D(co) cr(co)/(ne /kT)(a w ) with n =0.8 X 10
cm and a =(4mND/3) ' is shown.

FIG. 7. Comparison of the present method (solid line)
and the SL method (broken line) for the static dimension-
less diffusion constant. ReD(0)/a wo=

2
i/3

&& exp[ —(18 ln
2 ) '

q
' ] for the present method and

errt t 4expi —2g"t z/3]/6 Jn for the SL method with rt
=4m NOR~ and y =0.5772.
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dependence of the real part of the dimensionless ac
conductivity or D (co), for ND = 2.7 x 10'7 cm 3 and
1;2 && 10' cm ', respectively. We have used Rg =12
A, as discussed in SL. In these figures, the solid line
is the present result, the broken line is the result by
SL and the small symbols are experiments for Si
doped with P and B. The present results are in an
excellent agreement with experiments and reproduce
the well-known eo' dependence. The exponent s
reads as 0.52 (for three decades of co) in Fig. 5 and
0.77 (for seven decades of co) in Fig. 6.

Simple algebra shows that the static diffusion con-
stant D (0) behaves as

D(0) ——,
'

exp[ —(18 in —', )'"rl '"] (4.24)
I

for small q =—4mNDRd'. A comparison between Eq.
(4.24) and the SL formula is given in Fig. 7. The
present method gives a higher static limit of D(cu)
than that of the SL method for smaller values of g.

V. DISCUSSION

In the present paper, we have derived a general ex-
pression of the admittance for localized physical
quantities. The expressiop is quite general and appli-
cable to various systems. Then, the coherent-
medium approximation has been first applied to solve
the master equation which is assumed to govern the
stochastic motion of the localized quantity. As a
specific example, we have studied the hopping con-
duction in one- and three-dimensional systems.

The present approach essentially requires a cluster
treatment, since the random distribution of ~, in

the Hamiltonian (3.5) cannot be expressed by single
site disorder. It is well known that a certain type of
the cluster CPA (coherent-potential approximation) is
not analytic. The cluster treatment employed here,
however, is identical with the homomorphic cluster
CPA,"the analyticity of which has been rigorously
proved. We have set one of the transition rates

, as a disordered unit, but it is easy to extend
Sp S

the present formulation to the multibond cluster.
The difference between the present approach and

the SL method is apparent if one compares Eqs.
(3.13) and (AS). In fact, the SL method treats all

sites as equivalent and independent, and hence the
reciprocity between two sites is not taken into ac-
count properly. On the other hand, the present
method treats a pair of sites as a unit and the recipro-
city is included correctly. These two methods have
been compared in each application in Sec. IV. Both
methods provide a qualitatively good frequency and
probability dependence of the ac conductivity for
one-dimensional bond-percolation model; a closer
comparison is given elsewhere. '

As for the bond-percolation model in three-
dimensional systems, the present method predicts a

percolation transition at p =p, and various critical
behaviors [Eqs. (4.17)—(4.20)] of the conductivity at
the percolation threshold. The predicted value p, = —,

for simple cubic lattice is bigger than the critical
bond-percolation probability 0.254 estimated by
Monte Carlo methods, ' though it coincides with the
value given by the effective medium treatment of the
resistor network. '

The critical behaviors of the conductivity in resistor
networks' and composite media have been dis-
cussed by making use of computer simulation and
scaling theory. A direct comparison of the present
result with those for resistor networks is possible only
for the dc conductivity above the percolation thresh-
old. The present method predicts that the dc conduc-
tivity of the bond-percolation model for the hopping
conduction vanishes linearly with p —p, . The critical
exponent again coincides with the result obtained by
the effective medium treatment of the resistor net-
work. ' The computer simulation yields
a(0) —(p —p, )' near p, for the bond-percolation
model of the resistor network on the simple cubic lat-
tice 10 27

The imaginary part of a.(co)/o& can be related to
the real part of dielectric constant, so that the critical
behavior (4.20) implies the divergence of the real
part of dielectric constant at the percolation thresh-
old. Actually, such a divergence of the dielectric con-
stant has recently been observed in Ag-KC1 random
composite, ' where a percolation model is supposed
to be adequate. The critical index (=1.0) in Eq.
(4.13) is somewhat larger than the observed value
(=0.73) in the Ag-KCI composite system.

Although we have used a lattice model for topolog-
ically disordere'd systems, the coherent medium ap-
proximation as well as the SL method have produced
a frequency dependence of the ac hopping conductivi-
ty which is in an excellent agreement with experi-
ments for doped semiconductors. Both methods also
give the same temperature dependence of the ac con-
ductivity, since it is governed by the temperature
dependence of ~0. However, the static conductivity
given by these methods shows a big difference for
low-concentration regions as one can see in Fig. 7.
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APPENDIX A: THR CTR% METHOD
AND COHRRRNT MEDIUM

Let us divide the Hamiltonian operator H (3.5)
into a purely diagonal part I' and a purely off-
diagonal part W:

~here
(A9)

and

p(u)—= 4 . . )= X ~s)A(s —s.s)(s l

(ui —I)

0=1.+ W,
where

(Al)
4&( s, u) —= (1/(u + I'-, ) ) (Alo)

f =- X[s&1-,(s[, W= X [s&,(s'[ .
8 ~ ~~IS S

(A2)
A

Off-diagonal matrix elements of 1 and diagonal rna-

trix elements of W are identically zero;

y(s —s,u) = (w, /(u+I', )) (Al 1)

X=ul —4(u) '+ j(u)C(u) ' (A12)

These functions (A10) and (All) are the same ones
as SL defined. We can easily see that k(u) and
P(u) determine the followin[[ coherent medium X,
which is defined through (u 1 —X) ' = ((u 1 —H) '):

(ski"is ) = —I'-, 8(s, s )

(s~ W~s ) =w, [l —8(s, s )]

(A3a)

(A3b) S Q S
@(s, u)

Now, let us expand the propagator (u 1 H) ' int—o a
series

1 1

(ui-H) (ui —I - W)

i+ X[+(ui-r)-']" .
(u 1 —I ) k

that is

)
$(s —s,u)

(
d (s,u)

u jr(u) I s

u+r-, u+I,

(A13)

(A14)

(A4)

In the SL procedure, 2'7 the average of Eq. (A4) is
given in a Hartree approximation by

, =p(s —s,u)
1 —j(u)

1

M+I, p +I
S

(A15)

1 = 1

(ui-H) (ui-I)

Since

i+X 4
k (ui-I )

(AS)

(u i - I ) -, (u + I'-, )

and

(A7)X fs) '' (sf,
(u 1 I"), (u + I",)

Here, we have used 4 (s,u) =u/[1 —P(u)], in-

dependent of s, and Q(u) —= X-, P( s —s, u) is the

key function in the SL method. Since the generalized
diffusion constant D(co) is in proportion to X-, -, in

CTRW and ~~ in the present theory, the difference
in the coherent medium for these methods is reflect-
ed in the different frequency dependence of D (co).
It should be remarked that Eqs. (A14) and (A15) are
general relations between coherent medium and the

I
Laplace transform of P( s —s, t), a probability densi-
ty that the time between steps occurs at time t result-
ing in a vector displacement s —s . In other words,
a coherent medium determines the Laplace-trans-
formed distribution P( s —s, u) through

we have
y( s —s, u) =X,/(u —X-, —,) (A16)

4(u) —= 1

(u 1 —f')
= X(s)4(s,u)(s( (As) The expressions (A14) and (A15) have also been

derived by Klafter and Silbey. '
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