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Order-disorder transformations in ferromagnetic binary alloys
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Order-disorder transformations in binary body-centered-cubic alloys with two ferromag-

netic components are studied within the mean-field approximation. Only pairwise in-

teractions between nearest neighbors' are included. Special attention is given to the tem-

perature dependence of the specific heat in several kind of alloys and discontinuities of the

specific heat at the critical temperatures are calculated. Three different situations are

analyzed; i.e., (i) 00 (spatial order-disorder critical temperature) &8~ (Curie tempera-

ture), (ii) 8~ g 80, and (iii) J~~ (~J~~, J~~ where Jq& are the Ising exchange integrals for

the alloy A„B& „with spins S& and Sz. The Fe-Co system is studied within this model,

and the results are compared with experimental data.

I. INTRODUCTION

Order-disorder phonomena in alloys have been
investigated for many years and copious data for
the bulk are available. But, although these
phenomena are well understood in paramagnetic
alloys, studies in magnetic systems are still lacking.
Experimentally it is well established that there is
an interdependence between magnetism and spatial
long-range order. ' However, theoretical analyses
for the spatial order-disorder transformations in
magnetic systems, as in FeCo, are usually carried
out ignoring the magnetic properties. Recently it
has been shown that in alloys with two magnetic
species the interplay of the two phenomena may
lead to results completely difFerent from. those
predicted by theories that take into account only
one of the efFects. In a mean-field theory,
Tahir-Kheli and Kawasaki studied the tempera-
ture dependence of the order parameters and
Moran-Lopez and Falicov ' analyzed in detail the
phase diagrams (temperature concentration) for dif-

ferent kinds of alloys. In particular it was shown
that the asymmetry of the ordering curve of
Fe„Co& „ is obtained if magnetism is included.
Studies of the temperature dependence of the order
parameters in the Bethe approximation have been
published also.

In this paper we study further the interplay of
atomic and magnetic ordering within the model

used by Moran-Lopez and Falicov. It is a mean-

field theory where the interatomic forces and the
magnetic interactions are assumed to be pairwise
between nearest neighbors only. Here, we examine
in detail the temperature dependence of the specific
heat in alloys with several bulk behaviors and we
calculate the discontinuities in the specific heat at
the critical temperatures by means of a formalism
outlined recently.

Our concern in this paper is to explore the
changes in the specific heat produced by the inter-

dependence of the two phenomena. Then we study
the problem within the simple mean-field theory.
An obvious restriction of this model is that short-
range-order correlations cannot be taken into ac-
count. These effects would modify our mean-field

results mainly near the transition temperatures.

II. THEORY AND CALCULATION

%e consider a body-centered-cubic binary alloy

A„B~ (y = 1 —x) with two ferromagnetic com-
ponents with spins Sz and Sz.

In order to describe the spatial long-range order,
the bcc lattice is subdivided into two equivalent
sublattices a and p. All a sites have p sites as
nearest neighbors and vice versa. In the perfectly
ordered case of the Ao 580 & alloy, all u sites are
occupied by A atoms and all p sites by B atoms.
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g p„(I,m)=1, v=a, P . (2.1)

In the disordered case the probabilities of finding
an A atom in the a and P sublattices are the same.

The magnetic properties of the system are
described by means of the probabilities p„(I,m), of
finding an atom I (I=A,B) with spin S,=m
( —Si & m &Sr) in the sublattice v (v=a, P). The
total number of probabilities is then 2(2' +1)
+2(2Sii+1) and they are normalized by

order parameters g„(I) are defined by

and

r)
—= [p~(A) —pp(A)] (2.8)

g„(I)=p„(—IT ) p„(—I k ), (2.9)

respectively.
In Eq. (2.6} Wc is the chemical contribution to

the effective heat of mixing and is defined by
I,m

The average concentration x of species A is given
in terms of the probabilities by

~c=U~+ Usa —2&~a.

The entropy is given by the expression

(2.10)

—, g p„(A,m) =x .
v, m

(2.2)
S=——,kN g [p„(I,m)lnp„(I, m)] . (2.1 1)

At zero temperature we have for the Ap 5Bp 5 alloy
that

p (A,Sg ) =pp(B,Sg ) = 1,

U= Uc+ U~

where

(2.5)

Uc(r)) =Uc(o} ,NZ~cr1'—— (2.6)

and

UM (gr )= —,NZ g g (I)gp(I')&~i— (2.7)

Here, N is the total number of atoms, Z is the
coordination number and the spatial long-range or-
der parameter q, and the four magnetic long-range

and the rest.of the p's are equal to zero. Above the
Curie temperature we have

p„(A,Sg ) =p„(A,Sg —1) . =p„(A, —Sg ), (2.3)

p„(B,Sa )=p„(B,Sg —1) . =p„(B,—Sg ), (2.4)

v=a, P .

At finite temperature, the equilibrium values for
the probabilities are found by minimizing the free

energy E= U —TS, by means of the natural itera-
tion method, and subject to the three constraints
(2.1) and (2.2).

The contributions to the internal energy U are
the chemical nearest-neighbor interactions U~,
U~~, and Uq~ and the Ising exchange integrals

J„„,Jim's, and J„ii (defined positive for ferromagnet-
ic coupling). For the case Sz ——Sii ———,, the internal
nal energy can be written as

kep=zxyr', , (2.13)

which is the ordering temperature in nonmagnetic
systems. Thus, three situations are possible, i.e.,
(i) 00&Os', (ii) Osr &00, and (iii) Os&Os,
Jz~ &&Jzq, J~~, depending on the values of the
parameters JII, 8'c, and x. The temperature
dependence of the order parameters as well as the
phase diagrams in all those cases were studied in
detail in Ref. 5. Here we study the temperature
dependence of the specific heat

C=T S
(2.14)

and its discontinuity at the critical temperatures.
In the cases (i) and (ii) mentioned above, there

are two critical temperatures Ti and Tz (Ti &T2).
At the lower critical temperature where a second-
order phase transition takes place one of the order
phenomena disappears. A more complicated situa-
tion occurs in case (iii}.

Recently it has been shown that in systems with
coupled order parameters, there are extra contribu-
tions to hC at T= T~, not present in systems with
only one kind of order. It was shown that if the
two phases are characterized by the order parame-
ters g; (i=1,2, ...,Ni) and g; (i=1,2, ...,N )s2uch
that g; =0 for T & Ti and g; =0 for T & T2, the
specific heat at T~+-is given by

%e now define two basic parameters: an unper-
turbed Curie temperature e~
8k8m = Z(xJww+3'xiii�)

+Z[(xJm —XJaa ) +4'Jqs], (2.12)

which is the Curie temperature' for Uz ——0, and an
unperturbed ordering temperature Sp
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C(T1 ) (kl) r + Tl
2 BS

gg2

BS ~, BS ((T )
r, ~& r,

' (2.15)

and

Here,

(i+1-),
1

(2.16)

Q~o g Q~M

In this case the order-disorder critical tempera-
ture is no longer given by Eq. (2.13) but by a com-

pletely different equation. We denote this tempera-
ture by T'o. The parameters that vanish at T= To
are

and

5; —
~T r=r, (2.17)

ki=n 4=4(~)—Cp(~»

g3 g~(B)——gp(B)—, N )
——3,

(2.18)

g (T)-+)=
I

and the parameters that remain finite at T= TD are

At the higher temperature T2 only one kind of
order is present and AC is calculated by means of
the regular Landau theory for phase transitions. "

We now apply the above formalism to the three
following situations.

g)
——g (&)+gp(~)

(p=g~(&)+gp(&), N2=2

The specific heat at To+ is then given by

(2.19)

alld

I

(1+$2) (1 —$2) (1+g3) (1—g3)'
C(T, )=—(g', )' + +- +

2x+0& 2x —0i 2y —0z 2y +02

kTo 2x+g~ 2y+gq
gl(To )ln + gz(To )ln

zoic 2x- 2y —
2

(2.20)

C(To )= — g'i(To+) ln +gg(To+) ln
4Z8'c 2x —4 2y —gz

(2.21)

Equations (2.20) and (2.21) are evaluated by solving

ten and four coupled equations, respectively.
At temperatures higher than To, the spatial or-

der is lost and the system remains ferromagnetic

up to the temperature 8M. This phase is charac-
terized by only two order parameters, g~ and gz.
Near 8M, it can be shown that

2

xyJAB+
Co

8X /JAB

2
4k8M

Z
XJAA

I

Thus, the specific heat at 8M, is calculated by the
Landau theory" for systems with only one type of
order, and it is given by

JAB

4kT
JBB

Zy

(2.22)

Here,

(2.23)

'3
3 4k8M4 l. (x~AA yJBB) +4xy~AB] JAB

XP ZX3'JAB 7JAB

4k 8M

X
JBB— (2.24)

and 8M is given by Eq. (2.12).
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e~ &eo

In this case, at T=Op there is a second-order
transition between an ordered paramagnet (T & 80)
and a disordered one (T & 80). There is also, in

general, a lower temperature TM at which a
second-order transition between an ordered fer-
romagnet (T & T~) and an ordered paramagnet

(T~ & T & 80) occurs. In this situation we have

g, =g (a},
gp =—gp(A)/g~(A),

g3—=g (&)/g (&),
(2.25)

f4=—jp(8)/g (3), N) ——4,

(2.26)N2 1——
Applying the mentioned general theory we find
that the specific heat at TM+ is given by

C(TM ) =——,g'(TM )+ —,(g))
Cz 4 4+ i + i +x+ —,q x ——g y+ —g y ——,g

(2.27)

and

(2.28)

C(O;)=-
x +y

(2.29)

C. eo&~ &~a«&~ &as

In this situation the low-temperature behavior is
difterent from that discussed in Sec. IIA. Because
of weak magnetic exchange between dissimilar
atoms the system becomes paramagnetic, in the
A p 58p 5 alloy, at the temperature TM where the
chemical order is strong and becomes ferromagnet-
ic again at a higher temperature Tp where the sys-
tem is disordered enough to take advantage of the
strong exchange interactions Jzq and J~z.

The calculation of C at TM corresponds to the
case discussed in Sec. IIB where O~M &Sp, and the
the calculation of C at 8M corresponds to disor-
dered ferromagnetic systems [Eq. (2.34)]. At
T= TM, the situation is much more complicated
and only numerical results for C are presented.

III. RESULTS AND DISCUSSION

The Fe„Co„system is a metallic ordering alloy
with bcc crystal structure and with Curie tempera-

At T & TM the system becomes paramagnetic and
the problem reduces to calculating the specific heat
of a normal order-disorder transition. The specific
heat C(OO } is given by

tures higher than the spatial order-disorder transi-
tion temperatures. ' Then it belongs to the alloys
described in Sec. II A. This system, as all the
magnetic transition metals, presents localized and
itinerant properties. ' Therefore, it is evident that
a description of this alloy by a spin- —, Ising
model is not fully adequate It is, however, interest-
ing to consider our model is a simple interpolation
scheme for this system. The phase diagram was
studied within this model and it was shown that its
main features can be obtained. The four parame-
ters JF,F, , JF,c„Jc~p and Wc were obtained from
the three experimental values of eM at x =0.4,
0.5, and 0.6 and from Tp at x=0.5. It is worth
noticing that the Curie temperature at those con-
centrations coincides with a change of crystal
structure from bcc to fcc. However, it is not clear
from the experiment if this last change of phase
drives the system to the paramagnetic state. Based
on a mean-field theory one would expect the oppo-
site, since the Curie temperature is proportional to
the coordination number, but a more careful study
would be necessary. Here we are mainly interested
in the change of the specific heat at the order-
disorder temperature.

We applied the theory described in Sec. II A to
this system. Our results are presented in Figs. 1

and 2. The temperature dependence of the specific
heat is shown in Fig. 1. We see that C(TO ) is
much larger (5.408) than the one we would obtain
in an ordering paramagnetic alloy (1.5). This
enhancement shows clearly the interplay between
magnetism and spatial order. We show also in this
figure the experimental results. '" Here, we sub-
tracted the lattice and electronic contribution to C.
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In Fig. 2 we show the results for hC at T= Tp
(full line) and at T =Bshe (dashed line) as a function
of the alloy concentration. We see that b,C(To) is
asymmetric with respect to x =0.5, a feature not
possible to obtain in our simple model if magne-
tism is not included.

The results for an alloy of the type discussed in
Sec. II 8 are shown in Figs. 3 and 4. The parame-
ters used in Fig. 3 are Jzz ——1.0, Jzz ——0.5,
Jzz ——2.0, 8'c ——1.2, and x=0.5. Here, we show
the temperature dependence of the order parame-
ters t) and g= —, gz„g„(I) [Fig. 3(a)] and the tem-

perature dependence of the specific heat (solid line)
and of the entropy [dashed line Fig. 3(b)]. In Fig.
4 we show the concentration dependence of AC at
T~ for the range x] &x &x2, where 8~ & Sp. %e

250 750 l250

TEMPERATURE (K)

FIG. 1. Temperature dependence of the specific heat
C for a Fe05Coo q alloy. The arrows mark the peak
values of C at the order-disorder transition temperature.

Our results are in a good qualitative agreement to
the experiment, but C(To+ ) and C(8' ) are
smaller than those experimentally observed. How-

ever, it is expected that the quantitative difference
would be smaller if we would formulate the theory
in the Bethe approximation, taking into account
short-range spin correlations.
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FIG. 2. Discontinuity in the specific heat of the Fe-Co
system as function of the iron concentration x at the
order-disorder transition temperature (full line) and at
the Curie temperature (dashed line).

TEMPERATURE (T/8 )

FIG. 3. (a) Temperature dependence of the spatial
long-range order parameter g and average magnetization

g for the case 8M & 00 and the set of parameters

Jzz ——1.0, Jzz ——0.5, J~& ——2.0, ~c=1.2, and x =0.5.
(b) Specific heat (full line) and entropy (dashed line) for
the same alloy, showing that the phase transitions at To
and T~ are of the second kind.
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FIG. 4. Discontinuity of specific heat at T~ as a func-

tion of the concentration of A atoms in an alloy with the
same parameters as those in Fig. 3. The inset figure
shows the range x I &x &x2 on the phase diagram where

e~ & 00. The different phases are A and E disordered
ferromagnets, 8 disordered paramagnets, C ordered fer-

romagnets, and D ordered paramagnets.

~ as-m

1.0 "

SPECIFIC HEAT
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show in the inset figure the phase diagram for this
alloy. The different phases are A and E disordered
ferromagnets, B disordered paramagnets, C ordered
ferromagnets, and D ordered paramagnets.

Figures 5 —7 contain results for the third kind of
alloy discussed in Sec. II, i.e., 80&8M and

Jzz &&Jz~, Jzz. The parameters used are Jq~
=1.0, Jq~ ——0.25, Jz~ ——2.0, 8'~ ——1.0. In Fig. 5
we show the temperature dependence of il, g, C,
and S for an alloy with x =0.5. In this case, we
have three critical temperatures: TM at which the
system becomes paramagnetic at low temperatures,
To at which the system becomes ferromagnetic and
spatially disordered, and 8M the Curie temperature
at high temperatures. At each of these tempera-
tures there is a discontinuity in the specific heat.
This is shown in Fig. 5(c). We show here also the
temperature dependence of the entropy. In Fig. 6
we display the results for an alloy with x =. 0.45
and the same parameters as in Fig. 5. In this case
there are only two transition temperatures To and
8M. The paramagnetic gap present for x =0.5
vanishes, but there is a discontinuity in g at
T= To. We see that there are two main differences
in C as compared with the results for x =0.5: (i)
the discontinuity at T= TM becomes a shoulder

Qs-
I
I
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I
l
I

III
Q25 Q75 I.O

TKMPKRATURE (T/eg )

FIG. 5. Temperature dependence of (a) i), (b) g, and

(c) C {full line) and S (dashed line) for an alloy with

J~——1.0, Jgg ——0.25, Jgg ——2.0, 8'c ——1.0, and x =0.5.

and (ii) the finite C at T=Tq becomes infinite.
The results for hC at TM for concentrations

x& (x &x2 as well as the phase diagram are pre-
sented in Fig. 7. The phases A, B, C, D, and E
are the same as those of Fig. 4. The results of hC
are similar to those displayed in Fig. 4, except the
sharp increase of the region near xi, where the sys-
tems pass through four phases as one increases the
temperature.

All our results stress the strong interdependence
of magnetism and spatial long-range order. Exper-
iments on this kind of systems would be desirable
to check the validity of our theory.
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ure shows the range xI &x &x2 on the phase diagram
where 8M & 80. The phases marked A, 8, C, D, and E
are the same as those in Fig. 4.
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