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A real-space renormalization-group method is applied to one-dimensional random

walks with static disorder. In agreement with previous results we find that the presence
of disorder leads to a non-Markovian diffusion equation with a t long-time tail. The
effective diffusion coefficient and the coefficient of the long-time tail are computed for
several disordered random walks.

I. INTRODUCTION

This paper is concerned with the long-time and
large-distance properties of one-dimensional ran-
dom walks with static disorder. In addition to
serving as models for conductivity in various ma-
terials, ' these random walks. display non-
Markovian features which are similar to those
found in more complicated disordered systems such
as dense fluids. In both cases the non-Markovian
features appear in the transport equations as
memory kernels which decay as a power law. The
existence of these long-time tails in disordered ran-
dom walks was recently discovered by several au-
thors. ' These authors analyzed specific models
using methods tailored to their models. Here we

apply a renormalization-group (RG) method to a
class of disordered random walks including some
of the models previously studied. This RG calcu-
lation is a real-space version of the method used by
Forster, Nelson, and Stephen in their study of the
long-time properties of fluids.

The random walks which we consider are those
in which a group of noninteracting walkers hop be-
tween nearest-neighbor sites irregularly spaced on a
line. Associated with each site are arbitrarily
chosen waiting time distributions for jumping to
the right and to the left. For example, if we
choose exponential waiting-time distributions we
obtain a random walk described by a master equa-
tion with random transition rates. Many of the
properties of this random walk are reviewed in
Ref. 6.

In Sec. II we give a perturbative solution to the
master equation with disorder in the transition
rates and step lengths. This solution displays the

/

II. PERTURBATIVE SOLUTION
TO THE MASTER EQUATlON

Consider the master equation

aP„(t)
a

=gW„P (t) (2.1)

with nearest-neighbor hopping,

~nm ~n ~nm —1+~n —l~nm +1

—( W„+W„))5„ (2.2)

The 8'„are to be interpreted as transition rates
and the P„(t) as occupation probabilities for site n

at time t. The lattice sites are at position xn on a
line. The separation between lattice sites is given

by ln:

l„—=xn+) —xn . (2.3)

The 8'„and l„are random variables, possibly
correlated with one another at the same site but
with no correlations between sites. The distribu-
tions for 8'„and ln are taken to be translationally
invariant.

expected t long-time tail in the generalized dif-
fusion equation but gives inexact results for the
value of the diftusion coefficient and the coefficient
of the long-time tail.

In Sec. III we show via the renormalization
group that the perturbation expansion of Sec. II
can be rearranged to give exact results for the
asymptotic properties of the random walk with
disorder in the waiting-time distributions and step
lengths, so long as the disorder is not too strong.
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We will solve Eqs. (2.1)—(2.3) perturbatively by
expanding around an ordered system with the same
average properties as the disordered one. The or-
dered system has step length I and transition rate
8' given by

(2.4)

so

1, fx/(a
X(x)=—'

0

P„= lim f dxX(x x„)P—(x) . ,

.a-+ 0+

(2.14)

(2.1S)

and

(2.5)

The small positive number a is taken to zero only
at the end of a calculation. Note that for suffi-
ciently small a,

where the bracket is an average over the distribu-
tion of /„and 8'„.

For the ordered system the problem is easily
solved by taking Fourier and Laplace transforms of
the master equation, Eqs. (2.1)—(2.3), with a single
transition rate and step length,

zP (z) P(t =—0)= —4 sin (q//2) Wpq(z),

(2.6}

where

X(x„—x~ ) =5„~ . (2.16)

This allows us to write the master equation in the
continuum form,

zP(q, z) = f dq' W(q, q')P(q', z) +P(q, t =0),

(2.17)

with solution

P(q,z}=f dq'G(q, q';z)P(q', t =0),
00

Pq(z}=f dt g exp(iqnl zt)P„(t)—. (2.7)

where

(2.18)

The solution to Eq. (2.6) is

Pq(z) =Gq(z)pq(t =0),
where the Green's function is given by

G~(z) =[z+4sin (ql/2) W|

(2.8)

(2.9) X~—= f dxe'~ X(x), (2.19')

W(q, q')—: +exp(iqx iq'x„—) W „, (2.19)
X

e'en

and

For small q or large distances, G~(z) reduces to the
diffusive Green's function

and

1
G~(z)- as q~0,

z+q D

with diffusion coefficient

(2.10)
G(q, q';z} '=z5(q —q') —W(q, q') . (2.20)

%e now seek a perturbation expansion for the aver-

age or effective Green's function which must take
the translationally invariant form,

D=l W. (2.11)
5(q q')Sq(z): (G—(q, q', z)) . — (2.21)

P(x, t) =g 5(x —x„)P„(t), (2.12)

and
+ Oo 00

P(q, z}=f dx f dte"" P(x, t}.

(2.13)

For the irregular lattice we must first go to a con-
tinuous space variable x and then take a continu-
um- Fourier transform. Let

By analyzing the average Green's function instead
of the Green's function for a single realization we
simplify the calculation and the results at the ex-
pense of losing information about the short-
distance properties of the random walk. On the
other hand, the effective Green's function should
accurately describe the long-time and large-distance
behavior of a single random walk.

We expand G(q, q', z) in powers of 5W( , q)q, the
deviation of W(q, q') from its uniform system
value,

We can invert the transformation from P„ to P(x}
by convoluting P(x) with the characteristic func-
tion X(x),

5W(q, q') = W(q, q') (W(q q'—}~ . —

Up to second order this gives

(2.22)
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G(q, q', z) =5(q —q')Gz(z)+ ' '
5W(q&, q2)

5G(q, q', z)
5W q~, q2

+ ' ' 5W(q~, qz)5W(q3, q4)+O(5W') .5 G(q, q', z)

5W(q~, q2)5W(q3 q$)

Here integration over wave vectors repeated in parentheses is implied and the functional derivatives are
evaluated in the uniform system. Noting that

5 G(q, q';z)
=Gq(z)5(q —qi )G~,5(q2 q, )5—(q4 q')G- , ,

5W(q~, q2)5W(q3 q4)
q'

and averaging gives

(5W(q, „)5W(«,q ) &

9'q(z) =Gq(z)+Gq (z) I dq) Gq, (z)
5q —q'

(2.23)

(2.24)

(2.25)

In Appendix A the correlation function is sim-
plified and the wave-vector integration done yield-
ing

P(q, z) =Gq(z)

Zi/2
+bGq(z)q D 1—

z+4W

(2.26)

where

(2.27)

=D(1—~)+—&&z/W+O(z} .
2

(2.28)

Thus second-order perturbation theory leads to a
generalized diffusion equation with a z' or t
long-time tail. The coefficient of this long-time tail
and the modification of the diffusion coefficient are
both proportional to the mean-square fluctuation in
the transition rates and the step lengths.

From the Green's function the z-dependent general-
ized diffusion coefficient &(z) can be obtained and

expanded in powers of z'

= z' a'
&(z)= —— 8'(q, z)

Bg q p

the long-time tail appear at all orders of the pertur-
bation expansion. Thus the result of Eq. (2.28) is
exact only in the limit of weak disorder. The
renormalization-group approach presented in this
section circumvents this difficulty by rearranging
the perturbation expansion so that the diffusion
coefficient and long-time-tail coefficient are moved
entirely to the first two terms of the series. The
Inethod also leads naturally to the analysis of
disordered walks described by arbitrary waiting-
time distributions.

The idea of the RG approach is to iteratively
transform the original, strongly disordered process
into a weakly disordered process without changing
the asymptotic properties of the original process.
Perturbation theary is then applied to the weakly
disordered process. . Each step in the transforma-
tion consists of eliminating odd-numbered lattice
sites. If the walker is at an odd-numbered site in
the untransformed process, its position after the el-,

imination is assigned to be that of the previous site
visited. Since the difFerence between the positions
of the walker before and after the elimination is
one lattice spacing or less, the large distance prop-
erties of both walks are the same. After the elim-
ination of odd-numbered sites, the remaining sites
are renumbered and lengths and times rescaled so
that the new pracess looks as much as possible like
the old process.

Indicating the parameters of the walk after the
elimination of odd sites with a bar, the new step
lengths are

III. RENORMALIZATION-GROUP CALCULATION
l2„——l2„+l2„+1 (3.1)

A. RG transformation

The difficulty with naive perturbation theory is
that contributions ta the diffusian coefficient and

There is no analogous transformation on the set
of 8"s because, after the elimination of odd num-
bered sites, there is no longer an exponential
waiting-time distribution for jumping between
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even-numbered sites. Thus we are forced to con-
sider transformations on arbitrary sets of waiting-
time distributions. A set of waiting-time distribu-
tions is equivalent to a non-Markovian master
equation. The connection between the waiting-
time picture and the generalized master-equation
picture can be found in Ref. (8) and is reviewed in

Appendix B.
Let p„(t) [q„(t)]be the probability density for

jumping from site n to site n +1 [n —1] after wait-
ing at site n for a time t. Let p„(z) and q„(z) be
their Laplace transforms. After the elimination of
odd-numbered sites the new waiting-time distribu-
tions for jumping to the right are given by

p2+(z) =phiz(z)p2++1(z) g [p2+(z)qzp+ i (z)+q2„(z)p2„ i (z)]
s=0

(3.2)

The prefactor is the probability density for jumping
directly from site 2n to site 2n +2. p2„(z)q2„+ i(z)
and q2„(z)p2„,(z) represent jumps from site n to
n +1 or n —1 and then back to n. These jumps
can occur any number of times in any order and in
the transformed process are counted as waiting at
site n. Summing the geometric series gives

(3.8)

There are various fixed-point waiting-time distribu-
tions depending on the choice of A, and the sym-
metry imposed on the fixed point. Supposing that
p„(z)=q„(z), the fixed-point equation is

2„(z)=p2„(z)p2„+ i (z)
p (z) p'(z/A, )'[1—2p'(z/g) ]-i (3 9)

X [1—p2„(z)q2„+ i (z)

—q2. (z)p2. i(z)l ',
and, by the same reasoning,

q2„(z) =q2„(z)q2„ i (z)

(3 3)

For small z, the solution to Eq. (3.9) is given by

(3.10)p'(z)=-, (1 Tz ), —

where T is an arbitrary constant and a is related to
A, by

X [1—p2„(z)q2~ ~ i (z)
A, =4 (3.11)

q2 (z)p2 —1(z)] (3.4)

I,' =l2„/2=(l2„+l2„+, )/2 . (3.5)

Leaving the time rescaling factor arbitrary for the
moment and denoting it by A, we have

and

p„' (z) =p2~(z/A, )

' (z)= q(2z A/). ,

(3 6)

(3.7)

B. Fixed points of the RG transformation

The fixed-point step length /~ is a constant
which must equal the average initial step length,

lq„, p2„(z), and q2„(z) fully describe the random
walk after the elimination of the odd-numbered
sites. To complete the RG transformation the
remaining lattice sites are renumbered and time
and space are rescaled so that some average param-
eters of the random walk are unaffected by the RG
transformation. If the average lattice spacing is to
be unaffected by the RG transformation then
lengths must be rescaled by two. Indicating the
transformed walk by a prime we have,

a=1 and A, =4 correspond to an ordinary dif-
fusion process with diffusion constant D =I2/2T.
0. & 1 gives the nonanalytic waiting-time distribu-
tions discussed by Scher and Montroll which lead
to processes in which the mean-square displace-
ment grows more slowly than t.

For the diffusive case the fixed-point equation is
solved by

p*(z)= —, sech(2&zT ) . (3.12)

The inverse Laplace transform of this function is
related to a theta function and p *(t) is the
waiting-time distribution that would be obtained by
replacing a continuous one-dimensional diffusion
process by a discrete one according to the follow-

ing rule. The diffusing walker is counted as wait-
ing at the last lattice site crossed until the next lat-
tice site is crossed.

Starting from a disordered random walk and ap-
plying the RG transformation many times with the
appropriate rescaling factor we expect to approach
one of the above fixed points; which fixed point
and how it is approached determines the long-time
and large-distance properties of the disordered ran-
dom walk. The approach to the fixed point is
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5l'= —,(5l+5I~ ) . (3.13}

analyzed by considering the effect of the RG
transformation on moments of the random parame-
ters defining the process.

Consider the moments of Sl, the deviation of the
step length from its average. To simplify the nota-
tion we will henceforth suppress the site subscript
n by using + or —to indicate n +1 or n —1 and

by leaving implicit the renumbering of lattice sites
by the RG transformation. Thus Eq. (3.5) be-

comes, for the fluctuations of the step lengths

qm n&0

Sn

n+1

m=0

n=0
pm n&0
qm

(3.18)

the lattice functions p„and q„we can construct a
new lattice function 7n which obeys linear recur-
sion relations.

Let

The transformation on the nth moment of 61 is
thus

(3.14)

and let

7n —Sn

N —1

~ 2N j=—x
(3.19)

Since 51 are independent variables in the original
random walk and are not coupled by the RG
transformation, Eq. (3.14) becomes

From Eqs. (3.16) and (3.17}it follows that:

p' pp+
q' qq

(3.20)

(5Iin) (51n) (3.15) and

Thus the mean-squared fluctuations in the step
length are reduced by a factor of two at each itera-
tion and the higher moments of 51 dimini. sh more
rapidly. This is essentially a statement of the cen-
tral limit theorem for sums of original step lengths.

In the case of the waiting-time distributions the
situation is less simple because the RG transforma-
tion is nonlinear and acts upon a set of functions.
Instead of considering the full waiting-time distri-
bution we will derive recursion relations for two
parameters associated with p„(z) and q„(z). The
first is the probability of jumping to the right or to
the left and the second is the mean time for wait-
ing at a site before jumping. Let the probability of
jumping to the right [left) from site n be p„[q„]
and observe that it is just the z =0 value of p„(z)
[q„(z)] so that it follows immediately from Eqs.
(3.3), (3.4), (3.6), and (3.7) that

s'=pi(s+s+ ),
so the recursion relations for 7n are

= '+'+7'=
2

(3.21)

(3.22)

This is identical to the recursion relation for I„so
the same results apply if 7n is uncorrelated from
site to site; 7„converges to its average value of 1,
its mean-square fluctuation diminishes by a factor
of two at each iteration, and its higher moments
diminish by higher powers of two. Of course, if
the disorder in the right/left jump probabilities is
suf5ciently strong, 7n may be ill defined. The sub-

sequent analysis is thus restricted to problems
where 7n is well defined and uncorrelated with 7
for n+m.

The definition of 7„can be inverted to yield

p'=pp+(1 pq+ qp— — (3.16) (3.23)

and

q =qq (1—pq+ —qp ) (3.17)

Notice that ifp+q =1 then p'+q'=1 so that if
trapping is not present in the original process it
mill not arise through RG transformations. Since
Eqs. (3.16}and (3.17) are also nonlinear it is diffi-
cult to show directly that pn and q„converge
to their fixed-point values of —,. Homever, from

1
T(z) —=—[1—p (z)—q (z)],

z
(3.24)

then the mean waiting time is given by

so that, as the disorder in 7n diminishes, so also
does the disorder in p„.

Next consider the effect of the RG transforma-
tion on the mean time for waiting at a site, T„.
Defining T„(z) by
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T=lim T(z) . (3.25)

(3.26)

From the lattice function T„we can construct a
new lattice function, U„which obeys a simpler re-
cursion relation. Let

Henceforth we will assume that this quantity exists
at each site. In Appendix C we derive the follow-

ing recursion relation for T„ from Eqs. (3.3), (3.4),
(3.6), and (3.7)

] T +pT+ +qT
pp+ +qq—

After many RG iterations e„becomes small and
the recursion relation for U„ is approximately
given by

1 1U'= —,U+ —,(U++U ) . (3.31)

3 1

This recursion relation induces recursion rela-
tions on the moments of 5U. Even if 5U is initial-

ly uncorrelated from site to site, Eq. (3.31}couples
5U at neighboring sites so that we obtain coupled
equations for (5USU) and (5U5U+ ). Using
translational invariance these are easily seen to be

1 1U=T
7

(3.27)
(5v 5U )

— — (5v5v)
(5U'5U' )

' ' (5U5U+ )
(3.32)

From Eqs. (3.26) and (3.23) it follows that:

where

16=p —
2

(3.29)

Suppose the time rescaling factor, A, , is set to be

four. From translational invariance it follows that
the average value of U„ is unchanged by the RG
transformation,

(v') =(U) —= U'. (3.30)

U'= —U+ —(U +U )+—(e U —e U ),2 1 2
+ x ++'

(3.28)

The eigenvalues of this transformation are —and
1

By adding the e terms from Eqs. (3.28}—(3.32)

and then diagonalizing the linear part one can
show that only the eigenvector of —, has e contri-

butions.
Thus far we have shown that the zeroth and first

-moments with respect to time of the waiting-time
distributions converge to their fixed-point value.
We now sketch an argument that the fixed point is
stable. This will be the case if all the remaining
moments with respect to time have recursion rela-

tions whose linear part have eigenvalues all less
than one. From Eqs. (3.3), (3.4), (3.6), and (3.7) it
is easy to show that these moments satisfy

5p(n)' (5p(n)+5 (n)+ ' (5p(n)~5q(n)+5q (n)+5p (n) )+0) (3.33)

where

5p'"'=( —)"I t "p(t) dt

(}"p(z)
az" z=0

(3.34)

and similarly for 5q'"'. H contains nonlinear terms
and linear contributions from 5p' ' and 5q' ' for
m &n. Consider the linearized recursion relations
for the second moments of 5p'"'. Since these rela-
tions are block triangular in the index n it follows
from the Schwartz inequality that for all eigenvec-
tors involving 5p'"' the associated eigenvalue must
be less than 4" "'. Thus for n y 1 the second (and

higher moments) of 5p'"' and 5q'"' decay by at
least a factor of 16 with each RG iteration. For

I

n =0 we have seen, by analyzing r that, if ~ exists,
(5p' '5p' ') ultimately decays by a factor of 2 with
each RG iteration. For n =1 the analysis of 5U
shows that second moments of the combination
5p"'+5q"' ultimately decay at. least by a factor 2.
It is easy to deduce from Eq. (3.33}that the
second moments of the other combination,
5p"' —5q"', decay at least by a factor of 8. Thus
the fixed point is stable to small analyic perturba-
tions so long as all the moments of 5p'"' and 5q'"'
exist. We assume, without proof, that the fixed
point is also stable to arbitrary analytic perturba-
tions so long as all the moments of 5p'"' and 5q'"'
exist.

If the original random walk is described by the
master equation of Eqs. (2.1}and (2.2) then the
quantities ~„and U„are simply related to the tran-
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sition rates W„. Using Eq. (3.19) and the results of
Appendix B we have that

and therefore that the effective diffusion coefficient
is given by

(3.35) N =I'/U* . (3.41)

and that U is a constant for all n

'=(-' (3.36)

Thus, for the master equation, a necessary condi-
tion for convergence to the diffusive fixed point is
the existence of the average ( I/W„). For a dis-
cussion of the situation where ( I/W„) diverges,
see Ref. 6.

C. Generalized diffusion coeAicient

After any number of RG recursions we can re-
turn to the master equation picture (cf. Appendix
8) and construct a perturbation series for the gen-
eralized diffusion coefficient. The formalism of
Sec. II can be taken over as it stands except that
the transition rates must be replaced by z-

dependent transition rates. These transition rates
can then be further expanded in terms of the mo-
ments of the waiting time distribution gr, gU,
5p' ',5q' ', . . . yielding a perturbation series in
terms of these parameters. As the fixed point is
approached the structure of the perturbation series
simplifies and the diffusion coefficient and long-
time tail coefficient can be read off .exactly.

The relationship between the generalized dif-
fusion coefficient after E RG recursions, &' '(z)
and the original function, &(z) is given by the sim-

ple scaling equation

More care must be taken to compute the z-

dependent terms in S'(z) since with each RG re-

cursion z is scaled up as the fluctuations in the
waiting-time parameters are scaled down. Consid-

er all the terms in the formal perturbation series
which behave like v z for small z. With each RG
recursion ~z grows by a factor of 2; thus, to
remain nonzero and finite, the coefficient of u'z

must diminish by a factor of two. The second mo-

ments of &„,5l„, and 5U„are the only quantities

appearing in the perturbation expansion which di-

minish by a factor of two; thus, sufficiently near
the fixed point, second order perturbation theory
gives exact results for the leading, V z, correction
to the diffusion coefficient.

Consider the situation where the eigenmode of
(5U5U) and (5U5U+) with eigenvalue —, is not

initially excited. This is true [cf. Eq. (3.36)] for the
master equation with symmetric hopping described

by Eqs. (2.1) and (2.2). In this case only the disor-
der in &. and 5l is relevant. Expanding 5W „(z)
to lowest order in &. we obtain

5&~ ~+,(z)=— „=—5W +) (z) . (3.42)

Using the scaling relation, Eq. (3.37), the second-
order result, Eq. (2.28), and taking the limit N~oo
we obtain an expression for the effective general-
ized diffusion coefficient

N(z)= lim &' '(4~z)=N+
N~~ 2

~(z) =~'"'(4"z) . (3.37)
(3.43)

From Appendix B and the definitions of r and U
we have that

with

(3.44)

and

Pm

m

1

mUm
(3.38)

If the process is described by a symmetric master
equation then

W +)(0)=
Tm+) rm Um+i

(3.39) 6r„=6 1

W„+) „(0)
(3.45)

At the fixed point, where the fluctuations have
vanished, we have that

(3.46)

(3.40)
Suppose, on the other hand, that r„and l„are
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constants but that (5U5U) is nonzero and finite.
For example, this occurs for the master equation

aP"„(r)U„=[P„+,(r}+P„ i(r}—2P„(r)],
at "+'

(3.47)

where U„are uncorrelated from site to site. The
perturbation expansion near the fixed point is com-
plicated slightly because the RG recursions induce
nearest-neighbor correlations in 5U. However, the
result is formally the same as in the-previous case
and given by Eqs. (3.41) and (3.43) where now

5U
(3.48)

S'(t} — 6'(~U')—' '&r ' ' (3.49)

and that the growth of the mean-squared displace-
ment has a t' correction

1/2
(x'(r)&

r ~
U't

2& (3.50)

These results agree with those obtained exactly by
Zwanzig' and van Beijeren, and, using an
effective-medium approximation, by Alexander
et al.

Equation (3.50) is also in agreement with com-
puter simulations of Eqs. (2.1) and (2.2) carried out
by Richards and Renken. " It should be noted,
however, that for their choice of parameters the
predicted t' behavior was not observed until the
time, measured in units of l /& was greater than
100. In their computer simulation 6*=3.6.

For both cases we find, using a Taubqrian theorem,
that the memory kernel in the diffusion equation,
8'(t), has the long-time form

by a non-Markovian hydrodynamic equation. If
the disorder is not too strong, this equation takes
the form of a generalized diffusion equation with a
t decay in the memory kernel. The
renormalization-group procedure separates the
components of the disorder which contribute to the
t long-tine tail from those that do not. The
relevant quantities are the second cumulants of the
variables l„, ~gy and U„. ~„and U„are construct-
ed from the probabilities of jumping to the left or
the right and the mean time for waiting at a site in
such a way that their ensemble averages are invari-
ant to the recursion relations. Other moments
with respect to time of the waiting-time distribu-
tions decay to their fixed-point values sufficiently
rapidly that they do not contribute to the t
long-time tail, although their cumulant averages
must exist if the perturbation expansion is to make
sense.

The averages of ~„and U„exist only when the
long-time behavior of the walk is diffusive.
Presumably the recursion relations lead to one of
the nonanalytic fixed points when the disorder is
sufficiently strong that these averages diverge.
Showing this to be the case remains an open prob-
lem. Another open problem is the application of
the RG method to higher dimensional random
walks.
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IV. DISCUSSION

The long-time properties of one-dimensional ran-
dom walks with static disorder must be described

APPENDIX. A

5W(q, qi ) is defined by

X q
5 W (q, q i )= g 5[exp(iqx iq &x„)8—'~„]

2%

X q
+exp[i(qml q&nl)][(iq5x— iq, 5x„)(5 +—i „+5 i „—25 „)$V
mn

+5~ 5 +i„+58' i5 i„—(5W +5W i)5 „]. (Al)
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After summing over m and n we have

5W(q, q, ) =4W5xk[iqi sin (ql/2)

i—q sin (q&I/2)]

5x —=ge "m'5x (A4)

and similarly for 5$'k. 5x~ can be related to 5l~
using Eq. (2.3)

where

—45 Wk exp(iql /2 —iq i I /2)

X sin(q&1/2) sin(ql/2),

51k =g e' '(5x i
—5x )

2i—e ' sin(kl/2)5xk . (A5)

k =g —q] (A3)
Using Eqs. (A2) and (A5) and expanding to the
lowest order in q we have

X I

(5W(q, qi)5W(q&, q') ) =4q I W sin (q&1/2) 2' 2~

I

where

k =pi —g

X ((5lk/I +5Wk/W)(51k, /I +5Wk, /W) ),

(A7)

(AS)

Invoking the translational invariance and site-to-site independence of the distribution for l„and 8'„, the
second-order expression for 9'»(z) becomes

+m/1

%»(z)=G»(z)+AG»(z) f dqi [4q I W sin (q|I/2)G» (z)],

where

5—= ((5I/I+5W/W)') . (A9)

and Q~„(z), their Laplace transforms, are related

by

(A10)

Using Eq. (2.9), the integral of Eq. (AS) can be
done yielding

Here we have made use of the fact that, for any
lattice function, f„,

+ 00 +m/1

f dqi & »,f», =fo=-l f „dqif»,

Q(z) = g I P(z)]'=[I-4(z)]-',
p=0

(Bl)

where the matrix indices have been omitted. Let
T (t) be the probability density of remaining at m
for a time t after arriving there. Its Laplace
transform T~(z) is given by

S» (z)=G» (z) +AG» (z)q I W T (z)= — 1 —gl(„(z)
'

.
1-
Z

(B2)

I /2
x 1—

&z+4W
(Al 1) The Green's function G „(t), is thus a product of

Tand Q

G „(z)=T (z)Q, (z) . (B3)

APPENDIX B: RELATION BETWEEN WAITING-
TIME DISTRIBUTIONS AND THE GENERALIZED

MASTER EQUATION

Let g „(t) for mQn be the probability density
for jumping from n to m after waiting at site n for
a time t. Let Q „(t) be the probability density for
arriving at m at time t after starting at n g~„(z). G (z) = [z —W'(z)] (B5)

Suppose we start with the generalized master
equation

al" (r) =g f W „(r)P„(t r)dr. (8—4)
n

The Green's function for this process is
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Comparing Eq. (85) with Eq. (83) we have APPENDIX C: RECURSION RELATION FOR
THE MEAN WAITING TIME

P „(z)
8'~»(z) = —g Pt„(

T„(z)
T,(z) .

Let TJ be defined by

Consider the case of nearest-neighbor hopping
where TJ ——lim T&(z) .

z-+ 0
(Cl)

and

p» (z)=4»+ &, » (z) ~

q„(z)=Q„),„(z)

(87)

(88)

TJ can be interpreted as the mean time for waiting
at site j. From Eqs. (3.3), (3.4}, (3.6), and (3.7) we
have

Here

T„(z)=—[1-p„(z)-q„(z)),1

z

p„(z)
W»+t, »(z) =

T„(z)

q„(z)
~» —1,»(

(89)

(810)

(811) where

1 p z)p+(z)
D (z)

q(z}q (z)

D(z}
(C2)

p„(z)+q» (z)
W»»(z) =-

n

(812) or

D (z) = 1 —p (z)q—+ (z)—q (z)p (z), (C3)

T'(Az)= I 1 —p(z)[p+(z)+q+(z)] q(z)[p (z)—+q (z)] I
1

AzD (z)

1 [T(z)+p(z)T (z)+q(z)T (z)] .
A,D z

Taking the limit z~0 and using p +q =1 we obtain

(C4)

(CS)

T +pT+ +qT
pp. +qq

(C6)
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