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Spin-Peierls transition of the anisotropic XY model in a magnetic field:
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The spin-Peierls phase transition for a quasi-one-dimensional XY chain is studied as a function

of the degree of anisotropy of the exchange interaction (y) and of the magnetic field (H). It is

found that both anisotropy and magnetic field decrease the critical temperature. When y and H
progressively increase, the phase transition is first of second order, passes to first order, and fi-

nally the ordered phase completely disappears. The corresponding magnetization, magnetic sus-

ceptibility, and specific heat are given. In particular, a peak and a discontinuity in the magnetic

susceptibility for finite magnetic field are found at the critical temperature, this discontinuity be-

ing maximum at the tricritical point separating the first- and second-order lines. For a second-

order transition the magnetization behaves continuously through the critical point where a

discontinuity is present only in the first derivative with respect to temperature. For the first-

order case a discontinuity is present.

I. INTRODUCTION

An antiferromagnetic exchange interaction between
the spins of singly occupied sites of a linear chain
leads to a dimerization instability analog to that of
the Peierls instability. When a large number of these
chains form a crystal, a spin-Peierls phase transition,
driven by the instability, can occur if the interchain
magnetic coupling is weak enough' with respect to
the intrachain coupling. This phase transition is
predicted to happen as well for a XY or a Heisen-
berg interaction. However it is much easier to treat
the XYcase because the Hamiltonian can be exactly
diagonalized in terms of quasifermion operators. '
The Heisenberg interaction is much harder to treat
because the quasifermion-quasifermion interaction
terms must be treated approximately. Fortunately,
the qualitative behavior predicted. for the Heisenberg
spin-Peierls transition is nearly identical to that of the
XY case. '

The addition of an anisotropy in the XY or Heisen-
berg interaction is of interest because it adds a new
degree of freedom to the parameters of the problem.
This anisotropy, in real systems, can come either
from the presence of a strong crystal field or from a
large spin-orbit coupling. The anisotropic dimerized
XY Hamiltonian with antiferromagnetic coupling was
diagonalized by Dubois and Carton4 without external
fields and by Perk et al. ' when a magnetic field is
present. The behavior of the spin-Peierls transition
in the presence of anisotropy only was investigated by
Lepine and Caille. It was found that when the de-

gree of anisotropy increases, the critical temperature
decreases, that the initial second-order phase transi-
tion is transformed into a first-order one, and that fi-
nally for a large anisotropy the dimerized phase
disappears for any temperature. This behavior as a
function of the degree of anisotropy is very similar to
that as a function of a magnetic field only as found
by Tannous and Caille. 7 Another interesting feature
of the anisotropic Hamiltonian is that for the uniform
phase a gap is present in the elementary magnetic ex-
citations. ' This gap decreases when the degree of di-
merization increases and completely disappears when
the degree of anisotropy is equal to the degree of di-

merization. This gap subsequently increases for
larger dimerization. The effect of this peculiar
behavior on the thermodynamic properties of the sys-
tem needs an investigation.

In this paper, I will concentrate on the thermo-
dynamic properties of the anisotropic XY spin-Peierls
phase transition, with a magnetic field applied.
Within this model, two parameters can be varied to
investigate the behavior of the phase transition. In
the second section, I will present the Hamiltonian
used, its eigenvalues, and discuss the energy levels
found. In the third section, the behavior of the de-
gree of dimerization as a function of temperature is
derived. A phase diagram of critical temperature
versus the degree of anisotropy is given for various
magnetic fields. In the fourth section, the magnetiza-
tion, the specific heat, and the magnetic susceptibility
are given for different values of the parameters. Fi-
nally, a discussion of these results will be given that
stresses the physical behavior of the system.
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II. HAMILTONIAN AND ENERGY BANDS

The Hamiltonian used will be that of a linear alter-
nating chain of 2N spins with an anisotropic antifer-
romagnetic XY interaction, as used by Dubois and
Carton, 4 with a magnetic field added:

N

H = Jt X (1 + y )SI"TI" + ( 1 —y )S; T»

N

+J2 x ( 1 + y ) TI"Sf+t + ( 1 —y) T; S;+t

N

+ t2,H X ( S,*+T;) +Eg

where S& and T& are the spin operators for the first
and second electron of the jth link, respectively. J~
and J2 are the two values of the exchange parameters
of a dimerized chain. A linear dependence of J~ 2 on
8, the degree of dimerization, will be used:
J& 2

=J(1 + 8). y is the degree of anisotropy for the
exchange interaction: y =+1 is the Ising model and

y =0 is the usual XY isotropic model. E,] is the elas-
tic contribution of the lattice. In its simplest form it
is quadratic: E [

= NC 5 because 8 is directly propor-
tional to (, the degree of distortion of the lattice.
IM, =2@,~ is twice the Bohr magneton, and H is the
magnetic field.

The magnetic part of the Hamiltonian given in Eq.
(I) can be diagonalized, following the procedure
described by Perk et al. ' (It is the same Hamiltoni-
an, with some minor modifications. ) The procedure
consists in performing a signer-Jordan transforma-
tion to fermion operators and then to diagonalize the
resulting Hamiltonian. The Hamiltonian obtained is

H= X egugug+eg Ugvg 2 (eg+eg), (2)
-e &ku (e

where

., =[., +(.,' —.,)'t']'t',
ek = [C2 (C2 C4) ]

c2 = (pH)2+ J (1+82y ) cos2ka/2

+ J2(82+y2) sin2ka/2

cq = [(p,H) —J (1 —8 y ) cos ka/2

—J (8 —y ) sin2ka/2]

+4J (y —82y)2sin2ka/2cos2ka/2,

a is the length of a dimer, and uk and vk are second
quantization operators for two different quasifermion

bands. The constant term corresponds to the energy
of two filled quasifermion valence bands, that are
mirror images of the conduction bands. If H =0, Eq.
(2) reduces to the expressions of the anisotropic XY
Hamiltonian of Refs. 4 and 6. If y =0, Eq. (2)
reduces to

III. PHASE DIAGRAM

As the number of quasifermions is not conserved
(chemical potential equal to zero), the Gibbs free en-
ergy is obtained from

2
J%—H6 =E,

&

—k&Tln trexp
AT

(4)

with the MH term included in H. Substituting Eq.
(2), we find for the free energy per dimer:

G &ei ks T ~ pea pet"
@ln 4 cosh cosh—

with p= I/ksT. For the isotropic case (y=0), Eq. (5)
can be written

H = X(Jg+ ttH) ut, ut, + (Jg —pH) ut, u„
k

X (Jg + p,H) + ( Jt, —
tjt, H)

k'

with

Jq =J[1—(I —8 ) sin'ka/2]'t

a result equivalent to that found by Tannous and
Caille. [Equation (3) is written in a particle-hole for-
malism. ']

The two bands are degenerate if c2 = (c2 —c4)' is
zero. This occurs in three cases: H =0 and y =0,
H =0 and 5=0, or 5=0 and y =0. The energy gap
determined from Eq. (2) is not always at the corner
of the Brillouin zone. In the absence of magnetic
field, it occurs between the e" bands and always at
the zone corner: k = 2r/a. This gap is zero only
when y = 8.6 In the isotropic case (y =0), the gap is
at the zone corner until 5J = p,H. For larger magnet-
ic fields, the gap is no longer present and the
minimum of the ~k' band occurs for p,H - Jk, a value
of k that can be far from the zone corner. If 5, y,
and H are different from zero, a mixture of these sit-
uations occurs and the gap can be anywhere in the
Brillouin zone or can be zero.

G &ei ksT p(Jt, + &)

NJ NJ NJ

I

p( Ja —h)
cosh (6a)
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a result identical to that of Tannous and Caille':

6 E.l kg~
WJ NJ ,X {In[1+2exp(—PpH) coshPJk+exp( 2P—pH) ])—h (6b)

where k is 2psH/J.
When the magnetic field is absent, results of Ref. 6

are regained (anisotropic alternated XY model).
The phase diagram is obtained by a minimization

of Eq. (5) with respect to 5 for a given set of parame-
ters (C/J, y, h). For a second-order phase transition,
the critical temperature is obtained when 8;„passes
from zero to a finite value. For a first-order phase
transition, two minima are present in the neighbor-
hood of the transition. The critical temperature is
then obtained from a comparison of G (0), with

G(8;„). In Fig. 1 appears the behavior of 8;„(pro-
portional to the degree of dimerization) as a function
of temperature (kT/J) for C/J =0.5, h = 0.1, and

y =0, 0.1, 0.125, 0.13, 0.135 and 0.139. It is seen
that for small anisotropy (y ( y, = 0.125), the tran-
sition is of second order, that for y, & y & y, it is of
first order, and that for y & y, =0.1395 the dimer-
ized phase is no longer stable. For higher magnetic
fields, the value of y„ the tricritical point, is smaller

(y, becomes zero between h =0.1 and h =0.2). For
smaller magnetic fields, y, is higher but the phase
transition always becomes of first ordek before y = y,
where the ordered phase disappears. The value of y,
decreases when the magnetic field increases. The
phase diagram, obtained from Fig. 1 and similar
results for h =0 and 0.2, are shown in Fig. 2, where

ks T,/J is plotted as function of y for C/J =0.5 and
h =0, 0.1, 0.2. The full drawn lines are second-order
lines and the dotted ones are first-order lines. From

this figure, we observe the following: T, is max-
imum for the isotropic chain without magnetic field;
T, decreases when the magnetic field (h) increases;
and T, decreases when the degree of anisotropy (y)
increases. For large values of h or y, the transition
passes from second to first order. For still larger
values of h or y, the phase transition disappears:
the dimerized phase no longer exists. When y W 0
and h & 0 both at the same time, the rate of decreas-
ing of T, is larger and the phase transition becomes
of first order and disappears sooner than with y & 0
or h WO alone. The effect of anisotropy or magnetic
field is thus to reduce the critical temperature.

IV. MAGNETIC SUSCEPTIBILITY, MAGNETIZATION,
AND SPECIFIC HEAT

From the phase diagram obtained in Sec. III, physi-
cal quantities that can-be measured are obtained,
apart from the distortion of the lattice. Of these, I
will consider the magnetization, the magnetic suscep-
tibility, and the specific heat.

These thermodynamic quantities are obtained
directly from their definition as applied to Eq. (5)'

(7)
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FIG. 1. Degree of dimerization (am;„) vs kT/J for
C/J =0.5 and h =0.1. a: y=0, b: y=0.1, c: y=0.125, d:
y=0.13, e: y=0.135, and f: y=0.139.

FIG. 2, Phase diagram of kT, /J vs y for C/J =0.5. The
full drawn lines are second-order transition lines and the
dotted ones are first order. a: h =0, b: h =0.1, and c:
h =0.2.
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H' is the enthalpy of the system, obtained from Eq.
(2) by replacing the expectation value of the number
operators by the Fermi-Dirac distribution:

Xa
NP

75
r

H =——, Xez tanh + eg, tanh
peg „peak

k 2
, 2

(10)

The actual numerical calculations work as follows:
First we obtain a curve of the degree of dimerization
(8) as a function of temperature by a minimization
of Eq. (5). Then M, x, and C~ are obtained directly

by numerical differentiation, either from Eq. (10) or
of Eq. (5). The relation X =M/H cannot be used
here because the dependence of M on H is not linear
except in the limit when H goes to zero. In the
derivatives, care is taken of the variation of 8 with T
or H and the term in C5' is always present, describ-
ing the change in energy of the lattice. This variation
of 5 with H makes the difference with the results of
Perk er al. 5 for the magnetic susceptibility. (Note
that the variation of 8 with T or H is negligible when
we compute the magnetization because the value of 5
is that of a minimum of G. )

In Fig. 3, I plot the magnetic susceptibility XJ/N p,

versus the temperature parameter kT/J for y =0,
0.125, 0.13, 0.135, and 0.139 and for H =0.1. In
each case, a discontinuity is observed in X at T„due
to the abrupt change of slope of the dependence of 5
on magnetic field (8 passes from zero to finite values
at T,). This behavior is different from that obtained
in the isotropic case by Tannous and Caille, who ob-
tained X from the magnetization M divided by H.
Such a result is only valid for small magnetic fields or
for a linear dependence of X on H. Their results did

not exhibit the discontinuity because M involves only

the first derivative of G with respect to h and

aG eG as eG'
eH 8 eH' BH.
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FIG. 3. Magnetic susceptibility vs kT/J for C/J =0.5 and
h =0.1. a: y =0, b: y =0.125, c: y =0.13, d: y =0.135, and
e: y =0.139.

The first term, which involves the first derivative of
5 with respect to h, is zero because 6 is at a
minimum with respect to 5. The discontinuity is thus
absent. Also it can be observed that the discontinuity
is at a maximum at the tricritical point (y =0.13 for
h =0.1). It is in this case that the change of slope of
g vs T at T, is the highest (one passes from a zero
slope to an infinite one). It can also be observed
from Fig. 3 that X( T =0) =0 if y =0 but is finite for
finite values of y.

Simple analytical expressions can be obtained for
hmiting cases. For H =0, X = M/H and the depen-
dence of 8 on H can be neglected because BG/8S =0.
The magnetic susceptibility is then

1 'I

XJ (H =0) . M I
I

~~' tanhpez/2 cos'k + g' sin'k tanhpe/'/2 cos'k + g' sin'k= lim —=—„' dk 1+ + „1—
Qp, a~H m' "o ~a'

(12)

where eq and eq' are evaluated at H =0. For 8 =0 and H =0, the limit of Eq. (12) gives

XJ 2 ~ tanhP(cos k+y sin k)'I'~/2
dk 1—

Np, m' (cos'k + y'sin'k) ' '
cos'k

cos'k + y' sin'k

'I

++ ~P
'

dk
sech'P (cos'k + y' sin'k ) '~'/2

cos k+y sin k
(13)
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and for H=0 and y=0, we obtain

m/2
dk sech P(cos k +5 sin k) /2

(14)
In all cases, the magnetic susceptibility decays ex-
ponentially when the temperature decreases to zero
(the only exception is when 8 = y =0, the uniform
case, for which the susceptibility slowly saturates to a
finite value). The limiting value is 0 for the isotropic
case (y =0), but is finite as soon as a small anisotro-

py is present. From the numerical calculations we
can extend this result to nonzero magnetic fields and
conclude that as soon as an anisotropy is present
(y WO), X(0) is finite and if @=0, X(0) is always
zero. This can be understood as follows. When

y =0 and H increases, the single band of dimerized
quasifermions is split into two bands, one going up-
ward and the other downward, but each band moves
by the same amount of energy. In this case, the
magnetic susceptibility is zero because the rate of
change of the total energy of the system is zero. In
the case when y &0, the movement of the bands is
not the same for all k 's. This produces a rate of
change of G which is not zero.

In Fig. 4 appears the graph of the magnetization
(MJ/N p, 'H) of the system divided by H as a func-
tion of temperature for h =0.1, C/J =0.5, and y =0,
0.1, 0.125, 0.130, 0.135, and 0.139. Those results are
essentially the same as those of Tannous and Caille'
for the magnetic susceptibility in'the isotropic case
(y =0) (they used the relation X = M/H which is
valid for. H 0). A discontinuity in the derivative of
M is present at T, for the second-order-transition
case. A discontinuity in M is present for the first-
order case. The value of M at 0 K is finite for y WO

but is zero for the isotropic case, the explanation be-
ing the same as that of the preceding paragraph con-
cerning the magnetic susceptibility. At high tempera-

ture, the behavior of M is that of a uniform chain.
At very low temperature, when the dimerization
parameter, 8, is at its saturation value, the behavior
is that of a dimerized chain. The decreasing rate of
M is then exponential [M ~ exp( —D/T), D being a
constant]. When H =0, M =0: No magnetic mo-
ment is present because of the antiferromagnetic ex-
change interaction.

In Fig. 5, the constant-magnetic-field specific heat
(CH/Wks) is plotted as a function of T for h =0.1,
C/J =0.5, and y =0, 0.125, 0.13, and 0.139. These
curves have been obtained from Eqs. (9) and (10)
but a verification has been made with the definition
of CH as the second derivative of Gibbs free energy
with respect to temperature. For each curve, a
discontinuity is observed at T„ the discontinuity hav-
ing different values or sign, depending on y. For a
second-order phase transition, this discontinuity is
predicted to occur in mean-field theory. It is
predicted to be infinite at the tricritical point. For a
first-order transition, the curves of Fig. 5 have, in ad-
dition to what is drawn, a delta-function-type singu-
larity at T, . This singularity gives rise to a nonzero
latent heat. However, it is well known that the criti-
cal fluctuations are particularly important for the cal-
culation of the specific heat. The analytical behavior
near T, must not be taken too seriously. It is expect-
ed that fluctuations will smooth out the second-order
jump and that a peak can appear in CH near T, to ac-
count for the latent heat in the first-order case.

V. CONCLUSIONS

The spin-Peierls phase transition of an anisotropic
XYchain in a magnetic field has been investigated.
Concerning the transition itself, it has been found
that when the degree of anisotropy (y) or the mag-
netic field (H) increases, the phase transition passes
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FIG. 4. Magnetization divided by H vs kT/J for
C/J =0.5 and h =0.1. a: y=0, b: y=0.1, c: y=0.125, d:
y =0.13, e: y =0.135, and f: y =0.139.

FIG. 5. Specific heat vs kT/J for C/J =0.5 and A =0.1.
a: y =0, b: y =0.125, c: y =0.13, and d: y =0.139,
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from a second-order one to the first-order one [at a
tricritical point y, (H, C) ) and finally that the ordered
phase disappears, even at T =0 K. During this pro-
cess, the critical temperature ( T, ) decreases continu-
ously. This effect has been found to be enhanced
when both y and H are different from zero. I have
also calculated the magnetization, the magnetic sus-
ceptibility, and the specific heat for the transition.
For the magnetization, I have obtained results sirgilar
to those of Tannous and Caille': a quasilinear mag-
netization at high temperature and an exponential de-
cay to zero if y =0 or to a constant for y WO at low
temperature. The curve is continuous. for a second-
order transition and a jump exists at T, for the first-
order one. The behavior of the magnetic susceptibili-
ty at finite field is quite different because of the vari-
ation of 5 with H. At low and high temperature, the
behavior is very similar to that of the magnetization.
Near T„however, a jump is always present, even for
second-order transitions. The size of the jump is
largest at the tricritical point where it becomes infin-
ite. It has also been found that the specific heat at
constant magnetic field falls exponentially to zero at
low temperature. It has a linear behavior in the
high-temperature phase. The behavior near T, is
governed mostly by fluctuations and the mean-field
results are not reliable in this neighborhood, particu-
larly for the first-order transition where a peak
should be seen near T,. The physical meaning of this
lowering of. T, with y or H has been described previ-
ously. 6 ~ It can be summarized as follows: Finite
values of y or H limit the freedom of the electronic
spin in the xy plane. The spins lose their ability to
orient themselves and the energy lowering due to di-

merization decreases when y or H increases. Finally,
for large y or H, not enough energy for dimerization
can be gained from the spins and the ordered phase
disappears. The joint effect of y and H is additive.

From a microscopic point of view, the elementary

excitations of the magnetic system, named quasifer-
mions, are responsible for this Peierls distortion. In
the absence of magnetic fields, a gap is present in
these excitations, always at the Brillouin zone (this
gap disappears only at y = 8). In the absence of an-
isotropy, this gap, if present, is at the Brillouin-zone
boundary. If p,H ) Jk at the zone boundary, the gap
is absent and the bands touch somewhere inside the
Brillouin zone. If both y and H are finite, the gap, if
present, can be anywhere inside the Brillouin zone.
However, this vanishing of the energy gap does not
seem to have a significant effect on the thermo-
dynamic response functions. In actual cases, it oc-
curs at temperatures just belo~ T, ~here 5 varies
very rapidly, with the temperature. The variation of
the thermodynamic functions is then very pro-
nounced and highly dependent on 5. The effect of
the disappearance of the gap is hidden in this varia-
tion. This should be more easily seen at very low
temperature when 8 has saturated. Unfortunately, at
lo~ temperature the value of 5 is much higher than
the value for. the disappearance of the gap. If one
then tries to increase y, the ordered phase will disap-
pear before the gap vanishes. It seems that at low

temperature, the vanishing of the gap is incompatible
with the stability of the ordered phase. Perhaps an
external stress, allowing the disappearance of the gap
at low temperature, can make this effect visible in
the susceptibility or specific heat.
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