
PHYSICAL REVIEW B VOLUME 24, NUMBER 9 1 NOVEMBER 1981

Hamiltonian studies of the d -2 Ashkin-Teller model

Mahito Kohmoto, ' Marcel den Nijs, and Leo P. Kadanoff
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

(Received 2 March 1981)

We study a one-dimensional quantum Hamiltonian problem which is equivalent to a highly
anisotropic version of the two-dimensional Ashkin-Teller model. This problem is studied by us-
ing its duality and other symmetry properties, by a consideration of its limiting cases, and by
mapping it into an XXZ linear chain which is equivalent to a highly anisotropic six-vertex model.
In addition eleventh-order strong-coupling series are used to derive numerical data about the
Hamiltonian problem. By these means a phase diagram is obtained. The essentially new feature
of this diagram is a "critical fan, " i.e., a region where a line of continuously varying criticality
"fans out" and becomes an area of critical behavior.

I. INTRODUCTION

8( r ) = 0, |r/2, n, 3n /2

The partition function is

Z =Tr, (-, ) exp( —H) (1.2)

In the anisotropic case, we define the action, H, to
take the form

8 =—$ [2Kf cos[8( r ) —8( r +x) ]

+K4 cos[28( r ) —28( r +x)]

+2K2' cos[8( r ) —8( r + r") ]

+K4' cos[28( r ) —28( r + i) ]] (1.3)

The two-dimensional Ashkin-Teller model' is one
of the models which have a line of continuously
varying critical indices. This model has four states
pt;r site and may be useful to describe magnetic sys-
tems with two easy axes. It is also a prototype which
is useful for understanding other two dimensional
problems. To define this model, we use a statistical
variable 8( r ), defined on the lattice points, which
takes four different values

S( r ) = +1 and T( r ) =+1 are placed at each lattice
site. The combination of these two variables makes
four possible states at each site, which corresponds to
the four values of 8( r ) in Eq. (1.1). The correspon-
dence is listed in Table I. The action can be ex-
pressed in terms of these Ising variables since

2cos[8(r ) —8(r )]=S(r )S( r )+T(r )T(r )

cos[28( r ) —28( r )]=S( r )S( r ) T( r ) T( r )

(1.4)

Thus, the Ashkin-Teller model can be thought as
two Ising models coupled by a four-spin interaction.
At E4=0 the model reduces to two decoupled Ising
models with nearest-neighbor couplings K2. From
the Onsager solution we know that a second-order
phase transition takes place and the specific heat
diverges logarithmically; i.e., the critical exponent n
is equal to zero.

Another point at which an additional symmetry oc-
curs is when the two- and four-spin couplings are
equal, E2 = K4 and'K2 = E4. Then each bond takes
the form 4K2(8. ..—~ ), and the problem becomes1

.the four-state Potts model. This model also has a

TABLE I. The correspondence between the variable 8
and the Ising variables S and T.

Here r = (j,k) is the set of all lattice sites on a
square lattice, while x =(1,0) and r" =(0, 1) are
nearest-neighbor displacement vectors on this lattice.
%e employ the notation v for the y direction in
preparation for a consideration of the highly anisotro-
pic (r) limit of Kogut. '

The K2's and K4's in Eq. (1.3) are called two- and
four-spin coupling constants. This language refers to
an alternative Ising-variable description of the
Ashkin-Teller model in which two variables
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second-order phase transition, but with critical in-
dices which differ from the Ising values. In the
isotropic case, ' ' and indeed more generally, ' it is
known that these two special-symmetry second-order
transitions are connected by a line of continuously
varying. critical behavior.

In this paper, an extremely anisotropic version of
the Ashkin-Teller model is studied using the time-
continuum Hamiltonian formalism. An advantage
of the quantum Hamiltonian is the simpler geometry
of the one-dimensional system which may be expect-
ed to lead to a problem which is at once more under-
standable and also more easily analyzed via, for ex-
ample, series techniques. The two-dimensional clas-
sical model is reduced to a one-dimensional quantum
model by taking the extreme lattice anisotropic limit
(K2,K4) 0, (K2,Kq ) ~. This limit is rather
subtle and can be performed in many ways. %e
choose the particular parameterization of the cou-
plings

K2 =rP, K4 =rPh.

K2'= —,(Inn ' —Ink, ), K4 = —,(Inr '+in)]. )

and take v 0 to enforce the anisotropy. As shown
in Sec. II belo~, the transfer-matrix method may be
used to convert the statistical mechanics problem de-
'fined by Eq. (1.3) into a ground-state problem for the
quantum Hamiltonian.

In the limit defined by Eqs. (1.5)., JC reads

X = X [2(1 —cospi) + X ( I —
cos2pj ) l

J

—p X[2cos(8j ej+]) +Xcos2(8~ —HJ+])]
J

(1.6)

phase diagram of our quantum version of the
Ashkin-Teller model. As we show in this section, its
entire structure can be constructed with the help of
our knowledge of the six vertex model and of other
exactly soluble limiting cases. In Sec. IV, strong-
coupling series expansions are used to verify and fur-
ther specify this phase diagram.

For the reader who might be particularly interested
in results rather than methodology, we show here the
phase diagram of the ground state of the Hamiltonian
(1.6) as derived in Sec. III together with some of the
supporting series data of Sec. IV (see Fig. 1). This
phase diagram shows five main regions:

(a) A paramagnetic region, labeled I, in which
there is no ordering and hence zero average values of
e'~ and e2'~

(b) A fully ordered region, III, in which one of the
four possible values of 8 appears preferentially in the
ground state so that e'~ gains an expectation value.

(c) A partially ordered region, II in which pairs of
8 values [i.e., (0 and m) or ( —m/2 and e/2)] appear
preferentially in the ground state. Here e21~ will gain
an expectation value, but the average of e'~ will

remain zero.
(d) An antiferromagnetic frozen region, region IV,

in which the system may be divided into two sublat-
tices and the sublattices behave differently. . On one
sublattice, e '~ and e '~ have, respectively, eigenvalues
1 and —1. On the other both have eigenvalues —1.
In this region also, the average of e'~ vanishes.

(e) Finally the shaded area is an extended region
of criticality which we call a critical fan. The averages
of e'~ and e '~ vanish. However, throughout the en-
tire region correlation functions decay algebraically in

space and other typical features of critical behavior
are seen. In this domain, critical indices vary from
point to point in a continuous fashion.

This diagram can be further appreciated by con-

The operator 8& acts on a site j and has four eigen-
values: 0, n/2, n, and —,w. Its conjugate operator p~

3

changes the eigenstates of the operator 8& as

typical data points
from series analysis

P//g oreo of criticol behavior

line of cont. varying criticality
———line of Ising criticality

I 1 I

.-:-=-=-- line of KDP behovior

line of Kosterlitz-
Thouless criticol behavior~ P =0 criticol line

I I I

Here n is any integer and 8& is defined modulus addi-
tions or subtractions of integer multiples of 2m.

As we shall see in Sec. II, has particularly nice
symmetry properties which we have obtained by en-
forcing the special form of the anisotropic limit. In
the Appendix, we derive mappings between our
model [Eq. (1.6)] and the staggered six vertex model
and the staggered XXZ Heisenberg chain problem,
respectively. Our choice of anisotropy limit is neces-
sary so that the special case P =1 gives a model
which is equivalent to the (exactly solved) unstag-
gered version of these problems. " This result is then
used in Sec. III as a starting point to pin down the
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FIG. 1. Phase diagram of the anisotropic limit of the
d =2 Ashkin-Teller model from studies of the d =1 quan-
tum Hamiltonian. Estimates of critical points by a series
analysis are shown with error bars. For those without an er-
ror bar, the apparent error is smaller than the size of the
plotted point.
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trasting it with the phase diagram of the isotropic
Ashkin-Teller model (E2 =K2', Kf = E4 ) shown in
Fig. 2. The qualitative features of regions I, II, and
III are identical in the two pictures as is the topology
of the diagrams in the right-hand half of the pictures.
In the left-hand half of the picture for the isotropic
case, region IV is once again a region of antifer-
romagnetic ordering of e". However, no critical fan
appears in the isotropic case, and the topology on the
left-hand sides of the pictures are entirely different.

We believe that the antiferromagnetic to pararnag-
netic transition (line 4 of Fig. 2) of the isotropic case
has merged into the P =0 critical line of Fig. 1. A

discussion of how this might occur as well as the
structure of the phase diagram for negative values of
P is reserved for a future publication.

The regions are separated by critical lines. Line
number 1 in Fig. 1 and indeed the entire line P =1,
is analyzed below by making use of an exact mapping
of our model of Eq. (1.6) into the (exactly solved)
six-.vertex model. Continuously varying critical
behavior is then shown to occur for all A. obeying

I h. l ( 1. Critical indices are exactly evaluated as a

function of A, . These conclusions are checked nu-

merically in Sec. IV.
Lines 2 and 3 in both the isotropic and anisotropic

cases are expected to be in the Ising model universal-

ity class. The critical fan is not seen in the isotropic
phase diagram. If one walks along critical line 1 in

Fig. 2 towards E4/K2 —1, one finds that the
parameter A. takes the value X =—,. The critical fan

is located beyond the "horizon" where the
Boltzmann weights have become negative. Also the
boundaries of the critical fan, of course, do not ap-
pear in the isotropic case. -Lines 5 and 6 are expected
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FIG. 2. Phase diagram of the isotropic d =2 Ashkin-
Teller model.

to be in the same universality class as the Kosterlitz-
Thouless transition; line 7 is in the same class as the
potassium dihydrogen phosphate (KDP) model. "

II. TIME CONTINUUM LIMIT AND THE
QUANTUM HAMILTONIAN

In this section, the quantum Hamiltonian for the
Ashkin-Teller model is obtained.

Consider a N by M square lattice on which the 8
variables are placed. The partition function (1.2) is
written conveniently in terms of the transfer matrix

(2.1)

Here Tr is now a diagonal sum over a set of HJ's

(j= 1, 2, . . . , M) in which the matrix V is given by

M 1

x exp X I2E2'[cos(8g —8J) —1]+K4 [cos(28j —28/) —1]I
Jw]

( [8 ]I VI [8i']) =exp $ [2E2 cos(8& —8 +~)I+K co4s(28& —28J+, ) ]
J 1

(2.2)

Here 8J (j=1,2, . . . , M) are the 8 variables
within one row and 8J' are those in the adjacent row.
Each 8J takes four values,

tonian K. The relation is

V =exp( —r3.') =1 —r X+0(r') (2.4)

8i=0, m/2, m, —m
3 (2.3)

The matrix V connects the two rows. If we regard
the transfer to the next rom as the time evolution,
the transfer matrix-is closely related to the Hamil-

where 7. is the lattice spacing in the time direction.
In general this Hamiltonian X is a very complicated
operator. However, in the limit (1.5) where the r
couplings go to infinity and the x couplings go to
zero, it has a simple form. The diagonal element of
V is obtained by setting 8J = 8J' for j=1,2, . . . , and
M and in the parametrization of Eq. (1.S) it can be
written as
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M M

Vd;„=exp X[2K2 cos(8& —8&+~) +K4 cos(28& —28&+t)] =I+rP X[2cos(8& e—j+&)+h cos(28J 28/+'[)]+O(T ) .
J~] J~$

(2.5)

The off diagonal matrix element where hek = 8k —8„' = +m/2 and 58& =0(j W k) is written as

V,ff(hek =+a/2) =exp( —2K2 —2K4 ) = T (2.6)

Also the matrix element for 58& = m and d 8J =0(j & k) is

V ff( &ek = 'rr) = exp( —4K2' ) = TX (2.7)

Other matrix elements which represent multiple excitations are higher than second order in 7. From Eqs. (2.5),
(2.6), and (2.7), we can write V in an operator form

' M M

V = 1 + rp $ [2cos(ej —8)+,) + X cos(28' —28)+, ) ] +r X [2 cospg + & cos2pi] + 0 ( r )
J~] J~]

(2.8)

where the operator p& is conjugate to 8J and has been defined in Eq. (1.7). Compare Eq. (2.8) with Eq. (2.4) in
the v 0 limit. Apart from trivial additive constants, this gives

X =—p X[2 cos(8& —ej+t) + Leos(28& —28&+, ) ] + X[2(1 —cospj) + X(1 —cos2pj) ]
J J

(2,9)

%hat we have to be careful about in this formalism is
that the anisotropic limit must be taken so that the
two systems represent the same physics. The param-
eterization of Eq. (1.5) ensures that the Hamiltonian
(2.9) has a dual property. This duality is stated as

PJ ~J ~J+&

ej Xpk
k&J

(2.10)

(2.1 I)

(2.12)

The duality tells us that the structure of the phase di-
agram at P & 1 is the same as that of P ( 1. Along
the self-dual line P =1, this model can be mapped on
the exactly soluble six-vertex model and, as shown in
the Appendix the parametrization (1.5) is a neces-
sary condition for this mapping. Another property of
the Hamiltonian is

(2.13)

From Eq. (2.9) follows that this statement is correct
when we have a symmetry transformation R that
changes only the sign of the cos(8& —8J+~) term. The
sign of the cospJ term can then also be changed by
the transformation D 'RD; with D the duality
transformation (2.10)—(2.12). The operator R which
does this is the one that rotates the eigenstates of the

I

8J operator at all odd sites over m. 8J = 8J+ m. Its ac-
tion on the operator pJ at the odd sites is a reflection
pJ

—pJ. Since the Hamiltonian contains cospJ and
cos2pJ terms this last effect of R does not change the
Hamiltonian.

The relation (2.13) connects the regions A. & 0 and
X (0. However the important difference from the
duality relation (2.12) is the overall sign changes in
Eq. (2.13). The ground state is mapped onto an ex-
cited state, and is different in those two regions.
Therefore the phase structures are considerably dif-
ferent.

In addition to the properties (2.12) and (2.13)
which relate different regions in the phase diagram,
the Hamiltonian has invariant properties under the
transformations of 8J's. The symmetry group for
these transformations is the dihedral group of order
4. At the special values of A. , the Hamiltonian ac-
quires additional symmetries. At X =0 the symmetry
group can be thought of as Z(2) x Z(2). Therefore
at this point the Hamiltonian represents two decou-
pled Ising models which have Z (2) symmetries.

At ) =1, the symmetry group is the permutation
group of order 4, and we have the four-state Potts
model. The line X = —1 is connected by Eq. (2.13) to
the line A. =1 and we have also the permutation sym-
metry there. The line X. = —1 could be identified as
the "antiferromagnetic" four-state Potts model.
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However this line is beyond the horizon where ratios
of Blotzmann weights become negative (see Sec. I)
and we cannot see this line in the traditional
parametrization of the four-state Potts model. As we
will see all finite temperature behavior of the antifer-
romagnetic Potts model has, just as the Ising line 4 in
Fig. 2, collapsed onto the point P =0 by the lattice
anisotropy limit. This part of the phase diagram is
given an extra singular behavior by the anisotropy
limit.

III. PHASE DIAGRAM

In this section we discuss the evidence for the
phase diagram of Fig. 1, that can be obtained from
exact soluble limit cases and renormalization flow ar-
guments.

A. Two critical lines of Ising type: Region A, & 1

The isotropic Ashkin-Teller critical line with con-
tinuously varying criticality bifurcates into two lines
of the Ising type at the four-state Potts point. ' In
the present case of the anisotropic limit, the Hamil-
tonian (1.6) also shows this bifurcation. Line 1 in
Fig. 1 splits at the four-state Potts point ) =1 into
the two Ising-type critical lines 2 and 3. Line 2 can
be understood by examining the limit A. » 1,

,
PA. = 0(1). In this limit the Hamiltonian (1.6) be-
comes

8t.' = X[ A(1 —cos2p&) +2(1 —cosp&)
J

—PX cos(28J —28&+& ) ] (3.1)

Since A. » 1, the first term dominates and the sys-
tem is restricted to take only the two states p; =0 and
m at each site. The second and third terms then
represent a quantum system with two levels at each
site and with a nearest-neighbor interaction to flip the
two levels. This is precisely the time-continuum
Hamiltonian for the two-dimensional Ising model,
which has a critical point at PA. =2. The critical line 2

approaches asymptotically the line P =2/h, as X be-
comes large. Below this line the system is in a disor-
dered phase (region I in Fig. 1). Above this line, the
system is partially ordered (region II). The Hamil-
tonian is dominated by the terms which are propor-
tional to A. and becomes

X=X X[(1—cos2p~) —Pcos(28J —28J+~)] . (3.2)
J

The ground state of this Hamiltonian is doubly de-
generate and can be obtained exactly, because the
operators cos2p, and cos(28& —28&+t) commute. The

two ground-state eigenvectors are

e+= II(10&g+ l~&g) ~

J

and

(3.3)

(3.4)

where l0)J, lm/2&&, lw&&, and l3~/2&J are the four
eigenstates of the operator 8J at the site j. The sym-
metry is partially spontaneously broken, since the
system takes either the state P+ or the state p . The
expectation value of the polarization operator
exp(2i8&) is +1 or —1, respectively, in these two

states (see Table I). The system, however, has not
yet chosen between l0) and lm& or between lm/2&

and
l

—n/2) at each site. So the expectation value of
the magnetization e —'~ still vanish.

In region III, the terms which are proportional to p
dominate in the Hamiltonian. Accordingly all the
spina tend to be in the same eigenstate l0&, le/2&,
ln ), or l3m/2& of the operator 8J. So, in region III
the magnetization e —'~ as well as the polarization e2'~

are nonzero. The critical line 3 between the phases II
and III is an Ising disorder-order transition with
respect to the order parameters e+-". This line maps
on line 2 by the duality transformation (2.10)—(2.12).

B. Antiferromagnetically frozen phase:
Region X (—1

For A. ((—1, the Hamiltonian can again be
represented by Eq. (3.2). The difference from the
previous case X & 1 is the-overall sign. The ground
state is neither Q+ nor P, but instead all spins at
even sites are in the state l0) —

lm& and all spins at
odd sites in lm/2& —

l
—n/2& (or vice versa)

(3.5)

In this ground state the polarization e"~ is antifer-
romagnetically ordered. In the isotropic model, this
corresponds to the antiferromagnetic phase IV in Fig.
2. The whole finite temperature region in this part of
Fig. 2 has in Fig. 1 collapsed into P =0, X & —1. The
anisotropy limit that we had to use in order to
preserve the duality for line 1 is not suitable for this
region. We find that for all P )0, X & —1 the model
is "frozen, " i.e., perfectly ordered.

The state P,„, is an eigenstate of the complete
Ashkin-Teller Hamiltonian for all h. and P values.
The terms which are neglected in the lXl ~ Hamil-
tonian (3.2) are cospj and Pcos(8& —8&+~) Both.
operators give zero when applied to the state P,„,. So
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indeed we have an exact eigenstate of the Hamiltoni-
an. The energy per spin is given by

E = )i(2+ p) + 2 .

For A. ((—1 we already checked that
pens to be the ground state. As long
one of the other eigenstates does not
state, the model is perfectly ordered.
happens at the line P =0 for X (—1.
Hamiltonian decouples and is trivially
energy eigenvalues at each decoupled

(3.6)

this also hap-
as the energy of
cross with this
This crossing
At P=O the
soluble. The
site are

0, for p=0
E = 2A. +2, for p =—and —m

7r 3

2 2

4, for p=m (3.7)

C. Line of continuously varying critica1 indices
and the critica1 fan

At P =1 the Hamiltonian reduces to the exactly
soluble XXZ model. This is the quantum Hamiltoni-
an for the six-vertex model. "For the isotropic case it
is known that the Ashkin-Teller model can be
mapped via a duality transformation onto a staggered
six-vertex model. ' This remains true also for the
anisotropic model. At the self-dual line P= 1 the
staggering disappears, and the model reduces to the
corresponding six-vertex model (see the Appendix,
Sec. 1). In the Appendix Sec. 2 we give a direct way
of rewriting the Ashkin-Teller Hamiltonian as a stag-
gered XXZ model. For the details of the soluttion of
the six-vertex model we refer to the review paper by
Lieb and Wu. " The implications for the Ashkin-
Teller Hamiltonian at P = I are as follows. For all
~A.

~
( I the model is critical (i.e. , massless in the

quantum field language). The six-vertex model
shows two types of transitions. At X=1, i.e., the

For A. )—1 every spin will choose the state p; =0, So
there the ground state is unique. For A. & —1, how-
ever the lowest energy is 2A. +2. Here the ground
state is 2M times degenerate, and includes our state

In a trivial way the mass gap is zero, and the
model can be considered to be critical. This is not
completely unexpected, since the Ising line 4 in Fig. 2
has collapsed onto this section of the P =0 line be-
cause of the lattice anisotropy limit.

At A. = —1 the ground-state degeneracy becomes
3 . We will argue below that this is the limit point of
the critical fan (see Fig. 1). The other phase boun-
dary of the frozen phase is the line P = —1. As we
will see below the transition here is KDP-like. This
is a peculiar first-order phase transition which also
shows a divergence in the specific heat from the
A. )—1 side"

four-state Potts limit, we see the F-model type of
transition. It is of infinite order. Nowadays we call
this a Kosterlitz-Thouless transition. The singular
part of the free energy (equal to the ground-state en-
ergy) behaves as

f —exp(-b(h. -l( ' ') (3.8)

For A. ) 1 six-vertex model is in an antiferroelectrical
ordered phase. In the Ashkin-Teller language this is
seen as the partially ordered ferromagnetic state, with
nonzero polarization (see Sec. III A).

For A. (—1 the six-vertex model is frozen in a per-
fectly ordered state that in that language is ferroelec-
trical. This agrees with our results of Sec. III B. The
transition at A. = —1 is that of the KDP model. Since
the ground state for A. &( —1 is also an eigenstate for
all X and P values (see Sec. III B), the transition must
be obtained from a crossing of eigenstates. In gen-
eral the first derivative of the ground-state energy at
the crossing will show a jump. So it is not surprising
that the transition at X = —1 is found to be first or-
der. " But that is not all. At the A. )—1 side the
model is critical. The ground-state energy there
behaves as Eo —

~
h. +1 ~3~2. So superimposed on the

first-order transition, the "specific heat" also
diverges with the exponent n = —, from this side.

Along the critical line P= 1, ~h,
~

& I the critical in-

dices vary continuously. In order to determine the
precise dependency of the other exponents of the
Ashkin-Teller model, we need the Baxter solution. '

A temperature change in the eight-vertex model cor-
responds in the Ashkin-Teller language to a differ-
ence in the strength between the nearest-neighbor
coupling K2 for the S and T spins. Therefore the
critical index of this crossover operator jn the
Ashkin-Teller model is known from the Baxter's
solution as

x,„=xrs" ——2 2p/m- ,

cosp, = A,

(3.9)

(3.10)

1xp= 4xT (3.12)

(3.13)

Here XT is the correlation function critical index of
the energy operator cos(8; —8;+~), x~ that of the elec-
trical field (polarization) operator e"', and xH that of
the magnetic field operator e".

These relations have been obtained from mappings
between the six-vertex model and the Gaussian
model. " ' The equivalent mapping in the one-

Other critical indices are known from the extended
scaling relations. The relations that are of interest in
this paper are"'

(3.11)
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E =—(1 —arccosit/n )=2 (3.15)

The cos4$ is the operator that drives the Kosterlitz-
Thouless transition at A. =1 in the six-vertex model.
It is generated in the scaling limit procedure, that
leads to Eq. (3.14) by an umklapp process. "'~ The
cos2$ operator is the energy operator of the Ashkin-

Teller model. For X & —,J2 both cos2$ and cos4$
are irrelevant. There the Ashkin-Teller model looks
Gaussian, i.e., is critical everywhere (the critical fan).
At X = —&&2, the cos2$ operator becomes relevant.1

So until h. =1, where the cos4$ becomes relevant
too, the model only remains Gaussian at P = l. At
X = —1 the Gaussian analysis breaks down too. How-

ever it is not because of a Kosterlitz-Thouless
mechanism. It is just the point where E =0 in Eq.
(3.14).

Around the critical fan we are allowed to neglect
the cos4$ interaction. Locally the renormalization-

group equations are then those of Kosterlitz'3 ~4 (who
originally derived them for the planar model)

dimensional quantum field language is that between
the XXZ model and the Tomonaga-Luttinger
model. These critical indices relate to the free-
energy exponents yT, y~, and ysy as 2 =x;+yi.

Let us now concentrate on the value of the energy
exponent yT. When it becomes negative the struc-
ture of the phase diagram must change drastically.
From Eqs. (3.9), (3.10), and (3.11) it follows that
this is the case for -1 & A. & --' W2.

2

When the exponent is relevant (yr )0), the free
~iyT

energy behaves singularly as
~
I —

l3~ r. When the
exponent is irrelevant, however (yr & 0), the model
remains critical around P =1. Stated in the
renormalization-group language: when yT & 0, the
flow is away from P =1, when yr & 0 one flows in-
wards. All critical points that flow towards the same
fixed point belong to the same universality class. So
for —I & h. & —J2 the critical line with continuous-

ly varying exponents at P =1 fans out into a critical
fan.

We can write down renormalization-group equa-
tions that are valid locally around P =1. In the scal-
ing limit the Ashkin-Teller Hamiltonian can be re-
placed by the Hamiltonian of the Gaussian model
with spin-wave interactions" "
H = d r [E(C@)~+(I—p) cos2@+u4cos4@]

(3.14)
Here one can think of u4 as a fixed small constant.
The coupling constant E is a known function of A.

We learn from this that. the lines 5 and 6 in Fig. 1

are Kosterlitz-Thouless transition lines, and that
these lines approach P =1 under a finite angle (that
depends on A). Moreover the critical indices in the
critical fan vary continuously and still satisfy the
same extended scaling relations as at P =1.

The renormalization-group equations (3.16) are
valid only for small (P —1). They only determine
the streamlines, along which the critical exponents do
not change, up to first order in (P —1). We need in-
dependent information to determine the shape of the
critical fan for large values of P —1.

There is no indication of an abrupt ending of the
fan. We expect it to contract itself into the point
X = —1 in the limit P [0, because this is the only
point at the P =0 axis where the ground state is 3~-
fold degenerate [see Eq. (3.7)].

The ultimate streamline that flows into the KDP
point at P =1, A. = —1, is expected to be a straight
line (at lt = —1), because of the extra permutation
symmetry at X =—1 (see Sec. II). Everywhere along
this line the transition into the frozen phase (region
IV in Fig. 1) will be KDP-like.

IV. HIGH- TEMPERATURE EXPANSIONS

A perturbation expansion of the Hamiltonian (1.6)
for small values of P gives useful information about
the critical properties of the system. This expansion
corresponds to what is known in statistical mechanics
as the high-temperature expansion. In particle phys-
ics, it is usually called strong-coupling expansion.

We need rather long series to investigate the criti-
cal region because usually the values of P are not
small there. To deal with the high-order perturba-
tions we apply the linked cluster expansion method
proposed by Kadanoff and Kohmoto. ' In this
method, connected parts of wave functions are de-
fined such that disconnected contributions are simply
products of the connected parts. As a result, only
the connected wave functions need to be evaluated.
This method is particularly useful when we calculate
disorder operators. These are string operators which

in many cases are dual to usual order operators. In
finite-size lattice calculations, we would need a lattice
for the string operators twice as long as would be re-
quired for ground-state calculations. The lattice is ef-
fectively infinite in the linked cluster expansion be-
cause only the connected parts of the wave functions
are calculated.

A. Description of the calculations

(3.16) Here we briefly discuss the perturbation methods
for free energies, magnetizations, and susceptibilities.
For details of the methods, see Ref. 25.
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1. Ground-state energy

The Hamiltonian (1.6) is written as

K = T+pU

where

(4.1)

convenient quantities to calculate in the high-
temperature expansion. The expectation values of

im8
the operators e J are zero in the high-temperature
phase and the high-temperature expansion method
cannot be applied to these quantities. For conveni-
ence sake we define

T = X [2(1 —cospJ) + A, (1 —cos2pJ) ]
J

(4.2) D+= fJ cospk
k&J

(4.10)

and

U = —X [2 cos(8J —8J+&) + A. cos(28J —28J+]) ]
J (4.3)

%e call the unperturbed Hamiltonian T a kinetic en-

ergy and the perturbation Ua potential. The kinetic
energy is decoupled, and unperturbed wave functions
take one of four eigenstates of the operator pJ,

Ip =0), Ip =m/2), Ip =w), and Ip =
2 m) at each

site. For ~ & —1, the unperturbed ground state is

(4.4)

Note that the spin variable 8 is disordered in this un-

perturbed ground state and we are in the high-
temperature disordered phase. The potential U is a
nearest-neighbor interaction. The effect of the
operator 8J on the eigenstates of pJ is

To calculate series for magnetizations and suscepti-
bilities of the operators 0+= (1/M) $&D+(j) and

Op = (1/M) XJ D2( j), we add a magnetic field term

to the Hamiltonian (4.1)

X= T+hO +PU (4.11)

+E ();h)p + . . (4.12)

The terms up to second order in h are counted for
E~"~(X,h) because the physical quantities we are in-

terested in are the magnetizations

Although the new term ho is not diagonal, it can be
formally included in the kinetic energy. The
ground-state energy is calculated in a power series of
P as before

E(A., P;h) =E 0 (iI.;h) +E ' (A.;h)P

e JIp)J= Ip+nn/2) J (4.5) (O )
BE(A„P;h) (4.13)

which is similar to Eq. (1.7). The ground-state ener-

gy per site is calculated in a series as

E(Z, p) =E' '(it) +pE ' (A.) +p E '(Z) +

(4.6)

and the susceptibilities

B'E(),p;h)
82 (4.14)

The specific heat is obtained from the series (4.6) by
differentiations

The series for the usual order operators are related to
those for these disorder operators as, for example,

(4.7)

1 i 28J(e ) p
——(02) )Jp .

M
(4.15)

2. Magnetizations and susceptibilities

Let us consider operators

(4.8)

where

D„(j)= g e '" (m = +1, 2)
k&J

(4.9)

and M is the number of sites.

The operators D (j) are dual to the operators e J

as seen from Eq. (2.11). They are called disorder
operators and have nonzero expectation values in the
high-temperature phase. " The disorder operators are

B. Results of series analysis

The 11th order perturbation calculations gave the
following quantities: (1) free energy —12 terms (10
terms for the specific heat), (2) magnetization —12
terms, (3) susceptibility —10 terms. The series for
susceptibilities are shorter because the 0th and 1st or-
der perturbations for these quantities vanish.

The DLOG Pade method was applied to those
series. Poles of Pade approximants give critical
points and residues give critical indices. The esti-
mates of critical points and critical indices were ob-
tained by averaging four or five highest-order near
diagonal elements [n —l, n], [n, n], and [n +l, n] of
Pade tables. The error bars are set to include those
numbers. (The series and Fade table are not includ-
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ed for reasons of space. They can be obtained on re-
quest from M.K.)

1. Critical lines

p5

~H O.~-

0,
predicted values from the
extended scaling relations

———Ising va lue

The best estimates for critical points are obtained
from the series for the magnetization (0+) and
shown in Fig. 1. As A. becomes large the Pade tables
become extremely stable and at A. =4 we estimate the
critical value P, as P, =0.490967 +0.000009. Also

P, approaches the Ising-type critical line P =2/h.
predicted in Sec. III. For X & 1, this analysis shows
reasonably well-converged singularities around the
self-dual line P =1. However, as h. approaches to
—J2/2, where we predict the onset of the critical fan,
the Pade tables become unstable. For A, = —0.8 and
—0.9, where the Kosterlitz-Thouless type singularity
is expected, we found poles as shown in Fig. 1.

An analysis for the other magnetization (Ot) gives
almost the same quantitative results for A. & 1. How-
ever for h. ) 1 the values of P, from the (Oq) series
are considerably larger than those from the (0+)
series. The differences are 0.1-0.15 for 2 & X & 4.
These poles, we think, do not represent singularities
of (Oq) because the residues for these poles are un-
stable and small (=10 ' at x =4) in the Pade tables
for A, & 3. This result agrees with the phase diagram

+IS,
Fig. 1. Along the line 3, e ' have singularities but

i28
e ~ has no singularity. Note that (0+) and (Ot)
are dual to those order variables and we expect no
singularities for (Ot) along line 2 which is dual to
line 3.

The estimates of critical points from the series for
the susceptibilities (0+Op) and (O~Oq) give quali-
tatively similar but slightly worse results. We think
this is due to the shorter series for these quantities.

0.2—

O.l—
I

1--'~o 0
2

——~ ——0- —————o —————0 ——
0

FIG. 3. Plots of series estimates of the critical in/ex P for
the operator 0+. At tt =—J2/2, P becomes infinity.

and

y = (1 —xa)2

2 —XT
(4.19)

4XT, for 021

Xop for 0+ (4.20)

The estimated critical indices are compared. with
those predictions.

In Figs. 3 and 4, P's for 0+ and Oq are shown,
respectively. They agree we11 with the extended scal-
ing predictions. Also, the result from (0+) series
show a transition to the Ising value as A. becomes
large.

2.0—

where, x„is given by Eqs. (3.12) and (3.13), namely,
1

2. Critical indices

For & ( 1, we know the exact critical point p, =1.
Instead of evaluating residues at poles, we can im-
prove estimates of critical indices by evaluating Pade
approximants of (P —P, )S tBS/1)P at P =P, . Here S
is a series.

The extended scaling relations predict the critical
indices a, P; and y, with the help of the standard
scaling relations for —1 ( A. ( 1. From Eqs. (3.9),
(3.10), and (3.11) we have

l.5—
predicted values

&rom the extended
scaling relations

xr =—[arccos( —X) ] '
2

(4.16)

The standard scaling relations give

A' = 2
2

2 XT'

Xop

2 —XT

(4.17)

(4.18)

-1—
Wp2

FIG. 4. Similar plots to Fig. 3 for the operator 02.
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6—

I

1--'~& 0

0+

predicted values from the

extended scaling relations

—-- Ising value

o0

l.0—

0.5—

0

-05—

—I.O—

—l.5—

—2.0—

—————+ —————6 —————l—
2 3 4

predicted values from the

extended scaling relations

I sing vo lue

FIG. 5. Pl ts of series estimates of the critical index y for
the operator 0 At h. =1&2/2, y becomes infinity. FIG. 7. Plots of series estimates of the critical index 0,.

At x =—K2/2, a becomes minus infinity.

The results for y's are shown in Figs. 5 and 6. Fi-
nally the critical index a is shown in F'g.Fi . 7 which
does not show a very good agreement with the ex-
tended scaling prediction. Also this does not show a
well convergence to the Ising value a =0 as X be-

comes large.

ACKNO%LEDGMENTS

We have had usefu1 discussions with Steven
Shenker, Robert Pearson, P. Rujan, and Bernhard
Nienhuis. Pearson gave us Potts model data for
checking our calculations. Rujan has obtained in-

dependently the results of the Appendix. We thank
Michael Widom for assistance with the series
analysis. One of us (M.K.) is grateful to T. Eguchi

University of Chicago Materials Research laboratory
under Grant No. DMR 77-12637. One of us
(M.d.N.) would like to acknowledge the support of
the Netherlands Organization for the Advancement
of Pure Research (ZWO).

predicted values from the
extended scalintl relations

I

APPENDIX

1. Mapping of the Ashkin-Teller model
onto the six-vertex model

The six-vertex model" is a special case of the
eight-vertex model, '4 which is defined by placing ar-
rows on the bonds of a square lattice and allowing
only those configurations with an even number o ar-
rows pointing into each vertex. The Boltzmann
weights of the eight possible vertex configurations are
taken pairwise equal as shown in Fig. 8.

This model can also be represented as two Ising
models coupled via a four-body interaction. The
difference from the Ashkin-Teller model is that now
the S and T spins are not located at the same lattice,
but instead on each other dual lattice (see Fig. ).
One can translate the Ashkin-Teller model (with
spins at the x sites in Fig. 9 into the eight-vertex
model by a duality transformation on the T; spins
only. '3 The critical lines with continuously varying
exponents of the two models are then found to map
onto each other. However, changing the temperature

0

2

FIG. 6. Similar plots to Fig. 7 for the operator 02.
FIG. 8. Arrow configurations allowed at a vertex in the

eight-vertex model.
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X 0 X 0

o x ok x

x 0'~ x'j o

0 X 0 X

for sublattice B. The staggering vanishes when
a& =a~ and b& =b& which yields

~ e „=tanh2E'
cosh2K2

-2K ~

e 4 = tanh2E"
cosh2E2'

These conditions are equivalent to

(A3)

(A4)

FIG. 9. Ising spin representation of the eight-vertex
model. S spins are defied on sites && and T spins are de-
fined on sites O.

and

2E+4+2E4~
p = e ' sinh2It f sinh2E&' = I (AS)

is not the same in the two models. The energy
operator of the eight-vetex model translates into the
crossover operator, that makes the nearest-neighbor
coupling K2 for the S and T spins different. In the
eight-vertex language on the other hand, the
Ashkin-Teller energy operator leads to a staggering in

the Boltzmann weights a and b.

For our purpose it is useful to combine this map-
ping with another one that maps the critical line of
the eight-vertex model into the six-vertex model

. (where the Boltzmann weight d =0). In th' e
language of this model one identifies moving along
the critical line with changing the temperature. The
eight-vertex temperature direction now corresponds
to allowing d to become nonzero, while the Ashkin-
Teller energy direction still leads to a staggering in a
and b. For the isotropic square lattices all these rela-
tions are well known and, e.g. , discussed in Ref. 6.
They, however, also hold for the anisotropic
cases. ' " The duality mappings can be carried out
for any two-dimensional lattice type. The duality
equations remain the same as for the isotropic case,
one only has to add an index that denotes the specific
vertex. '

The transformation of the anisotropic Ashkin-
Teller model into the six-vertex model language is as
follows. The Boltzmann weights for the two sublat-
tices are

-2K~4a„=e 4/cosh2E f

sinh2E4 sinh2E4

sinh2E2 sinh2E2'
(A6)

In the six-vertex model the parameter 4 is defined
as11

2. Staggered XXZ model

There is another way of discussing the relationship
with the six-vertex model. The six-vertex and eight-
vertex model have a well-known quantum Hamiltoni-
an of their own. We refer to the paper by Baxter"
for the details of the derivation. In the anisotropy
limit b/a 0 while keeping d fixed he finds for the
six-vertex model the spin-

2
Hamiltonian

Hxxz= $l "(j) '(I+I)+o'(j) '(j+I)

a +b —c
2ab

The conditions (AS) and (A6) reduce to those of
Eqs. (1.5) in the anisotropic limit r 0. The param-
eter A. in the Hamiltonian is identified to be the
parameter —5 in the vertex model. We conclude that
the Hamiltonian (1.6) with p = I is equivalent to the
six-vertex model.

b& = tanh2E2

cg =1
dg =0

for sublattice A and

a~ = tanh2E2

-2E4~
bs = e /cosh2Kq

cg=1
dg =0,

(Al)

(A2)

+ 5o'( j)o'(j + 1)] (AS)

This is called the LXZ model. The parameter b, is
the same as the one defined in Eq. (A7). For the
eight-vertex model (d &0) the coefficients for the
o "(j)o (j+I) and o'(j)o~(j+I) terms are non-
equal. This is the xyz model. Straightforward gen-
eralization of Baxter's method for the staggered six-
vertex model of Eqs. (Al) and (A2) leads to the
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staggered XXZ model '

Hsxz = X [1 + (—1)it)
TABLE II. Eigenvalues of the Pauli spin operators

& [ o' (J)o' (j +1) +o (j)a"(j+1)
+ha*(j)o'(j+1)] . (A9)

From the discussion in the Appendix Sec. 1 we know
that this must be equivalent to our Ashkin-Teller
Hamiltonian. Indeed we can rewrite %AT into this
form. Start by rewriting the Ashkin-Teller Hamil-
tonian (1.6) in terms. of the Pauli spin matrices os*
and a f * (see Table II).

0
m/2

3m/2

1

1
—1
—1

1
—1
—1

1

1
—1

1
—1

+AT X [[I as(J)] + [I ar(J) ] + "[I as(j) ar(j) ]}
J

p X[as(J)as(J +I) + ar(J) aT(J + I) + ~as(J) as(J +I)ar(J) ar(J + I) )
J

(AIO)

First remember that the Ashkin-Teller model is mapped into the eight-vertex model by a duality transforma-
tion on the T spins only, In the quantum case this is obtained by the duality transformation

J
af (j+—,) = g af(k)

I( 1

The result is

af(j +—') = o.r(j+ I)ar(j) (All)

3-'AT = —X [ar(J + -, ) ar(J ——,) + as(J) +P[af(J + —,) + as(J) o s(J +1))
J

+ "[ar(j 2 ) as(j)o'r(j +
2 ) +pas(j) or(j+ '2 )' as(j + I)]}' (A12)

%e can drop the S and T indices because we have a string of spins, separated by half the original lattice constant.
Now once again apply the dual transformation of the type (All) to all spina. This gives

+Ar= X [a (J + &)a (J —
&

) +a (J +—)a (J ——) —Aa~(j+ —)a&(j ——)
)

+p [a"(j + , ) a"(j + —,—) + a'(j + —,)a*(j+—,) —Xo'(j +—„' ) ar( j +—„' ) ] } (A13)

Here we used i H= a'rr" This is .the staggered XXZ model that we were looking for. To obtain Eq. (A9) we
only need to apply the rotation: 0-' 0 and cr —cr'. As before we find that the parameter 4 of the six-vertex
model is equal to —

A..
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