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Critical parameters from electrical resistance of nickel
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High-precision resistance measurements (rms relative error below 4 && 10 per po'int) for
nickel around T, are reported. %hen fitting the singular part of the resistance to the function

R, =A (t( (I+D[t('1, we obtain a= —0095, A/A'= —1.52, z =057, and D/D'= —08
within the temperature region 1.6 x 10 3 ( )t ) ( 12 x 10 3. The cause of the rounding of exper-
imental data close to T, is discussed.

I. INTRODUCTION

The anomaly in the resistance of a ferromagnetic
metal at the Curie temperature T, is today well un-
derstood. It has been shown" that the singular parts
of the temperature dependence of the specific heat
and of the temperature derivative of the resistivity
are the same. To leading order we have for the
derivative of the resistivity

d p, (T)
dT

where the critical exponent o. and the amplitude ratio
A /A' are the same as for the specific heat (primed
quantities refer to temperatures below T„unprimed
to temperatures above, and t is the reduced tempera-
ture T/T, I). This imp—lies that the specific-heat
critical index and leading amplitude ratio can be
determined either from a specific-heat measurement,
or from a resistance measurement. A resistance
measurement can be performed with a considerably
higher precision than a specific-heat measurement.
Further, it can be done at constant temperature, in a
quasistationary state. On the other hand, since the
resistance is less singular at T, than is the specific
heat, a higher accuracy is required in a measurement
of the resistance in order to obtain equally goad esti-
mates for the critical parameters. Anyway, there is a
good possibility that resistance measurements can
give more accurate values of the critical parameters.
However, published resistance measurements on
nicke13 and iron4~ from the last decade have given
rather differing results for the critical parameters.
In contrast, modern theoretical methods give very ac-
curate predictions of the critical indices. ' One'source
of error in previous analysis of experimental data is
the use of the simple function (1). It is today real-
ized, that to obtain good results one must not only
have good data, but must also know the form of the

singular temperature dependence to a corresponding
degree of accuracy. This means that it is in general
necessary to provide for higher-order corrections,
leading to functions with confluent singularities, of
the form

(2)

in order to obtain correct results even for the leading
exponent and amplitude ratio. The form of the ex-
pression (2) makes the traditional log-log plot
method to extract the index o. unworkable. Instead,
a nonlinear least-squares method has to be applied
directly to the expression (2). Such a method of
analysis was first applied by Ahlers ' to specific-heat
measurements. The first applications to resistance
data seem to have been done by Balberg et al. " and
by Malmstrom and Geldart' to the high-precision
measurement on the antiferromagnet dysprosium by
Rao et al. '3

Stimulated by the good results obtained for dyspro-
sium, we decided to measure the resistance of pure
nickel, if possible at still higher precision and under
as well defined circumstances as possible, which im-
plies, among other things, doing the measurements
according to a fixed schedule, in one single run and
at constant time and temperature intervals.

The data and the analysis are presented in this pa-
per. We have succeeded in increasing the accuracy of
measurements by two orders of magnitude (as com-
pared to the Dy measurement), and the accuracy of
the critical parameters obtained seems to be higher
than of any data on Heisenberg ferromagnets pub-
lished so far. We have also undertaken to study the
rounding of experimental data close to T„and offer
a plausible explanation of this rounding as being the
combined effect of structural disorder and critical
slowing down. We also show that taking the effect of
rounding into account in the fit gives a rather small
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change in the values of the critical parameters.
The experimental equipment and method is

described in Sec. II, and the analysis of our data in
Sec. III. Section IV contains a discussion of the
rounding of data close to T,. In Sec. V we discuss
our results and make a comparison with results from
earlier measurements of the temperature derivative
of the resistance of Fe, and from specific-heat mea-
surements on Ni and Euo. %e also compare our
results with theoretical predictions of the critical
parameters. In an appendix, we present a simple
model for the influence of critical slowing down on
the observed resistance values.

II. EXPERIMENTAL METHOD

The sample was made from 99.999% pure nickel,
drawn to a wire of 0.4-mm diameter and annealed in
a hydrogen atmosphere at 850'C. The residual resis-
tivity ratio (RRR) value with no external field
present was 540. Current and potential connections
(made from the same wire) were welded to a 45-cm
sample piece (resistance at r, about 1 0). The sam-
ple and a platinum thermometer (130 0 at O'C)
were contained in a cylindrical aluminium sample
holder, designed to give good thermal contact
between sample and thermometer and small tempera-
ture gradients within the sample.

Two separate furnaces were used for heating, the
outer one fed from a dc constant current supply, and
the inner one connected to a, temperature regulator
and fed only about 10 of the total heating power.
This arrangement gives a very small temperature
difference between the sample holder and the inner
furnace wall. Furthermore, due to the low power in-

put, the temperature control of the inner furnace can
be made very accurate.

%e followed closely a fixed procedure for changing
the temperature between readings in order to keep
the temperature gradients within the sample holder as
constant as possible. To shorten the time required
for temperature stabilization at the measuring points,
a combined manual and automatic control was
developed. It enabled us to take readings at 45 min
intervals and still keep the temperature constant
within a few times 10~ K for 10 to 15 min before
taking the readings. The temperature interval
between measuring points was kept as close as possi-
ble to 0.2 K, and the ~hole experiment was made in
one single run of 54 h duration.

The resistance of the sample and of the platinum
thermometer were read alternately on a resistance
bridge. The signal from the bridge was fed to a
plotter, an arrangement which allowed us to control
(and correct for) the temperature drift during mea-
surements. This drift, however, never did exceed
10~ K/min.

TABLE I. Measured resistances (in 0) of the platinum
thermometer and nickel sample.

pt

301.870 49
301.966 00
302.052 05
302.144 02
302.236 00
302.327 93
302.41995
302.512 07
302.603 93
302.69600
302.787 64
302.880 20
302.972 68
303.061 43
303.158 54
303.248 68
303.340 32
303.432 17
303.525 64
303.61798
303.708 44
303.799 74
303.891 88
303.9&3 50
304.075 96
304.168 65
304.260 90
304.351 55
304.444 80
304.536 19
304.627 80
304.718 21
304.81088
304.908 20
304.99349
305.091 39

Ni

1.049 297 4
1.050 2/1 6
1.051 0197
1.051 896 2
1.052 775 6
1.053 659 1

1.054 546 4
1.055 438 4
1.056 331 8
1.057 231 9
1.058 1305
1.059 043 6
1.059 9590
1.060 841 6
1.061 8134
1.062 718 2
1.063 646 2
1.064 580 5
1.065 535 3
1.066 486 3
1.067 424 4
1.068 376 0
1.069 345 0
1.070 3164
1.071 305 3
1.072 304 4
1.073 3102
1.074 3104
1.075 349 4
1.076 381 0
1.077 428 5
1.078 483 0
1.079 570 5
1.080 679 0
1.081 561 0
1.082 412 0

pt

305.17993
305.272 40
305.363 14
305.460 00
305.552 19
305.644 23
305.734 52
305.825 55
305.91761
306.009 80
306.101 57
306.19400
306.285 26
306.376 25
306.467 20
306.559 91
306.652 80
306.744 80
306.834 89
306.927 81
307.021 00
307.11400
307.206 00
307.300 85
307.388 37
307.483 07
307.570 80
307.663 38
307.759 61
307.849 10
307.940 50
308.032 30
308.124 80
308.216 19
308.308 09
308.400 30

Ni

1.083 121 0
1.083 829 2
1.084 498 1

1.085 192 0
1.085 836 7
1.086 465 7
1.087 071 8
1.087 672 6
1.088 270 1

1.088 859 3
1.089 437 4
1.090 012 6
1.090 573 7
1.091 126 2

1.091 673 0
1.092 224 0
1.092 770 4
1.093 306 2
1.093 826 0
1.094 357 0
1.094 885 2

1.095 408 0
1.095 920 3
1.096 445 3
1.096 925 4
1.097 440 7
1.097 9160
1.098 4130
1.098 926 4
1.099400 7
1.099 882 2
1.100362 3
1.100 842 5
1.101 315 2
1.101 787 8
1.102 258 5

The resistance bridge used was the same 8-decade
current comparator thermometer bridge as was used
for the measurements on Dy (Ref. 13) and Cr (Ref.
14) (a description of the bridge is given in Ref. 13).
In these investigations a resolution of about 2 parts
in 105 was obtained. %e have succeeded in increas-
ing the resolution to better than 4 parts in 10 . At
this very high level of precision even very small
changes in the resistance of the sample, due to other
causes than temperature change, must be taken into
account. As a matter of fact we did observe a slight
increase in resistance at constant temperature. The
most probable explanation of this is surface oxidation
due to traces of oxygen in the protective helium at-
mosphere. The rate of this aging effect was deter-
mined before and after the measuring period. The
time dependence of the resistance at constant tem-
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perature could be fitted to a quadratic polynomial,
with errors of fit smaller than the errors of the final
fit of the resistance-temperature function. Since our
measurements were made at constant time intervals,
the only effect of aging is to give a contribution to
the part of the resistance which is analytic at T, (the
background). The increase in resistance due to aging
was about 10 ' 0/min.

The measured data (in the temperature range 623.8
to 637.9 K) are given in Table I. Before analysis, the
resistance of the thermometer has been converted to
temperature by use of the expression

R (T) = —16.774864+0.55801892T

—7.5684 x 10-5T

which is the standard quadratic expression for the Pt
thermometer, adjusted by calibration at the freezing
points of Sn and Zn. The relation (3) defines our
temperature scale.
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III. ANALYSIS AND RESULTS

We have chosen to work directly with R ( T) rather
than to do a numerical differentiation of the experi-
mental data. The singular part of the resistance is
represented by a function of the form

(4)

which is obtained from (2) by integration [the param-
eters A and D are not the same in (2) and (4)]. The
data of Table I have been fitted to five functions,
ft(t) to f4(t) and f3" (t), all of which are combina-
tions of a singular part according to (4) and a regular

part, a linear or quadratic polynomial in t. For all

functions we have adopted the scaling relation 0: = n'.
The functions and the results of the fits are given in

Table II. Good fits could not be obtained unless

FIG. 1. (a) Residuals from the function f3, Table II, in
the region close to T, . Open circles are residuals for points
not included in the fit. (b) Residuals to be expected from a
Gaussian distribution in T,. The curve shows the difference
between the convoluted function f3'(with 0.=0.1 K) and
the function f3.

points close to T, were omitted, because of the
rounding of data in the vicinity of the critical point.
The rounding effect is too small to be visible in a R-
T plot. It is, however, clearly visible in a residual
plot, see Fig. 1(a). This effect is further discussed in
Sec. IV.

We have deleted points in a symmetric interval
around T, until residual plots of the best fit did not
show the characteristic rounding structure close to T, .

TABLE II. Fits to the data obtained from Table I by use of Eq. (3), with the points in the inter-
val 629 3 ( T ( 631 4 deleted. The functions are ft

= Cc+ C t t +2 it [t, f2 =ft + C2t2,

f3 ——Cc+Ctt+3 petit (I +Dittos ), and f4= f3+ C2t2. The function f3 has been obtained from

f3 by convolution with a Gaussian according to Eq. (5), with a width a-=0, 1 K.

D/D' r, (K) rms (0)

fj
f2
f3
f4

—0.046+ 0.001
—0.081+0.001
—0.096+0.002
—0.097+ 0.017

—1.200f 0.005
—1.402+ 0.008
—1.522 2 0.012
—1.525+ 0.120

—0,86+0.08
—0.86+ 0.13

630.226+ 0.004
630.266+ 0.002
630.280+ 0.003
630.280+ 0.007

2.366x 10~
4.347x 10 7

3.844x10 7

3.844x10 7

—0.095+ 0.005 —1.512t 0.012 —0.79+ 0.07 630.284+ 0.003 3.828x10 '
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FIG. 2. (a) Residuals from the function fi, Table II. (b)
Residuals for the fit to f3. The rms error per. point for the
whole region is 3.84 x 10 O. For the points below T, it is
4.8 X10 0, and above 2.8 X10 O. It seems to be com-
mon to this type of measurement that the errors are larger
in the ordered phase.

The range in reduced temperature decided on after
this procedure was 1.6 X10 '( ~t~ (12 &&10 ', which
is the range used in the fits of Table II. All points
were given the same weights in the fit, and the confi-
dence intervals given are 0.95 intervals obtained in
the usual way, assuming independent and random er-
rors in the measured resistances.

We now proceed to discuss the results of the fits as
shown in Table II. The function ft (without correc-
tion term) gives a bad fit. As can be seen from Fig.
2(a), there is a pronounced systematic pattern in the
residuals both above and below T,. A substantial im-
provement of the fit is obtained when a t term is ad-
ded to the function f~, giving the function fz. For
this fit a systematic pattern in the residuals is only
just visible above T,.

When the correction-to-scaling term is added, we
expect computational difficulties, if all parameters are
to be freely varying, due to the presence of two
powers with unknown exponents and amplitudes.
For the function f3 (and the stated temperature in-
terval) we have, however, been able to find a
minimum at z =0.57, but the minimum is so flat as
to be virtually without statistical significance. To il-

lustrate this, we have made a number of fits at dif-
ferent (fixed) values of z, as shown in Table III. Evi-
dently, there exists a curve in parameter space, an al-
most linear relation between the critical indices, along
which the minimum is extremely shallow.

A plot of the residuals of the fit to the function f3
is shown in Fig. 2(b), and as can be seen there is no
visible systematic pattern in this residual plot.

When a quadratic term C~t was added to the func-
tion f3, giving f4, a fit at constant z =0.57 gave
C~ = —6.2 x 10, a very small number compared to
C~ =2.38 which was obtained in the fit to the func-
tion fz. From Table II it can be seen that only small

TABLE III. Result of fits to the function f3 = Co+ C j t
+A (t~t ~(1+D~t(') for a number of (fixed) values of z.

z =0.57 corresponds to our minimum and z =0.55 is the
value predicted by-- RG theory.

D/D'
rms error

normalized

0.75
0.57
0.55
0.37

—0.086
—0.096
—0.098
—0.116

—1.44
—1.52
—1.53
—1.70

—0.67
—0.86
—0.89
—1.32

1.005
1.000
1.001
1.005

changes occurred in the critical parameters, and the
decrease in rms error was only 0.002%. This im-
provement in the rms error is far too small to
motivate the inclusion of the quadratic term.

Instead of deleting the points close to T~ one can
attempt to take rounding into account already in the
function to which the data points are fitted. Provided
the function f3 is a good representation of the singu-
lar part of the temperature dependence in a complete-
ly homogeneous material, we can take into account
inhomogeneities in the material, leading to different
T, in different parts of the sample, by using a func-
tion of the form

f3 ( T, Tc, tr) = )f3(T, Tc x)g~(x)dx—(5)

where g (x) is a Gaussian in x of width o. The in-
tegral in (5) was done numerically, using 10-point
Hermite integration, and the width of the Gaussian
was also a parameter in the fit. The function f3'
gave a very bad fit when fitted to all the points in
Table I. The result was o.=0.2 K, a rms error equal
to 25 x 10 0 per point and a pronounced struc-
ture in the residuals. Next, we made fits with the
points closest to Tc removed one by one. The rms
error of the fits decreased rapidly to a final, almost
constant, value which was reached when points
within +1.1 K from T~ had been deleted, see Fig. 3.
At the same time the width of the Gaussian decreased
from 0.2 to approximately 0.1 K, as indicated by the
broken line in Fig. 3.

The result of a fit of the function f3 to the same
data as used for the functions ft to f4 is shown in
Table II, from which one can see that the critical
parameters obtained from f3 and f3 are almost the
same. The value obtained for the width o. of the
Gaussian is 0.13 + 0.12 K. However, the rms error as
a function of o is very flat for o. &0.2 K, and for
larger values of o. it rises sharply. Thus, the estimat-
ed confidence interval on o- may be misleading, and
we have obtained another estimate by varying the
range of the fit. We then get o. =0.1 +0.05, in good
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agreement with the value given by Connelly et al. "
for specific-heat data of Ni.

Accepting, on physical grounds, that there exists a
rounding of the data due to structural disorder
describable by the form (5) with a =0.1 K, we
deduce from the results presented in Fig, 3 that most
of the rounding in the interval Tc +1 K must have
other causes, to be discussed in Sec. IV. As an illus-
tration of the effect of rounding as described by (5),
we show in Fig 1(b) t.he difference between the
functions f3 and f3 The differe. nce is of order ten
times our rms errors at T~ +1 K, and is relatively
large in a much wider interval. It is thus not restrict-
ed to a narrow region close to T,.

The confidence intervals given in Table II should
be thought of as lower bounds, a more realistic pic-
ture of the errors involved may perhaps be gained
from the way the fitted parameters change with the
range of the fit. When the range

gati,

„of the fit was
reduced from 12 x 10 to 7 x 10, the results
changed very little, e.g. , the exponent a varied by
about 3%. From this, we would like to give the fol-
lowing result for the leading critical parameters:
a= —0.095+0.005, 2/A'= —1.52+0.05. The value
z =0.57 which we have obtained is consistent with
the predicted value 0.55 for the isotropic short-range
interaction. The next-to-leading-amplitude ratio
D/D' is more uncertain, it varies by about 20% when

it i,„ is reduced as above, and is rather sensitive to
the value of the next to leading exponent z. Howev-
er, in all cases we find that the amplitude ratio D/D'
is negative, and of order —1.

IV. ROUNDING

The rounding of experimental data close to T~ has
also been observed by other investigators, "and has

0 I I

0 2 4 6 S 10 'l2 14 16 18
No pf deleted points

FIG. 3. Improvement in rms error. obtained when fitting
f3' (Table II) with the points closest to Tc successively re-
moved. The broken line indicates the change in the width o-

of the Gaussian.
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FIG. 4. Comparison between residuals, calculated by
means of the model described in the Appendix (open cir-
cles) and experimental residuals obtained as the difference
between experimental points and the convoluted function
f3, with can=0. 1 K (filled circles).

commonly been attributed to impurities and structur-
al defects (grain boundaries and dislocations) which
cause a variation of Tc within the sample. In our
analysis in Sec. III we have, however, not been able
to give a satisfactory description of the rounding as a
result of a distribution in T~. We propose that the
main part of the rounding is due to the fact that close
to Tc the relaxation time of the system becomes very
long (critical slowing down). Our arguments for this
interpretation are based on (i) the observation that
the measured resistance of the points very close to
Tc was still drifting even though the temperature was
well stabilized (readings were nonetheless taken at
constant time intervals) and (ii) the steep decrease in
rms error and the abrupt change to an almost range-
independent fit obtained when points close to T~
were deleted, as discussed in Sec. III and illustrated
in Fig. 3.

These facts lead us to conclude that there exists,
close to T~, a disturbance which gives rise to devia-
tions from the function f3 which cannot be described
by the convolution in (5), and further that the influ-
ence of this disturbance decays so rapidly as to be un-
detectable (submerged in the experimental scatter)
outside T~ +1 K. To investigate the nature of this
extra disturbance, we have calculated residuals from
a fit to the function f3 (with o. =0.1) according to
Table II. Tests with other values of o- have shown
that the precise value of o- is unimportant for the fol-
lowing, semiquantitative, discussion.

When we plot the logarithm of the residuals against
temperature, we get approximately straight lines, see
Fig. 4. This indicates an exponential (rather than a
power-law) dependence of the residuals on t, which
we interpret as the result of the exponential approach
of the system towards equilibrium.
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We have made a simple model calculation to sup-
port this interpretation. The model, which is defined
in the Appendix, is based on the assumption that the
relaxation towards equilibrium can be described by a
single relaxation time, and that this relaxation time
diverges at T~ with an exponent h. From this model
we obtain a recursion formula for the residuals r„:

ln(r„) =ln(a +r„ t) —(te/B) it] (6)

By variation of the parameters a, B, 8', and 5, we
have fitted the numbers r„of (6) to the actual resi-
duals obtained by using the function f3. The result
of the fit is shown in Fig. 4. The value obtained for
the exponent 4 of the relaxation time varies between
1 and 1.3 depending on the cr chosen, with essential-
ly the same quality of fit.

V. DISCUSSION

As far as we know, there are no results published
for critical parameters for ferromagnets which have
been obtained from fits to functions with confluent
singularities, like (2). However, experimental data
for dR/dT of iron were given in Ref. 4, and we have

taken the opportunity to reanalyze these data in the
same manner as described in Sec. II. Table IV gives
the result of fits to some functions. Note, that a
quadratic term in R corresponds to a linear term in

dR/dT, and that A/A' must be positive in dR/dT if
negative in R. Rounding effects forced us to discard
points in the interval 1037 to 1044 K (Tc is approxi-
mately 1041 K). This unfortunately leaves us with

only 26 points. The best fit is given by the function

g4, which contains the correction to scaling term as
well as a term linear in t. This fit gives values for n,
A/A' and D/D' which are very close to our corre-
sponding values for Ni, although the confidence in-

tervals are much wider.

In Table V, we have collected our results, the
result of analysis of specific-heat data on Ni (Ref. 16)

and EuO, 'r and of renormalization-group (RG) pre-
dictions for the critical indices and amplitude ratios.
The values of z and D/D' in the row marked "RG
theory" refer to corrections to scaling for the fully
isotropic (and incompressible) Heisenberg ferromag-
net, while the confluent singular term from the ex-
perimental data may also have other causes, to be
discussed below. The table shows good agreement
for the leading exponent and amplitude ratio between
different experiments. As for most experiments on
ferromagnetic systems, our value of n is slightly
larger than the value predicted by RG theory.

The same is the case for the leading amplitude ra-
tio A /A ', for which our result agrees very well with
other experiments as shown in Table V, but not with
RG theory prediction. The theoretical result for
A /A

'
is however obtained by truncating the e expan-

sion at second order, "and may be rather uncertain.
The RG results given in Table V are calculated for

the specific heat at constant volume, while our mea-
surement is of the resistance at constant pressure.
To be able to make a proper comparison between our
results and the predictions of RG theory, we should
convert our values from resistance at constant pres-
sure to resistivity at constant volume. This we have
not done, and we do not expect such a transforma-
tion to change the leading singularity, neither the ex-
ponent nor the amplitude ratio. The next to leading
singularity, however, could be changed by spin-lattice
coupling, which may explain the inconsistency
between our value of D/D' = —1 and the RG calcula-
tion of Chang and Houghton, ' which gives
D/D' = 1.13.

Magnetic fields will influence the measurements
close to T~. Although the wiring of the furnaces was
made bifilar, and the magnetic fields from the heat-
ing currents were calculated to be smaller than the
geomagnetic field, no attempt was made to shield the
sample from the geomagnetic field itself. We must
thus accept that the field in the sample holder was at
least of the same order of magnitude as the geomag-

TABLE IV. Fits to the dR/dT data for iron published by Shacklette (Ref. 4). Because of the small number of data points

(26) confidence intervals are not given.

Function D/D' rms (0)

gt =ca+A gati

g =2c+ec t t+[At[

g3=co+A ltl (I+Dltl*)

g4-ca+crt +A ltl ( DI +l
l*)t

—0.04

—0.08

—0.06

—0.10

1.16

1.30

1.24

1.50

0.57

0.57

0.1

—0.9

1040.72

1040.62

1040.84

1040.78

2.86x10 4

2.16x10 4

2.03 x 10~

2.01x 10



5220 O. KALLBACK, S. G. HUMBLE, AND G. MALMSTROM 24

TABLE V. Critical indices and amplitude ratios for ferromagnets by different methods. The quantity P is defined as
P=(~A/&') —1)/( —n). For the different signs of the amplitude ratio A/A', see text.

Material DID' Reference

Ni, R
Fe, dR/dT
Ni Cpc

Ni, Cp
EuO, C&

RG theory

—0.095+ 0.005
—0.10
—0.091+0.002
—0 10'
—0.10+0.05
—0.115+0.009

—1.52+ 0.05
1.50
1.40+ 0.01
1.49+0.02
1.51+0.2
1.24

5.4
5.0
4.4
4.9
5.1

0.57
0 57a

0.5'
0.56 +0.20
0.550+ 0.005

—0.8+ 0.2
—0.9

2.0
1.13

This work
This work

16
16
17

7,18,19

'Variable held fixed in the fit. Data taken from Ref. 4. 'A fit without correction term (D =D'=0).

netic field. The effect of a magnetic field on the
specific heat is discussed in Ref. 15, and we use the
equivalence of the specific heat and the temperature
derivative of the resistivity to make the following
comments: At an external field 8=1 6, the re-
duced field h = HMp/(kT, ), with Mp the spontane-
ous magnetization, is, for nickel, h =6.6 X10 . The
corresponding characteristic reduced temperature

= h &~ =7.4 & 10 ', which is 20 times smaller than
the minimum value of ~t ~

used in the fits in Table II.
Judging from Fig. 12 of Ref. 15, we think it very un-
likely that a magnetic field of this size (1 6) can
have any noticeable influence on our fits.

Very close to Tc the long range, but weak, dipolar
forces are expected to be important for the critical
behavior. We have not seen any indication of a
crossover to dipolar behavior in our fits, and further-
more the crossover temperature in nickel has been
estimated to be of order t =3 x 10~, which is well

outside the temperature range we have used.
In summary, we consider our best fits to be of high

quality. The reason for this is twofold: First, it is
not possible to detect, by visual inspection, any sys-
tematic trend in the plot of the residuals [Fig. 2(b)]
and second, there is no small scale structure in the
residuals in the form of jumps or discontinuities.
Such small structure is commonly seen in fits to criti-
cal quantities, and greatly increases the difficulty of

. obtaining good fits. For these reasons, we conclude
that the function used (f3 or f3 ) gives a good
representation of, and exhausts the information con--
tained in our experimental data. We believe that the
critical parameters we have given in Table V gives an
accurate description of the resistivity of nickel within
the temperature region we have used, 1.6 x 10 3 (

~
t

~

(12 X10
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APPENDIX

r-B/tf ' . (Al)

The temperature is increased by constant amounts
4 T at constant time intervals to, and the temperature
change of the sample is considered to be instantane-
ous. This is an adequate approximation close to T~,
where the relaxation time of the temperature-control
system is short compared to the relaxation time of
the sample. Let the equilibrium resistance of the
sample in the time interval ntp to (n +1)tp be R„,
and the observed resistance at the end of this time
interval be R„—r„. We then get the following rela-
tion

r„= (R„—R„ t + r„ t) exp( —tp/r)

or, using (Al):
(A2)

ln(r„) =in(R„—R„ t+r„ t) —(tp/B) ~t~a . (A3)

For simplicity we take R„—R„ i = a =const, and
arrive at

ln(r„) = In(a + r„ t) —(tp/B) )t (

which is used in Sec. IV.

(A4)

Here we define a simple model, used to explain the
residuals close to T~ in Sec. IV. We make the fol-
lowing. assumptions: The approach to equilibrium
follows a simple exponential process, with one relaxa-
tion time v.. This relaxation time has a critical tem-
perature dependence given by
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