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Series expansion for an easy-plane spin-one ferromagnet
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Series for susceptibility and zero-field specific heat have been obtained to the fourth or-
der in PJ or J/D for an easy-plane spin-one ferromagnet. The series expansions are for a
general lattice and for exchange interaction of arbitrary range. The single-ion anisotropy
is treated exactly. We outline the method of series expansion and discuss the critical
quantities deduced from the series obtained.

I. INTRODUCTION

Single-ion anisotropies can have a fundamental
influence on the behavior of a magnetic system, '

and prevail in almost all physical systems with

spin greater than one half. For systems with spin
equal to one, the single-ion anisotropy consists of
only second-order terms in spin operators. The
uniaxial spin-one systems with one anisotropy
parameter thus represent the simplest case for
study. Commonly, the mean-field approximation
is used in calculations of the thermodynamic quan-
tities for such systems because of the complexities
caused by the single-ion anisotropy terms. Only
recently have some more advanced methods been
extended to treat the simple anisotropy systems.
Green's-function theory and the high-temperature
series-expansion method have been successfully
formulated and applied to the spin-one easy-axis
ferromagnets. In this paper we extend the series
expansion method to calculate the easy-plane
(hard-axis) spin-one system.

The first five terms, of the series for the suscepti-
bility and the heat capacity have been found with
the single-ion anisotropy treated exactly. An
analysis of the susceptibility series yields the criti-
cal temperature as a function of the single-ion an-

isotropy. We show that outside the extremely nar-
row region where the critical temperature plunges
to zero the accuracy of the critical temperatures is
within a few 'percent of the exact values.

Recently, Lines has computed the critical tem-
7

perature for the uniaxial ferromagnets (S =1 to —,)

for both the easy-axis and the easy-plane cases us-

ing the correlated-effective-field approximation.

While the values obtained by such approximation
are much improved over the mean-field results, the
errors involved can still be as large as 12%%uo when
compared with the high-temperature series esti-
mates for the easy-axis case. For an easy-plane
system, as we shall see, it is more important to ob-
tain accurate values for the critical temperatures
since T, is reduced to zero for strengths of aniso-

tropy exceeding a critical value.
An RPA Green's-function theory has been given

by Egami and Brooks. While the theory has pro-
vided much insight into the physics of the system,
the validity of the decoupling scheme can only be
justified a posteriori.

The series-expansion calculation which provides
exact results for the coefficients of the series and
estimates the critical parameters to high accuracy
not only will be of value in its own right but also
serve as a gauge for other approximate calcula-
tions. In the next section we introduce the spin-
one easy-plane ferromagnet and summarize briefly
the mean-field results. The series-expansion
method which treats the single-ion anisotropy ex-
actly is presented in Sec. III. The results of the
series expansion as well as the analyses are present-
ed in the fourth section.

II. SPIN-ONE EASY-PLANE FERROMAGNET

The Hamiltonian of the system is given by

4 = D g (S,". )~—g J,qS; SJ

—gptth QS (&)
l

where the x axis has been chosen to be along the
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anisotropy axis making the yz plane the easy plane.
D is positive and measures the strength of the an-
isotropy. In the absence of an external field
(h =0), if the system orders ferromagnetically, the
spins point along a direction in the easy plane. A
Zeeman energy term is included in the Hamiltoni-
an to find the parallel susceptibility.

The Hamiltonian can be split into two parts

P 0 Dg——(S;") —h~ g S +NJ(0)(S*)

XQ-
2g pg

D 1+2t
4J(0) 1 —t

D 1+2t

and

cs —0=2k' p D t I( 1 +2&)

where

t =e-Pn (P=1Ik, T) .

(13)

(14)

(2)

4 i
———g Jq [(S —(S') )(SJ'—(S*))+S;+SJ ],

The critical temperature T, at which Xo becomes
divergent is found to be

where
(3)

4J(0)+2D
4J(0) D— (16)

and

J(0)=g JJ (4)

T, plunges to zero rapidly as D approaches the
critical value D, =4J(0). Near D, the dependence
of T, on D, —D is an inverse logarithmic function

T, — (D, /ks)—[ln(D, —D)] ' (D=D, ) . (17)

h~=gpsh+2J(0)(S') .

A 0 is the mean-field Hamiltonian which can be di-

agonalized exactly yielding the energy eigenstates

i e& ) =cos8
i
1)—sin8

i

—1),

i e3) =sin8
i
1)+cos8

~

—1),
and eigenvalues

e|——D/2 —[(D/2} +h~ ]'

e2 ——D,
e3 D/2+[(D/2) +——h~]'i

(6)

(7)

(10}

apart from the constant energy term J(0)(S')2. In
Eqs. (6)—(8)

i
m ) (where m = +1,0) denotes an

eigenstate of the S' operator with the eigenvalue of
S' equal to m. The mixing angle 8 is given by

The mean-field approximation has ignored en-

tirely the correlations of spin fluctuations which

play an essential role in determination of T, and
the critical behavior of the system. To improve the
theory, terms describing the interactions of spin
fluctuations, A 1 of Eq. (3), should be incorporated
in the calculations. The high-temperature series-
expansion technique provides a systematic scheme

for such calculations.

III. MANY-BODY PERTURBATIVE SERIES
EXPANSION

Following Wang and Lee we calculate the free

energy in a series expansion treating 4 i [Eq. (3)]
as the perturbation. The free-energy function I' per
spin can be written as

P =go

tan8=(D/2)t[(D/2)'+h ]'"+h
J . (12) with

In this approximation, the susceptibility and the
zero-field heat capacity in the paramagnetic phase
are, respectively, and

—PF, =luge "—PJ(0)(S')',

oo
( 1)n P P—p~= g f dTi ' I d(7[ATi(r|) ~1(~g)]), ,

n~
(20)
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where T is Dyson's ~-ordering operator and the an-

gular brackets represent the canonical thermal
average over the unperturbed Hamiltonian A 0.
The subscript c denotes the cumulant part of the
~-ordered product, or, in the diagrammatic
analysis, the contribution of the connected dia-

grams only. Equations (19) and (20) represent a
series expansion of the free energy, the expansion
parameter being PJ(0).

In order to keep the calculation tractable for the
high-order terms in the expansion of Eq. (20), it is
essential to employ operators whose ~ dependence

appears only as a c-number factor, as in many-

body diagrammatic calculations. This indeed is
the case for the spin operators if Pi 0 contains the
Zeeman energy term only, but it is not so in the
presence of a single-ion anisotropy. To circumvent
this difficulty, Wang and I.ee have suggested the
use of the standard basis operators

(21)

where
~

e ),
~
e„)are energy eigenstates of A o.

It is easily observed that the ~ dependence of a
standard basis operator (L operator) in the interac-
tion representation is simply given by

(22)

Any operator, in particular a spin operator, can be
written as a linear combination of the L operators

(23)
m, n

The calculation then involves the evaluation of the
thermal average of the ~-ordered products of the L
operators instead of the spin operators.

It is convenient to represent the terms in the
series expansion by diagrams. While in the actual
calculation the spin operators are written in terms
of L operators, the first step is to construct the
"main diagrams" from the spin-operator cumulants
(semi-invariants). Diagrams involving up to four
interaction lines are shown in Fig. 1, where a
dashed line denotes a longitudinal interaction con-
necting an S' operator on one site of the lattice to
an S' operator on another site of the lattice. Simi-
larly, a solid line with an arrow denotes a trans-
verse interaction connecting an S+ operator to an
S operator, the convention being that the arrow
points from S+ to S . The contribution of a dia-
gram can be obtained as follows:

(1) Assign a r variable to each interaction line
and the two respective spin operators; collect all
the spin operators on each site to form the ~-

(2)

(4)

(8)
/E

/
/

(96)
I

I I

I I

I I

L J
{48)

(48)

(3)

(6)

(48)

(6)

A

(6)

(4)
/EE

/
/ 1E

/ 'EE

/

(48)

/E
/

/
L

(8)

(3)

(48)

(24)

(2)

(24)

(48)

{!2)

(2)

(24)

(48)

()2)

(48)

FIG. 1. Free-energy diagrams. Diagrams involving

up to four interaction lines are shown. Longitudinal in-

teractions are represented by dashed lines; transverse in-

teractions are represented by solid lines. The arrow on a
transverse interaction line points from S+ to S . The
weight factors P of the diagrams are also shown (in

parenthesis).

ordered product.
(2) Attach a factor J(q ) to each interaction line,

J(q) being the Fourier transform of the exchange
interaction Jz. The q vectors are so assigned that
the sum of q vectors is conserved on each site.

(3) Multiply together the r-ordered products and
the interaction J(q) factors.

(4) Integrate over all r from zero to P and sum

over all q variables.
(5) Finally, multiply the result by the weight fac-

tor P/n!, where P is number of topologically dis-

tinct diagrams obtainable by permuting the indices
of the spin operators, and n is the number of the
interaction lines.

As can be verified, each diagram represents a
term in the expansion of —Pdd'" [Eq. (20)]. As
mentioned, to evaluate the main diagrams, it is
necessary to transform the spin operators into the
L operators. As a consequence, each main dia-
gram generates a set of subdiagrams with L-
operator cumulants. The evaluation is done on the
subdiagrams because of the simple ~ dependence of
the L operators in the interaction picture as dis-
cussed above.

While the sums over q for the subdiagrams
remain the same as the sums for their respective
parent main diagrams, the v integrations are in
general different for each subdiagram and must be
evaluated separately.

A general formula has been found to evaluate
the multiple v integrals. We first note that the in-
tegral can be written in the form
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P 1 e —1I=+A». . . J dT, J dT2 . J dT exp(glT1+$2T2+. +g T ), (24)

where A &2. . . denotes a product of two or more
L-operator cumulants with a total number of 2m L
operators. For example, a fourth-order diagram
may consist of two fourth-order cumulants,

A simple example is a second-order diagram con-
taining cumulants (TLt (Tl)L„~(T2)),
( TL~(T1 )L,~(T2) ),. The contribution of the dia-

gram according to the above rules is

and

(La tl (Tl)La tl (T2)La P (T3) Ng (T4)), ,

(Lalbl (Tl)L, b (T2)L(~g3b3(T3)La b (T4) )c

1 , P(A21 —A12}—g [~(k}]2 5(et +e„&)5(e,b+ecd),
k Elm +Eab

(29)

Then

A 1234 (Laltt&La2tt2La&t33La4t34 )c

and

A21 A12 (D1D D Db)(~l ~

+(La&blLa2b2 a3b3 a4b4)c ~L, L (25) &«&a~&b Dc&—ab&ca } (30)

gm are energies associated with the interac-.
tion lines. Here, for example, g, =e tl +e, b

where Ea1p1 =Ea1 Ep1 and Em iS the eigenenergy

of the mth energy level of P p. Finally, the summa-
tion is over all possible permutations of the indices.

To evaluate the integral, we first note that all A' s
obtainable from each other by cyclic permutations
are related

where

(3l)D=e "'/ye ~"
n

The explicit result of Eq. (28}, when one or more
factors in the denominator vanish; can be worked
out to expedite the computation. For example the
result of Eq. (29) becomes, when el +e,b ——0,

e"p(Pen }An n ~ ~ n =An n ~ n n1 12m 237@1 (26)

1——g[J(k)] PDtDa .
K

P

( l)m —lA

e„,(e„,+e„,} . (e„,+e„,+ +„,)

(27)

where the sum is over the cyclic permutations of
the indices of A and e. Equation (24) can now be
written as

I )m —lA

3 e„,(e„,+e„,) (e„,+e„,+ +e„,)
(28)

Therefore there are (m —I )! independent A's in
general. Secondly, it can be shown that a partial
summation of the m terms that are related through
cyclic permutations gives the result

Equation (28) simplifies the series-expansion cal-
culation tremendously. However, because of a
large number of terms involved in the calculation
beyond the second order, a computer is needed to
handle the numerous, though simple, algebraic
operations. In order to find the analytic expression
for the coefficients of the series, each quantity in
the calculation is represented by a three-dimen-
sional array. If we define t =exp( PD}, then all-
quantities that enter in the calculation take the
form

(1+2t)-"gctl„~(pD) 't"hl'

and each can be specified by giving the value N
and the coefficients alnp To obtain the susceptibil-
ity from the free energy, al„p with p & 2 will be re-
quired; to find the specific heat at zero external
field, only terms with p =0 will need to be re-
tained.

The mean-field energies E„andthe matrix ele-
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TABLE I. Susceptibility series for a fcc lattice. The coefficients aI are listed under
m =0—5 in rows. d is a common denominator for the numbers in the row.
g=pga„[pJ(0)]",a„=(1+2t)'"+"ga" t (pD)'

n I d m =2

0 1 1

1 2 1

2 1 6
2 2 6
2 3 6
3 1 36
3 2 36
3 3 36
3 4 36
4 1 2592
4 2 2592
4 3 2592
4 4 2592
4 5 2592

2
8

0
177

0

3821
0
0
0
0

979 149

—2
—16
—6

4
—510

—8
—344
—186

—14168
—270

—6372
—152 226
—70572

—4400 886

—34
543

16
294

—1342
22 143

1320
11004

256038
—507 186
9018021

—16
—210
—80

—188
1178

—17336
1716

—43 160
—231 234

838 536
—10072 614

—128
620

5540
—13224

37 600 —16640
79 212 47 616

—492 300 —272 568
6303 054 —1826724

ments of the spin operators between the mean-field

eigenstates are the basic quantitites for the calcula-
tions. A computer code has been written to in-

struct the computer to perform addition and multi-

plication of two or more quantities in three-
dimensional array and return the result in the same
form. For each main diagram, the relevant cumu-
lants and the ~-integration factors are calculated
first, and a file is created containing these quanti-
ties. The subdiagrams are then evaluated by ex-

tracting the needed information from this file. The

contribution of a main diagram is finally obtained
as a linear combination of the subdiagrams. In
fourth order, 396 subdiagrams appear. %Shen the
main diagrams are summed, 119 subdiagrams can-
cel leaving 277 subdiagrams to be evaluated. To
calculate these 277 subdiagrams, a total of 238 in-
tegration factors and 94 cumulants are required.

IV. RESULTS AND DISCUSSIONS

We have obtained the first five coeAicients in the
susceptibility series and the specific-heat series

TABLE II. Specific-heat series at zero-external field for an fcc lattice bI" are listed under

m =1—6 in rows. d is a common denominator for the numbers in the row.
c =k& g b„[pJ(0)]",b„=(pD) (1+&t) '"+"g bI" t l(pD)'.

m=3 m=5

0
2
2
2
3
3
3
3
4
4
4
4
4

0
0
1

2
0
1

3
0

3
4

1

3
3
3

54
54
54
54

1296
1296
1296
1296
1296

2
1

—6
6
4

—12
—63
102
45

—306
501

—2184
3306

—4
—2
20

—40
—210

573
192

—800
92

—5964
28404

1782

2
20

152
222
741

—126
462

5880
42 639
—'1188

—12090

8
—80

—540
174

—192
9960

—8592
—15 756
—37 776

—30

384
24

—4408
—36512

17 124
14328

8 784

0
0

24960
2 304

—1 752
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$2+

mph. )'

=Pg c„(PD)[PJ(0)]", (33)

X=X,/[1 —2J(0)X,]

=pea„(pD)[pJ(0)]", (34)

28 ( —p+)
s =

g(PD)2

=k gb„{PD)[PJ(0)]". (35)

The coefficients an', b„,and cn can all be written in
the form

l, m

(36)

kT,
J(0) an —1 am —i

—m).

(37)

The value of kT, /J(0) found with n =4 and m =3
is shown in Fig. 2 (solid line). The mean-field
result is also plotted (dashed line) for comparison.

In Appendix A we list the coefficients c~~ (for X,)

and b~~ (for cs 0) for a general lattice. We present
ai" (for X) and bi" (for cq 0) for an fcc lattice in
Tables I and II assuming nearest-neighbor-only in-
teractions. As a check, we iook the D =0 limit.
The series all reduced to the well-known ones
found for the isotropic Heisenberg system. It
should be noted that D enters in the denominator
of every coe6icient of the series. Most terms in the
coefficients become singular upon taking the zero
D limit and intricate cancelations of the singulari-
ties yield finite values appropriate for the isotropic
Heisenberg Hamiltonian.

As an application of the series found, we have
made an estimate of the critical temperature as the
value of D/J(0) varies. The calculation has been

done for an fcc lattice, assuming the nearest-
neighbor-only exchange interaction. The extrapola-
tion scheme of Elliot and Wood has been used.
First, the, value of pD is fixed and the coefficients
a„calculated. The standard ratio test method is
then employed to analyze the series. The critical
temperature is obtained by the extrapolation

T, -(D, D)& . — (38)

Indeed, in the random-phase approximation (RPA),
1

it can be shown that P= —,. Contrary to the
power-law behavior, we find the inverse logarithm-
ic dependence of T, on D, —D as in the mean-field

I, I I t

MFA

HT5E

l

I

t

I

I

I

I I

4.0

I.2—

I.O

0.8-
H S= I

Easy-Plane
fcc I attice

0.2—

0.5 I.O I.5 2.0 2.5 5.0 5.5

D/Jz

FIG. 2. Critical temperature vs easy-plane anisotro-
py. The critical temperature estimated from the high-
temperature series (HTSE) is plotted as a function of the
easy-plane anisotropy for a fcc lattice. The exchange in-
teraction is assumed to extend to the nearest neighbors
only. For comparison, the mean-field result (MFA) is
also shown (in dashed line).

The critical temperature is seen substantially re-
duced. The critical value of D, beyond which there
is no ordering even at T =0, is reduced from the
mean-field value 4J{0)to 3.43J(0). The accuracy
of the estimated critical temperature is diQicult to
access because of the shortness of the series. At
D =0, the long series estimate is available. For an
fcc lattice T, /J(0) =1.0026. Our result is 0.991
which deviates from this almost exact result by
only 1%. Near D„however, the uncertainty in T,
becomes greater. This is evidenced by the fact that
in the plot of a„/a„i vs I/n, the points of
n =2,3,4 are scattered further away from a straight
line for D near D, than for small D. Nevertheless,
the value of D, should be rather accurate because
of the sharp drop of the critical temperature near
Dc.

The current extrapolation scheme approaches the
phase boundary radially in the ( T,D) plane and is
perhaps more reliable than the other schemes of
the same category. It, however, does not find the
behavior of T, near D, correctly. Similar to the
Ising model in a transverse field, ' a soft mode oc-
curs at the phase transition for the easy-plane fer-
romagnet. Thus, it is expected that near D„
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theory. The persistence of the mean-field behavior
in the series analysis is first surprising. g and thought
to owe its origin to the shortness of the series. A
closer examination of the coefficients, however,
shows that this behavior would always exist if the
series has a finite number of terms and if the
current extrapolation scheme is used. Nevertheless
the longer the series is, the closer D becomes to D,
before the inverse logarithmic behavior sets in. It
should be mentioned that the same difficulty is as-
sociated with the analysis of the series of the Ising
model in a transverse field. ' An entirely different
method of analyzing the series should probably be
designed for this type of series.

At T =0, if we define K =J(0)/D, the suscepti-
bility series reduces to

X=—(1+4&+—& +2 59 2 3821

D 4 72

ous that higher-order terms are desirable for an in-
depth study of this system. It is hoped that an im-
provement of the present method can be made to
allow calculations of more terms in the series.
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APPENDIX A

1. Susceptibility

The susceptibility series for a general lattice with
arbitrary range of interaction is given here to the
fourth order. We recall

326383
)72

for an fcc lattice and to

X=—(1+4%+—,K +,s E

(39)

and

g =Pg a„[PJ(0)]"

X, =Pg c„[PJ(0)]".

(A1)

(A2)

3161+ &+ . . )24 (40)

for a triangular lattice. The critical value of
D/J(0) can be estimated by using Eq. (37) with
k&T replaced by D. Taking n =4 and m =3, we
find D, /J(0) to be 3.43 for the fcc lattice and 2.84
for the triangular lattice. %hile the series is too
short to give an accurate estimate of the critical ex-
ponent, it is interesting to note that the values of y
found are consistent with those expected from a
general theory of Hertz. ' Again, employing the ra-
tio test method, the value of y can be found by

ao=cp ~

2a) =2cp
3

Q2 =4Cp +C2,
4a 3 —8co +4coc2 +c3

a4 ——16cp + 12cpc2+4cpc3+c4 .5 2

(A3)

(A4)

(A5)

(A6)

(A7)

The coefficients c„take the form

The coefficients a„arecalculated from c„asfol-

lows:

U~ —Un(~) Nl 5

U„/m —U /n
(41)

Letting ~ =n —1, we find for n =2,3,4, y "' equal
to 1.19, 1.16, 1.14 for the fcc lattice and 1.45, 1.46,
1.35 for the triangular lattice. According to the
theory of Hertz, ' the critical exponents of the
present system at T =0 should be the same as the
corresponding ones at finite T for a lattice of one
higher dimensionality. Since the symmetry of the
present model is XY-like, the value of y'"' should
approach 1.0 and 1.34 for the fcc and the triangu-
lar lattices, respectively. Our results, while not de-
finitive, are consistent with the theory. ' It is obvi-

.„=(1+2t)-'"+"

X Q rq cqt~ t /(PD) .

If we define

y(E) =J(E)/J(0),
we find

I1 =1,

r,' =—g q(rc)',

r,'=—g) (z)',

(A9)

(A10)

(A11)

(A12)



24 SERIES EXPANSION FOR AN EASY-PLANE SPIN-ONE. . . 5211

(A13) I4 ——(I 1 ) (A17)

(A14)

, gym, )y(&, )y(& +&2)', (A15)

I3 3 g yi )y«2)y(+3)l (+1++2++3)
(A16)

2. Specific heat

For a general lattice, the specific-heat series at
zero-external field in the paramagnetic phase can
be written as

cp p
——kg g b„[PJ(0)]", (A18)

where

The coefficients capp are listed in Table III under
m = 1 —5 in rows.

TABLE III CoeAicients c&~~ in Eq (AS).

q I

2.
2

2

3

3

3

3

3

3

3

4
4

1

1

1

1

1

1

1

1

2

2

2

1

1

3

3

3

4

4

4
4

1

1

2

3

1

3

4

2

3

4
1

2

3

4

5

1

2

3

4

5

1

2

3

4
5

2

0
0

—30

0
0
0

—88

0
0

84

0

0
0

—298

0

0
0

616
0

0

0
0

—464

0
0
0
0

1044

—12

132

-68
616

0
296

—960
—4
136

3

—244
—236

2816

0

312
3 808

—11 248

0
0

—120
—2508

7196
0

72

1068

320
—8032 .

—68
—66

16

48
—112
—888
—168

840

540
—8

16

232
—360

—6232
—64

1504

3

—1 728

4 176

17 528
—40

56

3

2524

—19002

128
—48

—2 088
—1 056

26 320

—32
—36
—80

—176

308

280
—48

24

384

52

—220

142S

4780
—64

1328

3816
—8960

—10576

116
—568

560

18 540
—4768

—88

1024
—220

—19536
—3 768

—128
—128

80

—80
—48

—376
1040

3

744
—832
—638

128
1696

3

3120
10272

—1760
—280
—80

992
12408
10378

656

1024
—1432

—11600
—9956

—512

—512

—192

2944

5440

1024

3

256

3120
6660

1024

512
—2688
—5608
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TABLE IV. Coefficients bqf~ in Eq. (A19).

m=1 m =2 m =3

1

1

1

2

2

2

1

4 1

2

3

0

4 2 1

4 3 1

4
4

4

4

2

3

4

0

4 4 1

—24

24
8

3

—8

72

—16
4

3
8

3

—12
—132

240

80
—112

40
—268

296

0
—24

100

248
—520

—16

80
80

3

—144

392

16

—64
16

3
608

3

1872

240
128

3
320

3

96
—192
—480

80

3
560

3

—416
1632

408
256

3
2464

3

240
—3936
—576

80
304

3

144

—72

16
—184

312

2916
324

—720
192

3
1392

3

—24
—816
—464
—196

648

1616
636

—776

344

—416
—6324
—1128

1576

32
160

3

—352

152

—32

64
1712

3
1696

3

—144
—2352
—240

768

3
576

3

—160

640

352

528

—608

—1024
—2000
—632
—992

1280

1072

4576

832

256

64
—752

6112
3

1488

288

480
256

3
1856

3

672

2112
576
560

3
4384

3

992

480
1312

3
10496

3

—3984
—192

—1056

1536

768

128

1024

224

—3072

—256

( 1 +2t )
(n +2)(P )D2—

X QIqbqt~t l(PD) (A19)

The lattice sums I& have been given in Eqs.
(A10) to (A17). The coefficients bqt are listed in
Table IV under m =1—6 in rows.
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