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Two models, one describing charge-density-wave formation and the other (the Ginzburg-
Landau model) describing the superconducting state, are studied and shown to exhibit infinite-

order critical points. Related models exhibiting a Lifshitz point, a bicritical point, and a tetracrit-
ical point are also discussed.

I. INTRODUCTION

T) [1/(P-&)) (1.2)

Consider a Landau theory of a continuous phase
transition for which the free energy relative to the
disordered phase is

AF =a2q +a4q +a6g +

where q is the order parameter. As discussed in Ref.
1, at an ordinary critical point a2 =0 and a4 & 0,
while at a critical point of order

2 p, a„=0 for n & p
and a~ &0.

Suppose that a critical point of order 2 p occurs
at a temperature T„and that the coefficients
a„~(T T, ) for n (p—and temperatures close to T, .

Then, for temperatures Tjust below T„

ty being the difference between the values at tem-
peratures just above and. just below T,) can be
brought about continuously.

The behavior at the triple points of these two very
different models is highly unusual; the fact that all
the coefficients in the Landau expansion vanish at
the same point may be due to some underlying sym-
metry of the models.

II. CHARGE-DENSITY-WAVE MODEL

In what we shall call the charge-density-wave
model, the free energy per unit length L relative to
that of the normal phase is

I I

dF=L '
I dxv[pl2+y i +1 Q

. d
J dx

In this paper we study two models, one describing
charge-density-wave formation and the other (the
Ginzburg-Landau model) describing the supercon-
ducting state, both of which possess critical points of
infinite order. At an infinite-order critical point, the
coefficients a~ in (1.1) are zero for all p and the free
energy is independent of the order parameter. Also,
we expect, from taking the limit p ~ in (1.2), that
the order parameter- undergoes a step discontinuity as
the temperature is lowered through T, . In the
models studied below, it will be shown that the ap-
parently discontinuous change in the order parameter
can be brought about continuously by proceeding via

g continuously infinite sequence of states all of which
have the same free energy at the infinite-order criti-
cal point. Thus, at the infinite-order critical point, a
discontinuity in the order parameter (the discontinui-

(2.1)

This model has been used previously ' to describe a
phase transition to a charge-density-wave state, the
charge density in the ordered phase being given in
terms of the complex order parameter P(x). The
phase diagram' for this model is shown schematically
in 'Fig. 1. The order parameter p is zero in the nor-
mal state, constant, and nonzero in the commensu-
rate state, and a spatially varying, periodic function in
the incommensurate state. In the incommensurate
state, l P(x) l has a spatial period equal to one-third
that of P(x) itself. Close to the boundary (in Fig. 1)
between commensurate and incommensurate regions,
the incommensurate state can be viewed as a periodic
domain structure, each domain corresponding to one
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V
(2.1)] is

2

—Re Iy "~ + —'(y~'-Re(y3)+ —'[y~4
dx dx 2

r

(2.2)

The condition for an extremum of the free energy is
that its functional derivative with respect to Q' be
zero, which gives

21 d rir +.dQ + ]
~

3 ~42+~2~4 0 (2 3)

A first integral of (2.3) is'

i = ——Q+Q
dx

(2.4)

FIG. l. Phase diagram (schematic only) for the model
free energy of Eq. (2.1) showing the regions of stability of
the normal (N), commensurate (C), and incommensurate
(I)' phases. First-order (second-order) transitions are shown

by solid (dashed) lines. The triple point (TP) and the mul-
1

ticritical point (MCP) occur at (y, v) = ( 2, 0) and (6.16,
—60.8), respectively (Ref. 5). Note that the two first-order
lines have different slopes at the triple point, due to the fact
that TP is not an ordinary critical point but rather a critical

point of infinite order. Numerical calculations (page 4147 of
Ref. 5) suggest that the discontinuity in the order parameter

p at the CI line goes to zero as the triple point is ap-

proached; that is, the discommensuration spacing just above
the line appears to approach infinity in this limit.

Equation (2.4) is easily seen to have the solution
Q =0 corresponding to the normal phase, and the
solutions /=1, /=exp(i2m/3), and rir =exp(i4m/3)
corresponding to distinct commensurate phases. Ex-
act inhomogeneous periodic solutions of (2.4) have
been obtained previously5; a given solution is charac-
terized by giving its spatial period and a continuous
infinity of solutions is obtained by allowing the period
to vary continuously from a certain minimum allowed
value to infinity; these solutions correspond to in-
commensurate states.

It will now be shown that all of these solutions of
(2.4) must have the same free energy. Any solution
of (2.4) must of course satisfy (2.3). By multiplying
the left-hand side of (2.3) by rtr" and subtracting the
real part of the result from the right-hand side of
(2.2), one finds

of three distinct commensurate phases differing from
one another in the phase of rII but not its magnitude;
at a domain wall (or discommensuration) the phase
of 4r changes by 2n/3.

At the triple point v =0 and y =
2

in Fig. 1, the

normal, commensurate, and incommensurate phases
coexist. Variational calculations ' at this point gave
the unexpected result that the free energy is indepen-
dent of the spacing of the discommensurations; an
analytical proof of this result has been given in Ref. 5
—a simpler proof is given below. Jackson, Lee, and
Rice4 noticed that, in a Landau expansion of the free
energy, the coefficients a2, a4, and a6 as defined in
Eq. (1.1) all vanished at the triple point; they con-
cluded that "something unusual is occurring" at the
triple point and sho~ed that certain thermodynamic
properties are singular as the triple point is ap-
proached in the incommensurate phase, %e shall
show that the coefficients a~ in (1.1) vanish for all p
for a Landau expansion appropriate to the model
described by Eq. (2.1), and that the triple point is
therefore a critical point of infinite order.

All further work will be done at the triple point
where the free-energy density [the integrand in Eq.

r r

f =——Re rlr + —Re(Q )
1 d d lII i 3 i 4

2 dx dx 2
r

(2.5)

By using (2I4), f can now be rewritten
r r

f=— Re Q
— iP—1 d dp

2 dx dx
(2.6)

y(x) =y(sx) =@(r)

and impose the condition

y(r) =y(r+2~) .

(2.7)

(2.8)

Such a free-energy density will give only a surface
contribution to the free energy, which can be neglect-
ed. Thus, for all solutions of (2.4), /rr, F =0.

Although exact analytic solutions of (2.4) have
been found previously, 5 it is of interest to obtain
these solutions in such a way that a Landau expan-
sion of the free energy can be generated in the form
of Eq. (1.1) to all orders in rt To this end, w. e write
the order parameter in the periodic incommensurate
state in the form
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Equation (2.4) is now

i8 +P —$'2=0
dt

(2.9)

Furthermore, an expansion for both P and 8 in

powers of the amplitude q of the fundamental wave
will be sought in the form

@(1)=qe" + Xy„q", (2.10)

8=1+ X 8„2i" .
n 1

(2.11)

Equations (2.10) and (2.11) are now substituted into
(2.9) and coefficients of the different powers of q oc-
curring on the left-hand side of (2.9) are set equal to
zero. Thus, a sequence of equations is obtained
which can be solved in such a way as to obtain the
coefficients Qe and 8~ in terms of $„'s and 8„'s hav-

ing n (p. This procedure can be used to obtain P
and 5 to any desired order, and we find

1i1(x) =ye'~+( —,
' 212+ —,', 2i4+ 2'4', q')e '""

(2.12)

and

8=1 —
—,'~' ——,', ~'+O(~') . (2.13)

Similar expansions for the amplitu'de and phase of 111

have been given previously. '
The result (2.12), when substituted in the expres-

sion (2.1) for the free energy, clearly yields a Landau
expansion for the free energy in the form (1.1); the
result (2.12) is sufficient to allow the coefficients a2,
a4, a6, and as occurring in (1.1) to be found explicit-

ly, and all are found to be zero. In principle, 1' can
be found to any desired order in q, and the expan-
sion of 4F can thus also be found to any desired or-
der in q Now note th. at (2.12) represents a continu-
um of solutions of (2.4), each distinct solution corre-
sponding to a distinct value of q (or 8). Since, as
was shown above, all solutions of (2.4) have the free
energy AF =0, 4F is independent of q and the coef-
ficients a~ in the expansion (1.1) are zero for all p.
Thus, the triple point is an infinite-order critical
point.

Notice that, at this infinite-order critical point, an
infinite continuum of incommensurate states exists,
all having the same free energy. These states are
such that one can proceed through them from the
normal state with 1i1 =0 to a commensurate state with

l1i1l =1 while allowing only continuous changes of the
order parameter 111. One does this by starting with
the normal state for which 1i1 =0, proceeding to the
incommensurate state of Eq. (2.12) for which 1' is in-

AF=L ')~i dx 2111i112+v ~' +1 111
d

dx

-Re(y2) + -,
'

I
yl4 (2.14)

In order to study the N-C and N-I transitions asso-
ciated with this model we diagonalize the quadratic
terms in (2.14) and rewrite the free energy in terms
of the Fourier components Q1, and $2, of the two
eigenvectors $1 and p2. The model (2.14) takes the
form

g ~q(~1(q)41,41.-4+F2(q)42/42, -4+o(y')),
(2.15)

where

X, 2
= (v+ y) + yq2 + (I +4y2q2)'~2 (2.16)

Since A. ~
~ x2 the phase transitions from the normal

1
phase are determined by X1(q). For y ( 2, A1(q) at-

tains its minimum at q =0, and therefore A.1(0) =0

finitesimal and 8=1, and then going through succes-
sive incommensurate states with continuously in-
creasing spatial periods until the period becomes in-
finite, at which point the commensurate state has
been reached. In this way, an apparently discontinu-
ous change of the order parameter (from 1i1 =0 to
l1i1l =1) can be achieved continuously, which is the
type of behavior which might be expected at an
infinite-order critical point.

It can be shown, by developing an expansion of 1'
similar to (2.12) and using it to calculate the free en-
ergy correct to terms of order q that if a term pro-
portional to l111l is added to the free energy density
of Eq. (2.2), the infinite-order critical point is no
longer present, but that a tricritical point occurs on
the normal to incommensurate phase boundary. 4

We note that in order to perform a scaling analysis
in the vicinity of the infinite-order critical point one
should first calculate the coefficients a2~(v, y) for
small u and (y ——,). This has not been done in the

present work.
The model (2.1) corresponds to CDW systems in

which the commensurate phase is associated with a
reciprocal-lattice vector qo =22r/m with m =3. Phase
diagrams of systems for which m & 3 are not given
by Fig. 1;, in particular they do not exhibit an
infinite-order critical point. In the following we
analyze the phase diagrams associated with CD% sys-
tems with m ~3. %e will show that for m =2, the
phase diagram exhibits a Lifshitz point while for
m & 3 the three transition lines join via a bicritical or
tetracritical point,

Consider first the case ni =2. The free energy per
unit length L relative to that of the normal phase is
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defines the N-C transition. This transition is located
at

where

v+y-1=0 (2.17) X(q) =u+y(1 —q)' . (2.22)

For y & 2, however, the minimum of it~(q) is ob-

tained at q =qi where

q2 =1— 1

4 2 (2,18)

The N-I transition is given by X~(q~) =0, namely

1

4y
=0

EF =l, '
J dx u)p[2+y i +1 Q

dx

+ —,
' (y[' —Re(y )+u)PI", (2.20)

where for stability of the free energy we have includ-
ed a term u

~ g ("with 2l ~ m and u & 0. Rewriting
(2.20) in terms of the Fourier components of P we
find

hF ! dq[h. ( )qQ f"+0($ )) (2.21)

y il

At the intersection of the two critical lines (2.17) and
(2.19) one has (8 ) t/8q2) ~~ =0, with
(8 X~/8q ),~ & 0. This. is therefore a Lifshitz point. '
The (s, y) phase diagram of the model (2.15) is
given in Fig. 2. The N-C line is Ising-like (with

P~,~~ being the order parameter), while the N-I line
is associated with an n = 2-component order parame-
ter @~~, and qh~ ~, . The C-I transition is first order. 7

Detailed scaling and renormalization-group analyses
in the vicinity of the Lifshitz point have been carried
out in previous studies.

We now consider the case m & 3. The free energy
takes the form:

This free energy exhibits a N-I transition at e =0 for
0. The transition is associated with p, , with

qi =1. However, one has to be careful in applying
this result to real CDW systems. The expression
(2.22) for X(q) is, in fact, an expansion in powers of
(1 —q). In the limit of small y, one has to take into
account higher-order terms in (1 —q), and consider
h. (q) of the form

Z(q) =u+y(1 —q)'+y3(1 —q)'+0((1 —q)')

(2.23)

This amounts to including a term
—

yq dx[p"(id/dx+ I )'Pl in the free energy
(2.20 . The y3 term in (2.23) affects the phase dia-
gram quite drastically. For small y(y &0), A. (q) will
favor ordering of P~ with q2 A 1. q2 is determinedC2

by y, y3 and the higher-order terms in (2.23). One
therefore expects these CDW systems to exhibit at
least two incommensurate phases I1 and I2, associat-
ed with reciprocal-lattice vectors qi and q2, respec-
tively. A possible (v, y) phase diagram is given
schematically in Fig. 3. It exhibits two n =2 critical
lines, N-I1 and N-I2 which join at a point M. At this
point the two order parameters P, , and P, , become

critical simultaneously. This n =4 multicritical point
is either bicritical [Fig. 3(a)] or tetracritical [Fig.
3(b)l depending upon the various parameters in the
free energy. 9 In the bicritical case the I1-I2 transi-
tion is first order. In the tetracritical case, the I1 and
I2 phases are separated by an intermediate phase in
which both P~, and P, are nonzero. 9 Note that this

analysis is not dependent on the presence of the term
Re (P ) in Eq. (2.20), but rather on the fact that y
becomes small. Mean-field calculations' " and ex-
perimental studies" suggest that the analysis present-
ed in this section, .both for m = 2 and m )3, should
be apphcable to the phase diagram of TTF-TCNQ
under, pressure.

I/2—

III. GINZSURG-LANDAU THEORY
OP SUPERCONDUCTORS

I/2

FKJ. 2. (v, y) phase diagram for the case m =2. The
three phase transition lines meet at a Lifshitz point J.. The
C-I transition line is schematic.

We show in this section that this theory" has a
critical point of infinite order at ~ = I/J2, H, = H,
where x is the Ginzburg-Landau parameter, H, is the
applied field, and 0, is the thermodynamic critical
field.

In the usual units and notation, ' ' the Gibbs free
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FIG. 3. Schematic (u, y) phase diagram for the case
m & 3. The phase diagram is either (a) bicritical-like or (b)
tetracritical-like, depending upon the various parameters in
the free energy. (a) the I1-l2 transition is first order, and
M is a bicritical point; (b) the two incommensurate phases
I1 and I2 are separated by an intermediate phase in which
both incommensurate order parameters Pz and P~ arec2
nonzero. M is a tetracritical point. At the multicritical point
M all transition lines are parallel to each other. This result
is obtained by calculations which go beyond the mean-field
approximation (see, for example, Ref. 9).

energy relative to. the Meissner state is

AG =H'A. 'L(4w) ' „d'r [h'-2hh, + —,(1 —fz)'

+K '(Of) +f p ]

(3.1)

for a long cylinder (of length L) parallel to the con-
stant applied field A, =H, z =&2H, h, i. The micro-
scopic magnetic field A( r ) =J2H, h ( r )z is also in
the z direction. The Ginzburg-Landau order parame-
ter 4 is written as O' = WM fe where V~ is the
value of 4' in the Meissner state and f and 4 are
real. Lengths are measured in units of the penetra-
tion depth A.. The vector potential is
A( r ) = %2H, h. a( r ) and the superfluid velocity is
v = K

' V'4 —a, a vector in the xy plane. The func-
tions h, f, and v are independent of the coordinate z.
All the temperature dependence of the theory is in
H, and A..

The states of interest are the normal state (h = h„

~ zVzf f(vz+fz —1)—=0

Qx(Qxv)+f y 0

have, for ~ 1/v2, the first integrals

J2h = (1 f')i—
&2 V'f =fv x i

(3.2)

(3.3)

(3.4)

(3.5)

Multiplication of Eq. (3.2) by f and addition of the
resulting left-hand side to the integrand in Eq. (3.1)

Ha

Hc

/
/

/
/'

/ Hc~/Hc =

/
/

/
/

/
/ MINED

/r

"ct/Hc
~eggMEISSNER

I I

vj~
FIG. 4. Phase diagram in the Ginzburg-Landau theory of

superconductors.

f=0), the Meissner state (h =0, f=1, v =0) and
the mixed state, discovered by Abrikosov, ' in which
h, f, and v are periodic. The phase diagram is shown
in Fig. 4. The Meissner-normal transition is first or-
der; the discontinuity in the order parameter is in-
dependent Of K. The Meissner-mixed and mixed-
normal transitions are second order; the former is of
the X type. The flux first penetrates, at H, -H, ~, in
the form of one singly-quantized vortex. The in-
teraction between vortices is repulsive, " but is ex-
ponentially weak at large distances so that many vor-
tices enter with a slight increase of H, beyond H, i',

the magnetization curve is continuous at H, ~ but has
infinite slope at H, ~. In the intermediate field range
H, i (H (H, 2, the vortices form a periodic, two-
dimensional array. Ai H, =H, 2, the microscopic
magnetic field is H, and the order parameter is infini-
tesimal; the vortices are singly quantized and form a
"triangular" lattice. ' "

We show now that the free-energy difference b 6
vanishes at the triple point ~ = h, =1/J2, indepen-
dent of the structure of the vortex lattice. The proof
is a generalization of that used to show that the
normal-superconducting wall energy vanishes'"'; it
relies on the fact that the Ginzburg-Landau equations
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yields

hga d2r[h —2hh, +
2

(1 f )—+~ '7 (f 7f)]

(3.6)

The integral of the last term vanishes (by virtue of
the divergence theorem and the fact that the unit ce11

can be chosen so that '7f is parallel to the boun-
dary). Then use of Eq. (3.4) gives LEG =0 when

h, = 1/J2.
According to the arguments of Sec. II, if a Landau

expansion for the order parameter exists, then the
fact that 4G =0, whatever the periodicity, implies
that all the coefficients in the corresponding expan-
sion of the free-energy density vanish; hence the crit-
ical point ~ = h, = 1/W2 is of infinite order. Most of
the remainder of this section is devoted to an explicit
calculation of the Landau expansion.

%e first eliminate the functions h and v from Eqs.
(3.4) and (3.5) in favor of the function g =f', ob-
taining

Then Eq. (3.10) becomes

g( r ) =g'~yo( r )('

x exp [g( r ) —(g)]1

2m

(3.14)

where q is a parameter governing the magnitude of g
and r 0 is an arbitrary position vector; note that

v)'=g( r o)/((i/o( r o) (' (3.15)

t t
——ax/8

a second is (see Fig. 5)

(3.16)

Equation (3.14) is our basic result; from it, an ex-
pansion of g in powers of g can be obtained by itera-
tion. Clearly the periods of g are those of ~([/o( r ) ~.

From Eq. (3.13), one elementary translation vector is

V2 lng = —1 +g (3.7a) t 2
= b (x cosa +y sinn) (3.17)

.r. f r 3 ~
&

e2winx/ae-1/4(y+4mn/a ) (3.7b)

The solution of this equation for infinitesimal g is
well known" to be g = [P(( r ) ~', where

provided that

ab sinn = 4mp

where p is an integer, and

C„+~= C„exp[2min 5(b/a ) cosn]

(3.18)

(3.19)

'7'Ing = —8 + (g —(g) )

where (g ) is the spatial average of g and

8 = 1 —(g )

(3.8)

(3.9)

and the c„are infinitesimals. This solution, however,
cannot be used as the starting point of an expansion.

A suitable form of Eq. (3.7a) is

A form which preserves the shape of the lattice is ob-
tained by the replacements a = a '5', b = b '5

where a '
and b

' are independent of 8. One notes
that Eqs. (3.14) and (3.16) to (3.19) reduce to the
correct forms" when 8 = 1 .

It is an important feature of the above results that
the flux-quantization condition

The differential equation can be converted into the
integral equation

z hd2r = 2 77

~ cell K
(3.20)

lng =in+ + (2n ) '
J [g( r ) —(g) ]in~ r —r ~d r'

(3.10)

where e satisfies

V2 in+ (3.11)

the divergence of the integral in Eq. (3.10) will be
cured momentarily. A solution of Eq. (3.11) which
reduces to the proper form when 8 = 1 (i.e., when g
is infinitesimal) is

o/3 x,X

w = const) Po( r ) (' (3.12)

p ( r ) X C e2ein&x/ae 1/48(+wean/u) -(3 13)
FIG. 5. Elementary translation vectors t l and t 2 of the

vortex lattice. Also shown are the axes of the coordinates
X =x —y/tan+ and Y =y/sinn.
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is satisifed to all orders in y/ .From Eq. (3.4), sion

~ cell
(3.21) ((lip( r ) [

= X X C „e'"'("//+my)/ (3.25)

where A, the area of the unit cell, is

A =ab5 'sina=44yp/5

from Eq. (3.18). Hence

(3.22)

where x = X + Y cosa, y = Y sinu, b = 84y/(~35),
and

3
—l/4 ( I ) mne n(—m +n mn—)/%3e nin—/2 ~ (3 26)

z hd2y =2&24yp
~ cell

(3.23)

csin (n —,1)/2„=e (3.24)

Also, ~P()( r ) ~' has the double Fourier-series expan-

in agreement with Eq. (3.20).
As in Sec. II, we have two parameters, one (q)

governing the amplitude and one (5) the periodicity.
Again, the two are not independent; Eq. (3.9) can be
viewed as a self-consistency requirement which deter-
rnines one, given the other.

It remains to show explicitly that Eq. (3.14) pro-
vides an expansion of g in powers of q. To do. this,
it is convenient to make an explicit choice for the p
independent C 's. (For p =1, each unit cell contains
one singly-quantized vortex; for p = 2, each contains
two singly-quantized vortices —i.e., the lattice has a
basis —or one doubly-quantized vortex, and so on.)
Now, for (4 ) I/ J2, it is believed that a "triangular"
lattice of singly quantized vortices minimizes the free
energy for all values of H, between H, ~ and H, 2, this
choice (p =1, a =b5, a=4y/3) is also simple
mathematically. We make it for both these reasons.
Taking CO=1, we then have

the asymmetry is removed by the replacement
X X+b/4.

We now use Eq. (3.14) to generate the expansion

g( r ) = y)'g2( r ) + y)4g4( r ) + (3.27)

the only requirement for the validity of this expan-
sion, at least for small g, is that the integral

g ~ ~ G (k) 2ei (nX+m Y)/b (3.29)

and the average of gk is.

(gk) =Gp'Q"' . (3.30)

Writing the integral as

t JMb sina f Nb

j d r'. . . = lim dy' lim dx'. . .
-Mb sina N» -Nb

(3.31)
one finds

r d2r
~a(r rp)= j [gk(r ) —(gk)lln

2m r ro
O.28)

exist. Now gk clearly has the representation

G (k)—3b ~i mn I 2ni(4++my)/4 Q Q )—e
16'7T' mn N1 + n nrn

(3.32)

where the prime means that the term m =0, n =0 is to be omitted. The sum converges more rapidly than the
sum in Eq. (3.29) and therefore lk is finite for all k. The final step is to calculate 5 in terms of y/

5 = I - 8'(g2) 9'(g4) +-
where, from the above results,

(g ) 3
—1/4

—3b I 1 (3-l/2 2n(m2+n2 m—n)/K3 g-+ 2ni(nXQ+™yp)/b)2

g4
16& „Nl + n —Ntn

(3.33)

(3.34)

(3.35)

We have thus proved that the triple point is a criti-
cal point of infinite order in the Ginzburg-Landau
theory. It is natural to ask what happens when addi-
tional terms are added to the free energy. Now the
correction terms of order (1 —T/T, ) to the free-
energy density are known exactly from the work of

Tewordt". and Neumann and Tewordt. " The conse-
quences of the correction terms have-been investigat-
ed by Tewordt and his group "; work particularly
relevant to that of this article has been done by .

Jacobs, ""who showed that these "Tewordt" terms
lead to major changes in the phase diagram in the vi-
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cinity of the triple point. The detailed results are
rather complicated because the correction terms
depend on the ratio of the BCS coherence length $0
to the mean free path I; the cases $0/I =0 and ~ are
representative and are shown schematically in Fig. 6.
The reason that the figure is only schematic is that
the problem is still partially solved.

For "clean" to relatively "dirty" superconductors
(0» $0/I & 50), the critical value of x for type-II su-

perconductivity is ~,~."' ' For ~,~ & x & K,6, the
Meissner-mixed transition is first order because of an
attractive interaction between vortices. K, ~ and K

both have the form (1+constO)/J2 where
0=1 —T/T, and the constants are known" "for all

$0/I. Only the end points, not the location, of the
first-order line are known. The region K, ~ and ~,6 for
which the lower transition is first order decreases
with increasing go/I and vanishes at $0/I = 50. For
K ) K 6, the Meissner-mixed transition is second or-
der. The mixed-normal transition is second order for
all $0/I & 50. The locations of both second-order
lines are known.

For $0/I & 50, the critical value of ~ for type-II su-
perconductivity is" ~,3= (1+constO)/J2 where the
constant is known for all $0/I. The lower transition is
second order. The upper transition is first order ' for
K O' K 3 but K less than some unknown value; the lo-
cation of the line is also unknown. For sufficiently
large ~, the upper transition is second order. Both
second-order lines are known. 5

The feature of these results which is of interest
here is that the Tewordt terms split the critical point
of infinite order into two points with a first-order line

joining them; the length of the first-order line is pro-
portional to the magnitude (1 —T/T, ) of the
Tewordt terms. This is similar to the behavior found
by Jackson, Lee, and Rice4 in their study of the ef-
fect of an additional term

~
P~' on the charge-density-

wave model of Sec. II.
Finally, one can show from the results of Refs. 25

to 27 that there is a value of go/I(=50) such that
both the Meissner-mixed and mixed-normal transi-
tions are second order along their entire lengths (as

Hp

Hc NORNAL

/
/

/
/

/
/

/
/J

(p)

f./l =0

NINED

NEISSNFR

I I I

~cl Il~2 vcs K

Ho

Hc NORNAL

(b~

g, /g, =a)

NEISSNEiV

INFON

I I

I/+2 ~

FIG. 6. Phase diagrams (schematic only) obtained in
Tewordt's extension of the Ginzburg-Landau theory for the
cases (0/l =0 and ~. The locations of the first-order lines
on the mixed-phase boundaries are not known; the lines
have been drawn to have zero slope at the triple points.

in Fig. 4 for the Ginzburg-Landau theory). One can
also show that, at the triple point, the free energy is
independent of the structure of the vortex lattice, but
only to first order in 1 —T/T, and K —1/J2.
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