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Simple three-state model with infinitely many phases
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A nearest-neighbor three-state model is introduced that has chiral interactions and exhibits
spatially modulated order. A Migdal-Kadanoff renormalization group for this model is con-
structed and analyzed for general dimensionality d. This renormalization group is exact when

applied to the model on certain hierarchical or fractal lattices. The resulting phase diagrams are
of remarkable complexity: They exhibit an infinite number of distinct ordered phases, each
identified by q, the principle wave number of the modulations in the local order. All ordered
phases are commensurate with the lattice structure, and for sufficiently large d there is apparent-

ly a phase for every rational fraction q.

I. INTRODUCTION

Recently considerable attention has been addressed
to simple theoretical models that exhibit, or appear to
exhibit, spatially modulated ordered phases. ' ' Par-
ticularly interesting, in view of the simplicity of its
Hamiltonian and the diversity of its apparent
behavior, is the axial next-nearest-neighbor-Ising (or
ANNNI) model, 2 6 an Ising model with competing
interactions. For spatial dimensionality d & 2 this
model has been shown, at low temperatures, to have
an infinite number of distinct ordered phases, each
phase being distinguished by a wave number charac-
terizing the spatial modulations in the local order. '

In this paper we discuss a class of p-state models

(p =2, 3, . . . ) with only nearest-neighbor (noncom-
peting) interactions that are a generalization of the
Potts models and of the discrete planar or clock
models. It is first pointed out that the ANNNI
model can be regarded as a four-state model with
nearest-neighbor but reflection noninvariant (or
chiral) interactions and spatial anisotropy. Viewed
from this perspective the ANNNI model is not quite
the simplest system that might be expected to exhibit
modulated order with variable wave number. In fact,
it appears that the simplest p-state model with only
nearest-neighbor, noncompeting interactions to ex-
hibit such spatially modulated correlations is the
three-state chiral model introduced below. Recently
Ostlund7 has independently studied this model in two

dimensions with spatially anisotropic interactions in

the context of the commensurate-incommensurate,
phase transition.

The major part of the present paper is devoted to
the three-state chiral model. To gain orientation, the
general solution for a one-dimensional lattice and a
corresponding exact decimation or dedecoration re-
normalization group' are presented in Sec. III. The
full sixfold symmetry of the three-state chiral model

on any d-dimensional layered lattice is then estab-
lished in Sec. IV. The correlation functions are
thence shown to exhibit well-defined spatial modula-
tions under appropriate conditions. Section V intro-
duces a Migdal-Kadanoff renormalization-group
scheme"" for the three-state chiral model. This is
approximate for a d-dimensional hypercubic lattice,
with d ) 1, but is exact when applied to the model on
certain pseudolattices or fractal lattices of a hierarchi-
cal nature'3 '6 (see Fig. 3 below). Sections VI and
VII discuss the phase diagrams predicted by the
renormalization-group analysis. By means of the re-
normalization group the wave number q describing
the modulations in the local order is readily identified
for all ordered phases.

The phase diagrams of the three-state chiral model
resulting from the Migdal-Kadanoff renormalization
group, and their evolution as d is increased prove to
be surprisingly rich in detail, with infinitely many
phases appearing at various borderline dimensions.
Of course it must be recognized that our renormal-
ization-group analysis is only approximate as applied
to the model on a realistic two- or three-dimensional
lattice so the results may not be physicafly relevant.
Some of the details discovered are clearly artifacts of
the particular renormalization-group scheme adopted.
For example, the main or "principal" phases are
all found to have wave numbers of the form
q = m/3(2") with m and n integral. The factor 2" in
the denominator here is a result of the adoption of a
renormalization-group scheme that rescales the lattice
by a factor of b =2 at each stage. Thus, as is gen-
erally true for simple Migdal-Kadanoff renormaliza-
tion groups, only the more qualitative features of the
results should be taken seriously as possibly applying
to realistic situations. Nevertheless, the complex
results we find do represent an exact solution to a
well-defined statistical problem, namely, the three-
state chiral model on a class of hierarchical lattice
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structures. Although these structures are rather artif-
icial, containing sites of indefinitely high coordination
number, the details of the results do have a definite
interest in the context of these systems and, we also
believe, the general features may have wider validity.

In fact, we find an ordered phase with modulations
in the local order characterized by a wave number q
for every rational fraction in the first Brillouin zone
(which is described by 0 ~ q ( 1 in our convention:
see below). Each such phase is present only for
dimensionalities greater than or equal to a borderline
dimension, d"(q), at which the phase first appears.
The simplest ordered phases, with q =0,

3
or 3,

1 2

are all equivalent under the symmetries of the model
to the ordered phase of the ferromagnetic Potts
model and are therefore present for all d )d'(0)=1.
The next group of ordered phases do not appear
until two dimensions (d =2), but for d ) 2 the
phase diagram rapidly fills in with many further new
phases, apparently completing the process after the
appearance of infinitely many families of infinitely
many phases at an ultimate borderline dimension,
dj = d'(

9 ) = 2.625, with the appearance of the q =
&

ordered phase. A relatively few ordered phases,
namely, those with q = m2 "/3 where n is small, oc-
cupy significant areas in the phase diagram. For
d & 2.5 there are regions in the phase diagram
between these principal phases that contain many dis-
tinct ordered phases, each occupying an extremely
slender region and all with very large correlation
lengths. A calculation or experiment of finite resolu-
tion would probably be able to resolve only a finite
number of ordered phases. Then the wave number
characterizing the modulations in the order might ap-
pear to vary continuously, giving the appearance of
incommensurate order, between the commensurate
phases that are resolved.

Because of the simplicity of the model the full
phase diagrams and (discrete) renormalization-group
flows can all be represented on a plane parametrized
by the real and imaginary parts of an appropriate
transfer-matrix eigenvalue h. (see Figs. 1 and 2
below). The reader uninterested in the detailed argu-
ments can gain an impression of our results by perus-
ing the figures illustrating the phase diagrams for
various dimensionalities (Figs. 4 to 8). In particular,
Fig. 10 below shows a representation of the results in
a form, exhibiting a unique multiphase point, com-
parable to the phase diagrams of the ANNNI
model. ' ' Self-similar devil' s-staircase behavior" of
the variation of the wave number q across the phase
diagram is illustrated in Fig. 9.

II. ONE-DIMENSIONAL p-STATE MODELS

Consider a homogeneous system of "spins" on a
one-dimensional lattice with interactions of strictly

finite range. Suppose each spin variable can take on
p0 different values, and the interaction of the longest
range is between m th neighbor spins, Such a system
is exactly equivalent to a system of spins that can
take on p =p0 values and have only nearest-neighbor
interactions. The correspondence is made by subdi-
viding the chain of p0-state spins into blocks of m ad-
jacent spins. Each such block of m p0-state spins in-
teracts only with adjacent blocks and can be con-
sidered as a p-state spin, si, that can take the values,
say, s; =0, 1, 2, . . . ,p —1. Let us define projection
operators P& such that

1, 1f Si=k
0 ifs Wk

k (2.1)

Then the general Hamiltonian for such a chain of p-
state spins is

p —1p —1

&=—X X X Jki1',"p,"+t
i k Ol 0

(2.2)

i 't

3C = I Qsisi+I K Xsisi+2
i i

(2.3)

Though it is not the easiest way to analyze this one-
dimensional ANNNI model, ' a direct mapping can
be made onto a four-state model with only nearest-
neighbor couplings in the fashion described above.
Each block of two Ising spins can assume four dif-
ferent states and interacts only with its nearest-
neighbor blocks. The same mapping can be made
from the ANNNI model in any dimensionality to a
four-state model with nearest-neighbor interactions
only, though with spatially anisotropic couplings.
There is the possibility that the behavior seen in the
ANNNI model may appear in some simpler four-
state model, for example with isotropic couplings.
The bulk of this paper concentrates on the simplest
three-state model that exhibits multiphase behavior
similar to that seen in the ANNNI model. ' '

For many purposes this mapping of a model with
simple spins and longer-range interactions onto a
model with only nearest-neighbor interactions
between more complicated spins is not very helpful:
for two purposes, though, it is useful. First, the
Migdal-Kadanoff approximate renormalization
group"" depends on bond moving. In a lattice with
only nearest-neighbor interactions the procedure is
straightforward. Second, in a one-dimensional sys-
tem the application of transfer matrix techniques is

The ANNNI model in d dimensions can be thought
of as parallel Ising chains making up a hypercubic lat-
tice. The interchain coupling is via ferromagnetic
nearest-neighbor bonds. Within each chain, though,
there are also antiferromagnetic second-neighbor
bonds. The Hamiltonian for a single such chain in
isolation is
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(2.4)

where Kki= pJkl. This matrix has p eigenvalues, A. ,
each with right and left eigenvectors, e '

and e ' ."
The eigenvalues are either real or occur in complex
conjugate pairs. The largest eigenvalue will be real
and positive and we will number the eigenvalues so
that Ao ~ [A.t f

~
f A2). . . . The basic pair correlation

functions for this system are

Gkl(R) (PkPI ) (2.5)

In the thermodynamic limit these correlation func-
tions may be written in terms of the eigenvalues and
eigenvectors of the transfer matrix as

p-1 ~m
gkl(R) ~L, OeR, O ~ e,meL, m

k I ~ k I
m 0 XO

(2.6)

when Xo &
~
Xt ~. There are p' such real correlation

functions which are, in general, independent except
for the single restriction

simplest when there are only nearest-neighbor in-
teractions along the chain.

The p & p transfer matrix for the linear chain Ham-
iltonian (2.2) is

cisely, we require that if k —i = k' —i'(mod p) then

Jkl =J,. It follows that the transfer matrix T is cy-
k I

clic with eigenvalues and eigenvectors

and

p —1

e2eimk/p
yg ~ Ok

k 0

R,m [ei,m]n 1/2-e2wiml/pel' = eI =p e

(2.9)

(2.10)

1 'n

Gkl(R) —2 $ c2nl(k —l)m/p

mW )
XO

(2.11)

There are now only p distinct correlation functions,
one for each value of k —I (mod p). Thus the re-
striction (2.7) leaves, in general, (p —1) independent

real correlation functions.
Alternatively, we may use the complex correlation

functions

g (n) (c i+n i )
p-1 p-1

g X e2ni(l k)m/p—g kl( &)
kW IW

The expression (2.6) then yields the correlation func-
tion as

X X G"'(n) =1
k OI 0

(2.7)

'n
~m

A.O

(2.12)

Asymptotically, for large spin separation n, the
behavior of a correlation function G(n) is dominated
by the eigenvalues of greatest magnitude. If )1 is
real and positive then G(n) is asymptotically mono-
tonic. lf h. t is real and negative, G (n) will be modu-
lated with a wavelength of two sites, as in the antifer-
romagnetic Ising chain. If A. 1 and A.2 are a complex-
conjugate pair, the correlations vary as

G(/l) =G +Gt~~t//o~"cos(22rqn+p)+

(2.8)
where Xt = ~A, t~e' kl. Thus with complex eigenvalues
the correlation functions can have modulations of
any wavelength.

For the Ising model one has p =2 and the transfer
matrix cannot have complex eigenvalues since a 2 x 2
matrix with non-negative real elements has only real
eigenvalues. As shown below, the simplest model
with only nearest-neighbor interactions but exhibiting
complex eigenvalues is a p =3 system.

Consider then the class of p-state models in which
the p-fold cyclic symmetry is not broken. The asym-
metric clock models7 are a subset of this class of
models. A physical picture of such a model is that
the spin at site i is a unit vector in the xy plane at an
angle 8; =22rs, /p from the x axis. The cyclic sym-
metry is unbroken if the interaction energy between
two such spins depends only on the angle between
them, namely (8, —8/) = 22r(s, —s/)/p. More pre-

for m =1,2, . . . , p =1. From (2.9) we see
Gk(n) = G~' k(n) so the set of independent correla-
tion functions of this type is G;m =1, . . . , [ 2 p).
For p odd the set of (p —1) independent real correla-
tion functions (2.11) can thus be replaced by an

equivalent set of —, (p —1) independent complex

correlation functions. This is particularly useful for

p =3 as all pair correlation information is then con-
tained in one complex correlation function, namely,

2ei(s /
—s

R )/3

G(R, K) =(e " ) (2.13)

III. THREE-STATE CHIRAL MODEL

The simplest model with a Hamiltonian of form
(2.2) which exhibits spatially modulated correlations
is a three-state model with threefold cyclic symmetry,
but with a broken reflection or exchange invariance.
We will call this model the three-state chiral model.

In a renormalization-group analysis' the recursion
relations for decimation of all but every bth spin on a
chain described by the Hamiltonian (2.2) are ex-
pressed simply as T'=dtk(T) = Tk. This transforma-
tion may be rewritten in terms of the eigenvalues and
eigenvectors of T as, simply,

Z' =X', (e ' )'=e ', and (e ' )'=e ' . (2.14)
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On a linear chain the Hamiltonian of the three-state
chiral model is

2

X = —X Jo XPkPk3+J&(P P;4+P P+3+P'Pi'+i )
kW

+ J2(P,OP;2+( + Pi2P, 3+3 +P,'Pio+3 ) . (3.1)

The significance of each term here is best understood
by examining the ground states of the system in
which that particular term dominates. The term with
coefficient Jo is the usual Potts interaction; if J~ = J2
the model reduces to the usual three-state Potts
model with coupling J = Jo —J~. For Jo ) J~ and
Jo & J2 the Potts term dominates and the ground
state of the system is that of the ferromagnetic Potts
model in which all spins take the same value. How-
ever, when J~ & Jo and J~ & J2 the second term in
the Hamiltonian dominates and the ground state is
described by

within the equilateral triangle in the complex A. plane
with vertices at e2 ' /3 (m =0, 1, 2) (see Fig. 1).
This triangle seems to be the most natural domain in
which to represent phase diagrams for the three-state
chiral model. The coordinates of a point in this trian-
gle may be expressed in two useful ways. The first
is, simply, as the real and imaginary parts of the
eigenvalue X. On the other hand, if the altitude of
the triangle is of unit length then the distances
between a point and the three sides of the triangle
are the transfer matrix elements, To, T~, and T2, cor-
responding to that point.

An analogy with the ANNNI model may be no-
ticed if one rewrites the Hamiltonian (3.1) as

20 =-J X Z, + X P,"P,"„
kW

+«(Pi Pi+3 + i Pi+3 + i I+1

P; P;+& —P—i P+3 P,'Pi+3 )—

(3.8)
s;+„=s; + n (mod 3) (3.2)

If the three values of s; are thought of as three orien-
tations of a vector in a plane normal to the chain,
this ground state has a chirality that we may call right
handed. Conversely, if J2 & J~ and J2 & Jo the
ground state is similar, though of opposite, or left
handed chirality.

The transfer matrix for this Hamiltonian is cyclic
with first-rom elements

Then for («~ ) 1 the ground state has modulated or-
der, while for

~
«~ (1 it is ferromagnetic. In the

ANNNI model (2.3) the ground state has modulated
order for K ) —, and is ferromagnetic for K 4
The correspondence between points in the phase tri-
angle and those in the (ksT/J, «) plane is indicated
in Fig. 2.

To =T =exp(K j, m =0, 1, 2 (3.3)

It has one real eigenvalue,

2

Z, = $T

and a complex conjugate pair, namely,

2

e 2 Wlltl /3

NW

(3.4)

(3.5)

Tp =

Rek=
Tp

Re X

The energy zero will be chosen so that Ap =1. Then
the reduced Hamiltonian,

2 2

(3.6)

where m = / —k (mod 3), is fully specified by the sin-

gle eigenvalue, A.
=—A, ~, in terms of which the transfer

matrix elements are

(/ ) + m " (I + e 2eAw/33 + e2mia—/33 ) (3 7)

Due to the restriction T «0, (m =0, 1, 2), all physi-
cally realizable values of X are found to lie on or

T2

FIG. 1. The basic phase diagram of the one-dimensional
three-state chiral model in the complex A, plane, where A. is
the nontrivial eigenvalue of the transfer matrix. The system
orders only at the points labeled F, R, and L with ferromag-
netic, right-handed-chiral, and left-handed-chiral order,
respectively. Under renormalization-group transformation
all other points in the phase diagram are attracted to the
paramagnetic fixed point, P, at which all nontrivial correla-
tions vanish. Two flow trajectories illustrating this for a
b -2 renormalization group are shown.
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T*O, J&0
Kso (

T(

Rek

J&0
& -1

fixed points are the solutions to

g=g/b and q =bq+m; m =0, +1, +2, . . . ;

(3.11)

these are /=0 or ~ and q =m/(b —1). Thus the
chirally ordered states marked R and L in Fig. 1, with

1 2

3
and 3, are seen as fixed points only when

b =3m +1,m =1,2, . . . . A similar restriction on b
has been noticed for the linear chain Ising antifer-
romagnct. On thc othcI' hand, thc high-temper-
ature disordered point and the ferromagnetically or-
dered state, marked P and I', respectively, in Fig. 1,
appear as fixed points for any b.

IV. SYMMETRIES OF THE THREE-STATE
CHIRAL MODEL

FIG. 2. The basic phase diagram in the A. plane showing
the axes of the parameters To, TI, and T2 [see the relations
(3.5) and (3.7)] and contours of constant kz T/J (dotted
curves) and constant ~ (dashed curves) following from rela-
tions (7.1) and (7.2). Note that the mapping is singular on
the edges of the triangle and on the locus T = ~. Specifical-
ly, each vertex of the X triangle maps into a line in the TK
plane while each edge of the A. triangle maps onto a single
point in the T~ plane. Thus the multiphase behavior that is
concentrated at a single multiphase point in the T~ plane is
spread out over an entire edge of the A. triangle (compare
Figs. 8 and 10 below).

Consider a three-state model on a general d-

dimensional layered lattice. Identify. each spin by its
position vector R„, where the index n indicates that
the spin is in the nth layer of the lattice. The re-
duced Hamiltonian is

2

X(K,, ) ) = X X K, Xpj„pj,
gg (~ . n

r~ Jnnno Pt pg

2 2

+ g X XK.(i )p'-„p'-„
(~„.~„+,) a-0 I~

By (2.12) and (2.13) the correlation function for
the one-dimensional three-state chiral model is sim-

ply

G(n) =An (3.9)
I

Thus there is long-range order only for ~h.
~

=1. This
occurs at each of the three vertices of the phase tri-

angle; the labels F, 8, and L in Fig. 1 signify fer-
romagnetic, right-handed-chiral, and left-handed-
chiral ordering, respectively. The remainder of the
phase diagram represents a paramagnetic phase with
correlation function which may be written

G(z) =e n~qe2niqn (3.10)

where ( = —1/ln~ h.
~

is the correlation length. Thus
for X not on the positive real axis the correlations are
modulated with wave number q =arg(X)/2qr and de-
cay exponentially, with correlation length (. Note
that q =1/A where A is the wavelength of the modu-
lations in units of the lattice spacing.

The renormalization-group recursion relation
(2.14) for the three-state chiral model is simply
X'=h, ~or equivalently, g'=(/band q'=bq. The

=F(R„,R;Ki, )
"' ' i', (4.2)

where the functions F and P are real.
One symmetry of this model is exhibited by rela-

beling all the spins so that s a s-'„=—s a (mod 3).
The results of this transformation on the Hamiltoni-
an and the correlation functions are A. P

'=
A.
'

and
G G' = G'. Thus we conclude that

G (R„,R;Kg, A.') = G"(R„,R;Kg, X) (4.3)

Clearly, when A. is real the correlation function is al-
ways real. If A, is positive and real the system is just
a three-state Potts model with ferromagnetic cou-

(4.1)

where m = l —k (mod 3), and the two sums run over
all nearest-neighbor pairs within the nth layer and
over all nearest-neighbor pairs with one spin in the
n th layer and one in the (n +1)st layer, respectively.
The couplings K (X) are as defined in (3.7) and we
assume the in-layer coupling Kq is positive, i.e., fer-
romagnetic, to avoid frustration effects. The correla-
tion function (2.13) may conveniently be written as

G(Rn, R~;Kg, h, )
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plings. The correlation function will then be non-
negative everywhere so that $ =0. If k is negative
and real we have a Potts model with antiferromagnet-
ic interlayer coupling. In this case we choose

Q(R„,K ) =(m —n)m (4 4)

From (4.3) and (4.6) we see that the correlation
functions at the six points in the phase diagram
X=)X(e+'', X=~X[e+-'+ ', and X=[X[e+-'~ ' are

simply related. Thus the phase diagram has a sixfold

symmetry. and one need study only one sextant, for
example just h. =

~
h.

~

e'~ with 0 ~ 8 ~ a/3. This six-

fold symmetry is a generalization of the two-fold

symmetry relating the Ising ferromagnet and antifer-

romagnet on a bipartite lattice in zero field. Further,
we see that for h. = ~X~e"" with l =0, . . . , 5, the

phase of the correlation function satisfies

Q(R„,K~;Kq, X) =2n(m —n)q(K&, h.), (4.7)

so that the function F remains non-negative.
The other symmetry of the model is exhibited by

relabeling the spins so that s R
s-'R =s

R +rI

(mod 3). The results of this transformation are
1'= A. exp(2ni/3) and

G(R„,R ) G'(R„, R ) =G(R„,R )e'""

(4.5)
from which we may conclude

G(K K E ie'"'i')=G(K„, K;K,, l )e' " -"''
(4.6)

with q (Kz, A. ) = l/6 being the wave number of the
modulations in the correlation fcinction. Note that
the wave vector of these modulations is normal to the
layers, as would be expected.

In a high-temperature expansion (
~
h.

~
&& I) of the

correlation function, we find in leading (nonvanish-
ing) order in ~X~ the behavior

G(R„,R;Kg, X) =F(R„,R;Kg, ~&~)& ", (4.8)

where the function F is real everywhere. In the one-
dimensional system, as was shown above in (3.9), we
have F =1, and all higher-order terms vanish. To
summarize, then, we find that for all A, in the one-
dimensional system, for ~A.

~
&& 1, and for

A. =
~

A. ~e
"3 in any dimensionality, the relation (4.7)

is valid, with q(Kq, h, ) =arg(h. )/2vr, independent of
the in-layer coupling strength Ej. This therefore in-
dicates that (4.7) is possibly always valid for a layered
lattice such as we are considering; in that case (4.7)
serves to define the function q(Kq, h. ) unambiguous-
ly. However, we must be cautious on this point be-
cause of the counterexample provided by the "mock
ANNNI models"' where the correlation function has
competing periodicities and q can only be defined
uniquely by specifying that it refers to the primary, or
strongest component in the spatial modulations of the
correlation function, a somewhat less practical defini-
tion to use. If, as we suspect, (4.7) is not always
valid in the present model, the wave number
q (Kj, A. ) may likewise be defined as that of the max-
imum or the strongest Bragg peSk in the structure
factor:

$(q;Kj &) =& X X X X e2eiqtn m~iG(R —R,E& g)
n R m R

n m

(4.9)

where N is the number of sites in the lattice. In any
case we expect that q (Kq, A.) at least roughly corre-
sponds to the modulations in the correlation func-
tion, i.e., that

G (K„,K;K~, X)=F(R„,K„;K~, h. ) e

group treatment, we turn now to the three-state
chiral model on a hypercubic lattice in a special case
where there are no in-layer couplings (Kq =—0); this is
a system whose low-temperature behavior is rather
less obvious but which, as we will indicate, will still
exhibit phases with well-defined layered ordering.

(4.10)

represents, physically, a good description.
If, considered by itself, each layer of sites and in-

layer bonds is a well-connected lattice of dimensional-
ity d & 1, it appears that a systematic low-temper-
ature series expansion might be generated for the
model in a manner following Fisher and Selke's treat-
ment of the ANNNI model for d & 2.' One would
expect, as with the ANNNI model, that the system
would always order at sufficiently low temperatures.
However, to avoid explicit spatial anisotropy in the
Hamiltonian, which complicates a renormalization-

V. MIDGAL-KADANOFF RENORMALIZATION GROUP

In this section we specify the recursion relations
that will be studied for a special three-state chiral
model on a d-dimensional hypercubic lattice and
point out that they are an exact dedecoration renor-
malization group' for the same model on a certain
class of "fractals" or hierarchical pseudolattices. " '

To specify the model on a hypercubic lattice let the
basic lattice vectors be a, (i =1, . . . , d). To achieve
the maximum simplicity all bonds in the lattice will
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make up a fixed cycle of period two iterations. We
will in fact find fixed cycles of all periods in this
model.

This renormalization group may be linearized about
a fixed point X, in the standard way. ' ' The result-
ing linear operator has just two eigenvalues, Ao and
A~. From (5.6) we find that the eigenvalues of the
renormalization group linearized about the fixed
point k,' are Ao and Ai. But since the A; are roots of
a real quadratic equation, either both are real, in
which case A; = A, or else one has Ao = Ai. In ei-
ther case the eigenvalues at the fixed points P, and
X,

" are identical. Similar reasoning, using Eq. (5.7),
shows that the eigenvalues of the renormalization
group with b =2 at either of the two fixed cycles of
period two, X,e+-' or A.,'e+-' ",are also the same
as those at A, These four fixed cycles, two of period
two and two of period one, thus have the same
eigenvalues and occur at points in the phase diagram
that are equivalent under the symmetries (4.3) and
(4.6). They constitute what we will call a class of
fixed cycles, i.e., a set of fixed cycles which are
equivalent under either (5.6) or (5.7) and which thus
have the same eigenvalues. Note that all such classes
of fixed cycles will contain at least one "vertex, " or
point in the cycle, in each sextant of the A. phase dia-
gram. Thus, again, one need examine only a single
sextant of the phase diagram: what is found there
will simply be repeated in the other five sextants.

Because the recursion relations (5.3) operate in a
two-dimensional parameter space, (the complex A

plane) the renormalization group linearized about a
fixed cycle has only two eigenvalues. Thus there are
three main types of stability possible for a given fixed
cycle. It is an attractor if both eigenvalues are less
than unity, it is critical if one eigenvalue is less than
unity and the other .is greater than unity, and it is
multicritical if both eigenvalues exceed unity.

%e turn now to the construction and analysis of
the phase diagrams following from the recursion rela-
tions (5.3).

dered ferromagnetic state. This fixed point is located
in one corner of the triangular phase diagram (see
Fig. l). The other two corners, representing the
states with maximal or saturated chiral order, make
up a fixed cycle of period two under the b =2 recur-
sion relations which is also an attractor for d & 1.
These two classes of attractors, the disordered point
X =0 which is in a class by itself and the ordered
fixed cycles A. =1 and A. = e +—"', are the only attrac-
tors present in the model: both have eigenvalues
Ao = Ai =0 for d & 1.

Let us now restrict attention to d & 1; there is then
a region of the phase diagram containing the attractor
) =1 which represents an ordered phase with non-
modulated or simple ferromagnetic order. This fol-
lows because all points in this phase approach, under
the discrete action of the recursion relations, the
fixed point A. =1 on a quasismooth trajectory lying to-
tally within the phase (see, e.g. , solid points
3, 4, 5. . . in Fig. 4). On the boundary of this phase
there are three fixed points which are labeled Co, C+,
and C in Fig. 5, where the phase diagram, con-
structed numerically, - is exhibited for d =2. The

Tp

Rek

VI. FIXED POINTS AND PHASE DIAGRAMS

The renormalization-group recursion relations (5.3)
have been studied numerically and analytically for
b = 2 and for various values of the dimensionality
parameter d: the results are reported in this and the
following section.

As seen in the one-dimensional case (d = 1), there
are always two trivial fixed points, namely A. =0 and
A. =1. The former, P, is an attractor for all d: the set
of all points in the phase diagram that are attracted to
it under repeated iteration of the recursion relations
represents the disordered, or paramagnetic phase.
The fixed point, F, at X=1 (or TO=1, T~ = T2=0) is
an attractor for d & 1 and represents the fully or-

L B, IO,

FIG. 4. Phase diagram for d =2.50 showing the major
classes of ordered phases (see also Fig. 8 below) and illus-

trating some (discrete). trajectories under the b =2 renor-
malization group. The label "START" marks the initial

1 13
points, one with qo = —,the other with qo =—.Successive-

ly renormalized states are labeled 1, 2, . . . . To identify the
initial phases first follow the trajectory of the open circles

1 1
backwards: point 5 has q5 = —and so point 4 has q4 =

6
1 1 13

and point 3 has q3 =—.Point 2 could have q =—or—12' 24 24
but in view of its location the latter is clearly correct. Con-

13
tinuing two steps further gives qo =—.All points within96

1
the q =

8 phase map, after three steps, into the q =0 phase

in a fashion similar to the sequence of solid circles illustrat-
ed.
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c+

Cp

d=2

To

Re X

By the symmetry (4.6) we know that there must be
chirally ordered phases similar to the ferromagnetic
phase but located in the other corners of the A. trian-

gle (see Figs. 4 and 5). In anticipation of a prolifera-
tion of different chirally ordered phases we introduce
here a systematic method for characterizing the na-

ture of the order in these phases.
The identification of the different ordered phases is

based upon the hypothesis, embodied in Eq. (4.10),
that for every point in the phase diagram there is a

wave number q (X) that characterizes the spatial
modulations in the two site correlation function
(2.13). In the following we explicitly construct the
function q (h.). Because of the discrete nature of the
lattice the wave number q(X) may always be chosen
to be within the "first Brillouin zone, "which will be
taken as O~q (1. Under application of the b =2
renormalization group the lattice is rescaled by a fac-
tor of 2 so we have

FIG. 5. Phase diagram of the three-state chiral model on

the b =2, d =2 lattice illustrated in Fig. 3. There are six

distinct ordered phases. Note that the critical fixed points

C&+ and C; (i =0, 1, 2) lie just inside the triangle.

fixed point Co is on the real (or T~ = Tq) axis and
represents the critical point of the standard three-
state Potts model. In the context of the present sys-
tem this is a multicritical fixed point. All other
points on the boundary of this ferromagnetically or-
dered phase are attracted to either C+ or C, those in

the lower half plane to C and those in the upper
half plane to C+. These two critical fixed points be-
long to the same class; if C+ is located at P, then C
is at P,'. The five fixed points I', I', Co, and C +—are
the only fixed points found in this model. Their
eigenvalues are reported in Table I.

q(Z) -q(a') =2q(X) —[2q(X)] (6.1)

Dr

q (Z) = q (X')/2,

q(k) = [q(lt') +I]/2

(6.2a)

(6.2b)

Assuming q(h. ') is known, this ambiguity in q(X)
will be removed by asserting a weak "monotonicity"
in q (A.). It was proven above that on the line h. =

~
h,

~

one has q (A.) =0, while on the line h. =
~

X~e"'~3, one
has q (X) = —,. These two lines enclose the first sex-

tant of the phase diagram, within which we assume
0 «q (h. ) «6. In light of the relations (4.3) and

(4.6) this is equivalent to the more general assertion

where [x] denotes the integral part of x. The inverse
of &his transformation is evidently double valued; one
has either

TABLE I. The eigenvalues of the linearized renormalization group at the fixed points.

Fixed point

A =2'
I

&0

P
F
Co

C-

Arbitrary
d&1
1+a
2

2.5
3

d
1+a
2
2.5
3

0.83
0.97
1.03
1

0.99
1.50
2.00
d —1

0.42
0.52
0.62
1

—1
—1.7
—3,0
—49
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that if h. =
~

A.
~

e'&, where

m/6 & y/2n & (m + 1)/6

in which m is an integer, then one has

m/6 ~ q ( Z) ~ ( m + 1)/6 .

(6.3)

(6.4)

This conclusion is certainly valid in a mean-field-
theory treatment of the system, as well as in the
high-temperature expansion discussed above: see
(4.8). As will be shown, the relations (6.1) to (6.4)
together with the recursion relation (5.5) serve to
determine the wave number q (A.), in principle, to ar-
bitrary accuracy for all X(&0), within the phase dia-
gram. Thus we construct a well-defined function
q (h, ) that, for d =1 as well as for arbitrary d provid-
ed X= )X(e' "3(m =0, 1, . . . , 5), is precisely the
wave number of the modulations in the correlation
function as defined by Eq. (4.7). Otherwise the
correspondence is not quite so precise, but there is
every indication that q(h. ) does effectively character-
ize the modulations in the correlation function at
large distances in the sense of Eq. (4.10).

There are two steps in the procedure for determin-
ing the wave vector q (A.): first, the recursion rela-
tions are iterated until a point h.„= tR "(A.) is reached
at which either q ( k„) is already known or n is suffi-
ciently large. Then, using relation (6.2), q(h. „ t) is
determined from q(h, „)., q(h, „&) from
q(h, „ t), . . . , and finally q(h. ) is determined from
q(At). Note that if q(Xt+t) is known to be in an in-
terval of width et+~, i.e., qt+I ~ q(Xt+~) ~ qt+t+ et+t,
then, from (6.2), q(h. t) is known to lie in an interval
of width et =

~ et~t. Thus, if q(A.„) is not known, we

have e„=
6

from (6.4) and by the above procedure
1

q (A.) is determined to lie in an interval of width
co=2 "/6 which may be made arbitrarily small by
choosing n sufficiently large.

The points in the phase diagram that represent or-
dered phases with modulations commensurate with
the lattice are all attracted to a fixed cycle under re-
peated iteration of the recursion relations. For these
points q (X), is certainly known exactly, because the
wave number q (A.„) at a vertex, v, of a fixed cycle is
uniquely determined by the above procedure. If the
fixed cycle closes after n steps we have q (k„)
=2"q(k„) —m (m integral) so that q =m/(2" —1).
By noting in which sextant of the phase diagram each
vertex of the fixed cycle is located one can determine
each q (A.„) explicitly.

For low enough dimensionality (d & 2.12) one
finds numerically that the only classes of fixed cycles
present are the four previously mentioned, represent-
ed in the first sextant by P, F, Co, and C+ (see Fig.
5). By the above reasoning the fixed points repre-
senting ordered states (F, Co, and C+-) have wave
number q =0. They are all located either within or
on the phase boundary of the ferromagnetically or-

dered phase, which must therefore be identified as
the q =0 phase. For each of these fixed points, lo-
cated at, say, A.„there is a fixed cycle of period two
in the same class with vertices at A.,e+- ' . Each
such vertex is located within or on the boundary of
one of the two chirally ordered phases (with q =

s

and —,) which, by the symmetry (4.6), are similar to

the q =0 phase. In Fig. 5 the Potts-like fixed cycle
of period two, which is in the same class as the Potts
multicritical point Co, is labeled by C1 and C2. Simi-
larly, there are two other fixed cycles, C1+-and C2-,
that attract all other points on the q = —, and q =—
phase boundaries and are in the same class as C+ and
C . Under a single iteration of the recursion rela-
tions the q = —, phase maps into the q = —, phase and

1 =2
vice versa. The three ordered phases with q =0, —,,
and —, are in the same class, in that they occupy

equivalent regions of the phase diagram. In general,
if there is an ordered phase with modulations of wave
number q =qo, the symmetries (4.3) and (4.6) dic-
tate that there will also be phases of the same class
with wave numbers q = ( 3

+ qo), ( 3
+ qo), and

1 2

(1 —qo). We will identify each such class of phases
by the wave number of its representative in the first
sextant of the phase diagram.

For dimensionality d ( 2 one finds only this single
class of ordered phases. The remainder of the phase
diagram represents the disordered or paramagnetic
phase. However, one can show analytically that at
d = 2 a class of three new phases appears, with

q = —,—,and —.For d =2 these phases exist only
1 1 5

at single critical points on the edge of the phase dia-

gram, namely, h, =
z

e'"+ (see Fig. 5). As is readily

checked analytically, under one iteration of the recur-
sion relations the q =

2
critical point, for example, is

mapped to Co, the Potts multicritical point. Similarly,
the other new critical points, with q =

6
and 6, are

mapped onto the Potts-like fixed cycle of period two,
C1, C2. For d ') 2 these new phases expand to occu-
py finite areas in the phase diagram. Thus d =d'( —,)
= 2 is the borderline dimension for this new class of
phases, at which they first appear, occupying only a
single critical point on the edge of the phase diagram.
By the same token, the borderline dimension for the
original class of ordered phases is d"(0) = l.

As d increases further one discovers numerically
that new classes of phases keep appearing. The third
class of ordered phases with q =—1 1 5 7 3

and», has a critical dimension estimated numerical-

ly as just under d =2.10. The first sextant of the
phase diagram for d =2.10 is shown in Fig. 6. Under
iteration of the recursion relations the q = —,2

phase

maps into the q =
6 phase, which in turn maps into

the q =
3

phase. Similarly, the phase boundary of
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Im X

FIG. 6. A portion of the phase diagram for d =2.10. The
1 1

q =—and —phases have now appeared, as have the
12 4
5 7 3 11

q =———and —phases (although these are not
12 ' 12 ' 4 ' 12

shown).

phases.
Since the mapping S"is continuous the boundary

of the q = m2 "/3 phase maps under 6t" into the
phase boundary of a member of the original class of
ordered phases. Thus all q = m2 "/3 phase boun-
daries are governed by just two classes of fixed cy-
cles. There is at most one multicritical point on the
boundary of each ordered phase that is attracted to a
Potts-like fixed cycle. The critical behavior at each
such Potts-like multicritical point is the same as that
at the fixed point Co, the critical point of the Potts
model. The remainder of each phase boundary is
governed by the class of fixed cycles represented in
the first sextant by C+. The one relevant eigenvalue
at these fixed cycles is numerically well approximated
by A() =2 ' for all d &1. Therefore, everywhere on
each phase boundary except at the Potts-like mul-
ticritical point the specific heat (or other appropriate
susceptibility) is singular with the critical exponent
satisfying

the q = —,2 phase maps after two iterations into the

phase boundary of the q =
3 phase.
1

All points in phases with true long-range order
must be attracted to a zero temperature attractor [F
or (R,L) ] upon sufficient iteration of the renormali-

zation group. Each such point, X, must therefore
satisfy tR"(A.) = h.„, for some n, where X.„ is a point
within a member of the original class of ordered

phases, i.e., q(A.„)= 3
m (m integral). Thus we find

that the wave number identifying a phase with true
long-range order must satisfy q = m2 "/3, where m

and n are integers, with m odd. The q = m2 "/3

phase maps, under tR", into the q = m (mod3)/3
phase.

The general character of the "trajectories" under
the recursion relations is illustrated in Fig. 4, which

shows two examples for d =2.50. Four different
classes of ordered phases are also shown in this fig-

ure. The solid point marked "START" is in the

q = —phase and, after three iterations, is mapped
8

1
into the q =0 phase, passing through the q =

4 and

—phases on the way. In no sense can a smooth1

2

"flow" be drawn through the first four points on this

trajectory; however after arriving in the q =0 phase
- the trajectory does become quite smooth. The open

point marked "START" just outside the q =
8

13
phase, is actually in the very slender q =

96

= 13 (2 5)/3 phase, whose boundary is not drawn in

.Fig. 6. After five iterations of the recursion relations

this poi'nt is mapped into the q = —phase, passing

through the q = 48, 24, », and 6 phases on the
'

13 13 1 1

way. It is subsequently attracted to the zero tempera-
ture fixed cycle of period two (R,L), all the while

1 2
jumping back and forth between the q =

3
and

3

d —2

d —1
(6.5)

In the vicinity of each Potts-like multicritical point
there is a crossover between the two types of critical
behavior. The crossover exponent satisfies

lnA1
@p= &1

lnAO
(6.6)

(xy) (x',y') = (A)x, Aay) (6.7)

where the x and y axes represent the scaling axes and
Ao & 1 & A1. The x axis is simply the boundary of
the q =0 phase, while the y axis is roughly parallel to
the edge of the phase diagram, which represents zero
temperature (recall Fig. 2). For d & d~ the y axis
does not intersect any ordered phases. The point in
the q =2 "/3 phase that is closest to the y axis is
(x„,y„). From the linearized recursion relations we
see that the point in the q =2 /3 phase that is
closest to the y axis is

(x,y ) =(x„/AI ", y„/Ao ") (6.8)

But the edge of the phase diagram is roughly at

(see Table I) so that all phase boundaries remain
smooth with a continuous tangent at the Potts-like
multicritical points.

One finds numerically that as d is increased beyond
d =2.10 new phases appear in large numbers. In
fact, as we, will demonstrate, the number of distinct
ordered phases diverges at a critical dimension, d1,
estimated numerically as d1= 2.125. The qualitative
mechanism for this is illustrated in Fig. 7, where a
small portion of the phase diagram containing the
fixed point C+ is shown for dimensionalities just
below and just above d1. The renormalization group
may be linearized about the fixed point C+ simply as
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for each odd integer l at which all the q = I2 /3
phases, m = 1, 2, 3, . . . , first appear. As will be in-

dicated in the next section, the evolution of the
phase diagram as d increases is very rich in detail.

VII. EVOLUTION OF THE COMPLETE
PHASE DIAGRAM

d)d)

FIG. 7, A qualitative illustration of the divergence of the
number of ordered phases which occurs when d passes
through d~.

x =xo. Thus for x ) xo the q =2 /3 phase is ab-
sent, being outside the phase diagram in the non-
physical region. As d increases the ordered phases
grow. Let dl be the dimensionality at which the
q =2 "/3 phase first intersects the y axis; for d suffi-
ciently close to dl we may approximate x„ to linear
order in das

As the dimensionality is increased beyond dl new

phases continue to appear. This continues until a fi-
nal critical dimension, df = 2.625, is reached, at
which point the phase diagram appears to be com-
plete, with an ordered phase for every rational frac-
tion q satisfying 0~q &1. Some features of the
evolution of the phase diagram as d is increased to
this final criticil dimension and the resulting "com-
plete" phase diagram are described briefly below.

One important feature is the appearance of new

fixed cycles with periods of three or more iterations.
To understand the origin and nature of these new

fixed cycles it is helpful to consider the "qp mani-

folds, " each of which consists of all points, h. , in the
phase diagram where the wave number q(A. ), is

equal to a given qp. Under the operation of the re-
cursion relations the qp manifold clearly maps into
the 2qp manifold. For d =1 the qp manifold is sim-

2lfIigp
ply the line segment X = re (0 & r ~r,„),which
extends from A. =0 to the edge of the phase diagram

2e'hgp
at A. =r,„e . As d is increased above unity each

qp manifold deviates from its original straight line
form, though remaining in approximately the same

xl(d) =x(dl —d) (6.9)
location. For qo= m2 "/3 the manifold expands, as d
exceeds the borderline dimension of the q = m2 "/3

with X )0. The borderline dimension d"(2 /3) is
the dimension at which the q = 2 "/3 phase first ap-
pears as a single point on the edge of the phase dia-
gram and above which the q =2 ™/3phase is always
present. For small y the edge of the phase diagram is
at x =xo, thus for d = d'(2 /3) we have

x =x (d) =A", x„(d) =A) X(d, —d) (6.10)

from which we see that

d+(2 —ill/3 ) d x . AH IN/X (6.11)

Clearly, as d approaches dl from below the number
of distinct ordered phases diverges, with all q =2™/3
phases, m =1,2, 3. . . , appearing.

The situation for d ) dl is also illustrated in Fig. 7;
in the limit m ~ the q =2 /3 phase is infinitely
slender and parallel to the q =0 phase boundary, ex-
tending from the edge of the phase diagram all the
way to the Potts fixed point, Cp.

The critical dimension dl is just the first of an in-
finite number of such critical dimensionalities. For
example, there is a very similar critical dimension, dI,

phase, to encompass that phase and its boundary. If
qp is irrational it appears from the numerical studies
that for d ~ df the qp manifold terminates at a point
well short of the edge of the phase diagram. The
function q(X) is found to be monotonic in the fol-
lowing sense: if ql and Sq are rational with 0 & Sq« 1 then the qt manifold and the (qt+Sq) mani-
fold enclose a narrow, roughly wedge-shaped region
of the phase diagram that contains the qp manifold if
and only if q~ & qp & ql+Sq.

If qp is a rational fraction it can be written in the
form I2 /(2" —1), with i, m, and n integers. (The
proof of this is left to the reader. ) The 12 ™/(2"—1)
manifold maps, under 6t, into the k/(2" —1) mani-

fold, where k = 1[mod(2" —1)]. The ordered phases
described in the previous section correspond. to the
case n =2. For n ) 2 we find that the k/(2" —1)
manifold is a simple curve extending from A. =0 to
the edge of the phase diagram. Under ta" this line

maps into itself. There is a borderline dimension
d"[k/(2" —1)] below which all points on this' mani-

fold are attracted to the paramagnetic fixed point
A. =0 upon repeated application of R". It is easily
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shown that for d & d'[k/(2" —1)] the k/(2" —1)
manifold is actually contained within a (possibly ex-
tremely thin) region of the paramagnetic phase that
extends out to the edge of the phase diagram. Fur-
thermore, the q = [k/(2" —1) + ll/2 manifold, and a
region of paramagnetic phase containing it, map
under into this region of paramagnetic phase con-
taining the k/(2" —1) manifold. Thus as long as
d & d'[k/(2" —1)], for any k or n, there are regions
of paramagnetic phase extending to the edge of the
phase diagram which are dense in q space. Between
any two ordered phases therefore there must be re-
gions of paramagnetic phase.

Numerical study reveals that what happens at
d = d"[k/(2" —1)] can be described as a simple bi-
furcation. A new fixed point of S"appears on the
k/(2" —1) manifold which has eigenvalues Ao & 1
= A~. Note that a fixed point of R" is a fixed cycte of
period n under the action of lit. For d & d"[k/(2" —1)]
this marginal fixed point of S"bifurcates into a mul-

ticritical point and a critical point. The k/(2" —1)
manifold is then separated into two parts by the mul-
ticritical point. The part nearest the X =0 fixed point
is still attracted to it and remains in the paramagnetic
phase. The rest of the line, however, is attracted to
the new critical point and thus represents a new.
phase with modulated order of wave number

q = k/(2" —1). This phase is confined to the one-
dimensional manifold of points attracted to the new
critical point so, in contrast to the q = m2 "/3 phases,
occupies a region of measure zero in the phase dia-

gram. Apparently, all the bifurcations occur in the
dimensionality range d~ ( d ~ df, the final bifurca-
tion occurring at df being that associated with the
fixed cycle of period six governing the q =

9 9 9,
1 2 4

8 7 5

9 9 and 9 phases.

To summarize, for d ~ df the renormalization-

group recursion relations (5.3) appear to yield an or-
dered phase with modulations in the local order
characterized by a wave number q for every rational
fraction q. There are two distinct types of ordered
phases. Those with q = m2 "/3, where m and n are
integers, occupy a finite area in the phase diagram
and the points within these phases are attracted to
zero-temperature fixed cycles under sufficient itera-
tion of the renormalization group. The remainder of
the ordered phases occur only on single lines in the
phase diagram and the points in these phases are at-
tracted to finite-temperature critical fixed cycles of
period three or more. One would expect that the
correlation function at a finite-temperature critical
point might exhibit power-law decay at long dis-
tances. Thus the latter ordered phases appear to
have algebraic order, in contrast to the former, which
have truly long-range order.

It appears that for d ~ df the paramagnetic phase
no longer extends to the edge of the phase diagram.

The phase diagram is thus divided into two regions:
the paramagnetic phase in the center and a region of
ordered phases around the outside. The boundary
between these two regions is not a simple smooth
curve since it contains a multicritical point, where it
intersects the q manifold for every rationa1 fraction q.
At the Potts-like multicritical points, for q = m2 "/3,
the curve is smooth, but at all the remaining mul-
ticritical points the crossover exponent appears to be
greater than unity so that cusplike singularities are to
be expected. Thus the boundary between ordered
and disordered phases appears to be singular every-
where, because the rational numbers are everywhere
dense on it.

The first sextant of the phase diagram as construct-
ed numerically for d =2.50 is shown in Fig. 8. This
is not really the "complete" phase diagram, but to
detect the absence of certain phases requires looking
at minute numerical details. For example, near the
edge of the phase diagram the sliver of paramagnetic
phase containing the —, manifold is approximately of
width 10 9, being hemmed in by the q = ( 7

+2 '9/21)

and q = (——2 2'/7) phases on either side. In Fig. 8

the q = m2 "/3 phases are displayed for n ~4. Note
that for n & 2 a q = m2 "/3 phase occupies a narrow
strip of the phase diagram. For d & 2.5 we find that
the width of the strip is approximately proportional to
2 ' "". The shaded regions in Fig. 8 are thus occu-
pied by ordered phases too slender to resolve, as well
as by others that live only on single lines. Because
d =2.50 & df there are also slender strips of paramag-
netic phase between adjacent ordered phases.

The, wave number q (X) has been calculated at in-
tervals of 10 3 in Imk. along the line segment marked
AB in Fig. 8, namely Imk+Rel. =0.7. The data are
exhibited in the lower trace of Fig. 9. The wave
number q(h. ) has also been obtained on AB in the
vicinity of the q =0 phase boundary at intervals of
10~ in ImA. . These data are exhibited in the upper

FIG. 8. Section of the phase diagram for d =2.50, The
principle ordered phases are shown explicitly and labeled by
their wave numbers. The shaded regions contain many
slender ordered-phase regions and slivers of paramagnetic
phase {see also Fig. 4, above. )
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FIG. 9. Variation of wave number across the phase dia-
gram. The lower plots show q(A. ) along the section AB in
Fig. 8, namely ReA. +1m' =0.70. The upper plot depicts a
portion of the lower trace magnified by 1460 times in the
horizontal and by 128 times in the vertical directions, re-
spectively, to demonstrate the high degree of self-similarity
of this "devil's staircase. "

0
0 0.5 1.0 1.5

FIG. 10. The same phase diagram for d =2.5 as in Figs. 4
and 8 replotted in the ( T, K) plane to illustrate the analogy
with the multiphase behavior of the ANNNI model (Refs. 3
and 5). The locus AB in Fig. 8 and the wave-number plots
of Fig. 9 correspond to a locus in this representation running
from the Ferro or q =0 phase to the central q =

6 phase,
1

which corresponds to the (3,3) or (3) phase (Ref. 5) in the
ANNNI model.

2J/ks T =ln(To /Tt T2)

2»J/ks T = ln( Tt/T2) (7.2)

These phase diagrams contain an infinite number
of distinct ordered phases and an infinite number of
fixed cycles (not illustrated). The principle ordered
phases, with the wave number of the modulations in

trace of Fig. 9 with a scale appropriate to demonstrate
an apparent high degree of self-similarity of the
graph: it looks essentially the same no matter what
power of magnification is used to examine it. This
self-similarity appears to be strictly true only for
d ~ df. Each "step" in this "devil's staircase""
represents an ordered phase. For d & df there is ac-
tually a "ramp" of finite slope between each pair of
adjacent steps where q varies continuously. This
ramp represents the region of paramagnetic phase
between the two ordered phases. As indicated above,
to see the incompleteness of the devil's staircase
shown in Fig. 9 requires examining it at scales of or-
der 10 in Im). For d ~ df, however, the phrase
"pair of adjacent steps" is meaningless, because
between any two steps there are an infinite number
of additional steps, just as between any two rational
numbers there are an infinite number of additional
rational numbers.

In Fig. 10 the phase diagram for d =2.50 exhibited
in Fig. 8 is shown replotted in the ( T, ») plane to il-
lustrate its resemblance to phase diagrams of the
ANNNI model obtained by other methods. ' ' The
correspondence between (ks T/J, ») and IT,} is ob-
tained by equating (3.1) and (3.8) and, explicitly, is

the local order satisfying q = m2 "/3 with n small, oc-
cupy relatively large areas of the phase diagram.
Between these principle phases are regions where
there are many ordered phases, each occupying a
very slender strip of the phase diagram or else re-
stricted to just a single line. For d & df = 2.625 there
are also strips of paramagnetic phase between all or-
dered phases. Within these regions of many slender
phases the correlation length is always quite large.
Thus the whole region is effectively critical and might
be regarded as a region of incommensurate algebraic
order since a high-resolution experiment or calcula-
tion is required to resolve the very slender commen-
surate phases.

Finally note that our analysis represents the exact
solution for the three-state chiral model on the
hierarchical pseudolattice described in Sec. V. From
that point of view the details of the phase diagrams
are of concrete interest. However, the problem of
greater physical interest is the model on a hypercubic
lattice. The Migdal-Kadanoff renormalization
scheme probably generates only a very rough approx-
imation for that problem. Only the coarser, more
qualitative features of the phase diagrams we have
exhibited should be taken seriously as possibly apply-
ing to the three-state chiral model on a hypercubic
lattice.

It is worth remarking that even more intricate
phase diagrams may be obtained by considering p-
state models with p & 3 or by adding terms to the
Hamiltonian (5.2) which break the cyclic symmetry
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of the three-state chiral model. The fulI Hamiltonian
space for a general three-state model with spatially
isotropic nearest-neighbor interactions only, is eight
dimensional. This paper has explored a two-dimen-
sional manifold in that space which is, in a sense,
orthogonal to the five-dimensional manifold explored
previously in a study of the general three-state model
with unbroken exchange symmetry. '
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