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Monte Carlo calculations have been used to study the behavior of a simple cubic spin- —Ising

model with spatially anisotropic nearest-neighbor coupling, The interaction in the x and y direc-

tions, which is equal to (J~), was systematically decreased compared to that in the z direction

(J~i), and results were obtained for values of 4 = Jj/J~I as small as 0.003. For small 5 the sys-

tem behaves like a one-dimensional Ising chain at high temperature before undergoing a low-

temperature transition to a three-dimensionally ordered state. %e find that the asymptotic

(a 0) variation of T, is accurate over a surprisingly wide range of a.

I. INTRODUCTION

Three-dimensional (3D) Ising models and
(pseudo-) 1sing physical systems have been studied
extensively. ' Since an increasing number of
pseudo-1D physical systems are being discovered and
studied, ' the behavior of Ising models with spatially

anisotropic interactions is gaining significance. In this
paper we shall focus our attention on a system of
S —Ising spins arrayed on a simple cubic lattice

and interacting with the Hamiltonian

X = Js X (Tirrj JJ $ (re rrkpt (1)
zNN x,yNN

where cr&, cr&, hark
= +1, J, is the coupling between

nearest-neighbor (NN) spins in the z direction and Jq
is the interaction between NN spins in the x and y
directions. In the limit that the interaction ratio
5 = J~/Js 1 the model becomes a simple, spatially
isotropic 3D model; but as b 0 the system
separates into a collection of noninteracting Ising
chains which show no long-range order. This model
has been studied4 using a modified mean-field theory
in which the intrachain coupling J~i is treated exactly
and the interactions between chains Jq are considered
using mean-field theory. This method predicts a
variation of the critical temperature for small 4 given
by

but the range of validity of Eq. (3) is unclear. This
result does show however that the modified mean-
field treatment described earlier is seriously in error
except in the limit where 4 0. In order to more
fully understand the crossover from 3D to 1D
behavior as 4 0, we have used computer simula-
tions to study a simple cubic Ising model with the
Hamiltonian given in Eq. (1) on L x L xpL lattices
with periodic boundary conditions. As part of this
study we shall pay attention to the effects of both lat-
tice size and lattice shape (i.e., variation with p).
Results are presented for 1.0 ~ 6 ~0.003.

In the next section we shall describe the methods
used and in Sec. III we shall present typical data. In
Sec. IV we shall analyze finite size and shape effects
and shall extract the behavior expected for infinite
systems.

II. METHODS

A. "Standard" Monte Carlo technique

Most of our data were obtained using a simple
equal-time-step importance sampling Monte Carlo
method. Successive states are generated by moving
from site to site and flipping spins with a probability
P:

k T, = 8J&exp(2 Js/k T, ) exp( AE/kT), AE )—0
1, DE~0,

(4a)
(4b)

kT, 1 1' =2 ln ——ln ln—
J))

+ 0 ~ ~

Simple universality arguments predict that the critical
behavior should not change with 4 and indeed series
expansions studies suggest that the critical ex- "

ponents are independent of b, . The asymptotic varia-
tion of the critical temperature as 4 0 has been
determined'

~here b,E is the change in energy caused by the spin-
flip. For a system of N sites we define the time-unit
1 Monte Carlo step/spin (MCS) as N "microtrials"
or spin-flip attempts. Estimates for tbermodynamic
parameters are made by averaging over the values
obtained at the end of each MCS. Typically
1000—2000 MCS were retained for computing aver-
ages for each data point and each point was then re-
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peated at least once using a different starting config-
uration. A more extensive description of the method
has been published elsewhere' and the reader is re-
ferred there for further details.

B. "n-fold way" Monte Carlo technique

N, exp( bE/kT), bE )—0

~Ni, hE ~0
(Sa)

(Sb)

At very low temperatures the probability of flipping
a spin using the standard technique described in the
previous section becomes extremely small. At these
temperatures the evolution of the system becomes so
slow as to be uneconomical; i.e., the number of MCS
required becomes prohibitive. As we sha11 see in Sec.
III the region of interest for small b (near the phase
transition) is kT « J. In order to overcome the
time problem we developed an alternative program
using a continuous-time method (the n-fold way)
developed by Bortz, Kalos, and Lebowitz. Rather
than picking a site and then carrying out spin-flip at-
tempts as in the standard method, this new method
flips a spin at each trial and determines instead the
time which elapsed since the previous flip. Since
every spin-flip trial is successful this new method is
clearly mire efficient at low temperatures. This
method is practical for an Ising model since there are
a very limited number of possible spin environments
(i.e., number of nearest neighbors which are up or
down). Our program is slightly more complicated
than that described by Bortz et al. 9 since we have two
kinds of nearest-neighbors leading to a total of n =30
classes of spins plus environment. The probability of
flipping any spin in a class is identical and equal to

C. Finite-size scaling theory

The behavior of a finite L x L & L system with
periodic boundary conditions can be related to the in-
finite lattice properties by finite-size scaling theory. "
The pseudocritical temperature T~ is given by

T =T, +aL '" (g)

where T, is the infinite lattice critical temperature
and v is the infinite lattice exponent. Bulk properties
are described by the scaled variable x = tL' " where
t = II - T/T. l

than the standard method, but some of the advantage
is lost because the increased complexity increases the
running time for the program. For b =0.01 with a
4 x 4 & 24 lattice the net improvement obtained using
the n-fold way was 8.1 at T„300at 3 T„and
1.3 x 104 at T,/2. (More extensive information on
this method is available in Refs. 9 and 10.) This new

technique was only partially successful for the follow-

ing reason: for very small 4 the only flips which are
likely at low temperatures are single spins overturned
in an ordered chain. %hen a spin is overturned from
the completely ordered state it forms a class by itself
and is very likely to reflip before any of its intra-
chain neighbors overturn. This problem could also
lead to trapping an entire chain in a metastable state
where all spins in one chain were reversed with
respect to all other spins in the system. In any case
the method was helpful in obtaining data for
lL =0.003 and 0.01.

0= Xp; . (6)

where Ni is the number of spins in class i and total
probability is

i~30

M =L &t"X(x)

XT =L'rt" Y(x)

C/R =L i"Z(x) +b

(9a)

(9b)

(9c)

A random number between zero and g is used to de-
cide which class of spin shall be flipped and then a
second random number is generated to determine
which of the spins in the class shall be flipped. The
lifetime of the previous state (i.e., before the spin
was flipped) is then computed:

ht =——lnR
7.

(10a)

E+t &, T&T,xT= Et, T&T, ,

(lob)
(10c)

where in the limit x ~ (with t small) the usual
po~er laws must be retrieved:

where R is a random number between zero and I and
~ is the average time between attempted spin flips
(i.e., 1 microtrial in the standard method). Note that
the time interval depends explicitly on g which must
be redetermined after each spin flip. At low tem-
peratures g becomes small and bt will generally be
large. In fact at very low temperatures the n-fold way
method becomes orders of magnitude more efficient

C/R =A +t +b- (10d)

Comparison of Eqs. (9) and (10) shows that the scal-
ing functions must have simple asymptotic forms,
e.g. , X(x) xs. If the lattice is no longer sym-
metric, e.g., L x L x pL with p ~ 1, or if the correla-
tion length grows unequally in different directions,
i.e., 4 & 1, the scaling variable may need to be modi-
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FIG. 1. Temperature dependence of the specific heat for different sample shapes for h =1.0. Data are shown for: L =4,x;
L =6, o; L =8, ~; L =10,6; L =14, +.
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fied. We have retained Eq. (9) but have considered
several phenomenological possibilities for replacing L
by an effective value".

'2 ' ' 2' -1/2

L=J32 —+ (1 la)
L pL

well as the shift of the peak position to lower tem-
perature.

In Fig. 2 we show the behavior of the spontaneous
magnetization for two different sample shapes. 'p =1
and p =3. For p =1 the effect of finite-lattice size is
quite small below T, and above T, substantial
"finite-size tails" are present. For p =3 finite-size

In fact it is probable that Eq. (9) needs to be modi-
fied but it is unlikely that our data are sufficiently ac-
curate to provide a valid test of alternative expres-
sions.

III. RESULTS

1.0—

M o5-

o
0

Lx LxL

4~

0

A. I 10

Both the L x L && L finite-lattice behavior as well as
the infinite-lattice properties are well known" for the
case of spatially isotropic interactions, i.e., 5 =1.0.
Previous studies of L && M Ising square lattices"
showed that the finite-size effects were strongly
dependent on the lattice shape. %e therefore decided
to extend the earlier Monte Carlo study" of
L x L & L simple cubic Ising lattices to include
elongated finite samples to identify the dependence
of properties on lattice shape. For this reason we car-
ried out Monte Carlo calculations for L && L && pL lat-
tices where p was an integer between 1 and 6. Typi-
cal specific-heat data are shown in Fig. 1. Note that
the total number of sites in a lattice is N =pL',
hence for L = 6 with p =6 the lattice (N = 1296) is

actually slightly larger than for L =10 with p =1
(N =1000). As p increases, with N held fixed, the
finite-size effects become more pronounced both in
terms of the rounding of the specific-heat peak as
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FIG. 2 ~ Temperature dependence of the order parameter
(spontaneous magnetization) for two different sample
shapes for 4 =1.0, Data are shown for: L =4,x; L =6, o;
L =8, e; L =10, 5; L =14, +; L =20, o.
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FIG. 3. Temperature dependence of the susceptibility for different sample shapes for b, =1.0. Data are shown for: L =4,x;
L =6, O, L =8, ~; L =10, b, ; L =14, +.

effects are evident well below T, as well as at high
temperatures.

The finite-size behavior of the magnetic suscepti-
bility is shown for several p values in Fig. 3. Here
too the peak position varies much more rapidly with
lattice size for increasing p values.

B. LL & 1.0

Typical data for 5 =0.1 are shown in Figs. 4—6. In
Fig. 4 specific-heat results are plotted for several lat-
tice sizes and three different sample shapes. For
4 =0.1 the effects of finite-lattice size are much
more pronounced for p =1 than for larger p. This is
true for both the location and the maximum value of
the specific-heat curve. For comparison we have also
plotted the exact specific-heat curve for an isolated
Ising chain (i.e., the one-dimensional Ising model).

Even though the intra-chain interactions are an order
of magnitude larger than the inter-chain coupling, the
region of pseudo-one-dimensional behavior is re-
stricted to very high temperatur'e. Data for the spon-
taneous magnetization for 4 =0.1 are shown in Fig.
5. Finite-size effects are pronounced both below as
well as above the transition temperature for p =1 but
for p =3 virtually no size dependence is evident
below T, . Since the one-dimensional Ising model
does not order, no comparison is possible for the or-
der parameter. The behavior of the magnetic suscep-
tibility, shown in Fig. 6 is qualitatively similar to that
of the specific heat. In particular the peak position is
much more size dependent for p = I than for larger
p. Here too the susceptibility approaches the pure
one-dimensional curve only at quite high tempera-
ture.

The general characteristics of the data taken for
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FIG. 4. Temperature dependence of the specific heat for different sample shapes with 4 =0.1. Data are shown for: L =4,x;
L =6, o; L =8, ~; L =10, b, ; L =14, +, The heavy curves labeled 1I3 shows the exact behavior for an Ising chain with

nearest-neighbor coupling J11,
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IV. ANALYSIS AND DISCUSSION

A. Finite-size behavior

The predicted variation in pseudo-critical tempera-
ture [see Eq. (8)}was tested using several different
"effective sizes" L [see Eq. (11)j. In Fig. 7 we show
the size dependence of T, with L defined by Eq.
(1 la) for several system shapes for 5 = 1.0 and
6 =0.1. For 5 =1.0 the least finite-size variation oc-
curs for p =1 but for 4 =0.1 the greatest variation
occurs for p =1. This tendency became even more
pronounced for small values of A.

Finite-size scaling was also tested for the thermo-
dynamic properties. In Fig. 8 we show finite-size
scaling plots for the order parameter for 4 =0.1, and
in Fig. 9 we show corresponding plots for the high-
temperature susceptibility. Finite-size effects are so
pronounced for p = 1 that the magnetization data
simply do not collapse onto a single curve. In con-
trast the scaling behavior is quite good for p = 2 and
3. The scaling behavior of the high-temperature sus-
ceptibility for b =0.1 is equally good for all three p
values (see Fig. 9).

FIG. 5. Temperature dependence of the order parameter
(spontaneous magnetization) for two sample shapes with

b, =0,1. Data are shown for: L =4,x; L =6, 0; L =8, ~;
L =10,6; L =14, +.

other b values were quite similar. As the interactions
become more spatially anisotropic finite-size effects,
become increasingly pronounced for small p. As 5 is
decreased the resultant behavior does become more
one-dimensional in character. This effect will be ex-
plored in more detail in the following section.

8. Crossover from 3'D to 1D behavior

As 4 decreases the thermodynamic properties of
the model become more and more 1D in character.
In Fig. 10(a) we show the temperature dependence of
the specific heat for a wide range of A. The specific
heat does not show 1D behavior for 5 & 0.1. At the
smallest 4 value (4 =0.003) the data show no dis-
tinct peak and are essentially identical to the 1D
curve down to kT/J~, —0.4 below which the data fall
well below the ID curve. In Fig. 10(b) we show the
specific heat for a two-dimensional Ising model with
anisotropic NN coupling. " The behavior is qualita-
tively the same for d = 2 and 3; however, the

LxLxL
100—

lo—

0
0.5 1.0 kT 1.5

~ll

2.0 0.5

0 Tc(L-)
/

~ll

2.0 0.5

Tc(t =coa

I
10 15

II

2.0

FIG. 6. Temperature dependence of the susceptibility for different sample shapes with 4 =0.1. Data are shown for: L =4,x;
L =6, 0; L 8, ~; L =10,6; L =14, +. The heavy curve labeled 1D shows the exact behavior for an Ising chain with
nearest-neighbor coupling J~[.
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specific-heat peak is more symmetric and T, is lower
for d =2 than for d = 3 and the approach to 1D
behavior is slightly more rapid as 4 0. The entropy
was determined from integration of the specific heat:
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The behavior of the internal energy, Fig. 11, and en-
tropy, Fig. 12, are quite similar and show the increas-
ing 1D character of the model as b becomes smaller.
The susceptibility, plotted in Fig. 13, also becomes
increasingly 1D as 4 decreases. The high-tempera-
ture series estimate for b, =0.01 is generally in good
agreement with our result.
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FIG. 9, Fini:e-size scaling plot for the susceptibility for
different sample shapes with 5 =0.1. Data are shown for
L =4,x; L -6, 0; L =8, ; L =10,5; L =14, +.
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FIG. 8. Finite-size scaling plot for the order parameter
for different sample shapes with 5 =0.1. Data are shown
for: L 4,x; L 6, O; L=8, ~; L=10, b, ; L=14, +.
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FIG. 10. (a) Specific heat vs temperature for various
values of b for the simple cubic lattice. The solid curve
shows the behavior of the 1D Ising model. (b) Specific
heat vs temperature for various values of b, for the square
lattice (see Refs. 14 and 6 ).
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FIG. 11. Temperature variation of the internal energy for
several 6 values. Data points show extrapolated infinite lat-
tice estimates. The solid curve shows the 1D Ising model
behavior.
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The behavior of the spontaneous magnetization
with 5 is uninteresting. As 4 is decreased the tem-
perature at which M begins to drop also goes down
but neither the shape nor critical amplitude change.

The v'ariation of T, with 6 is shown in Fig. 14.
These data show that neither mean-field theory nor
modified-mean-field theory [Eq. (2)] are accurate
anywhere within the range of 6 studied. As 4 0
the modified mean-field theory becomes asymptoti-
cally exact, but our results show that extremely small
values of 6 are needed in order to enter the asyrnp-
totic region. The series estimates, however, agree
well with our values. The asymptotic exact form [Eq.
(3)1, remains accurate to surprisingly large values of
b, where the system has little 10 character.
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FIG. 13. Temperature variation of the susceptibility for
several b, values. Data points show extrapolated infinite-
lattice estimates. The solid curve shows the 1D Ising model
behavior. The dashed curve is the result from a high-
temperature series-expansion calculation (see Refs. 5 and 6 )
for b, =0.01.

C. Critical behavior

We have used finite-size scaling theory to analyze
the critical behavior for 0.01 ~ 4 ~1. In all cases the O. I

0.03—

0.8—

0.6—

S/R 0.4-

0.2—

g)/R= In 2
W

X
X

x

X X
X X

x"
xx

x
X

1.0 x

0.3
O. l +

0.03 &

O.OI O

0.01

0.003—

O.OOI I

0.3 I.O

kTc
I 0.0

00 1.0 2.0 3.0
kT/J

I

4.0
I

5,0

FIG. 12. Temperature variation of the entropy for several
5 values. Data points show extrapolated infinite-lattice esti-
mates. The solid curve shows the 1D Ising model behav-
ior. The dashed line shows the variation of the critical en-
tropy.

FIG. 14. Dependence of the critical temperature T, on 4.
Circles are Monte Carlo values and the dashed line is the
exact asymptotic result (Ref. 7). The dot-dash curve is the
mean-field result and the solid curve is the result of the
modified mean-field theory prediction of Ref. 4. The stip-
pled area shows the approximate crossover region from 3D
critical behavior to 1D behavior.
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TABLE I. Results of using finite-size scaling theory to analyze the critical amplitudes for
0.01 ~ A ~1.0.

w+z+R=
g2

1.0

0.3

0.1

0.03

0.01

1.3 + 0.5 0.90 + 0.302.8 + 0.6 2.1 + 0.6

2.4 + 0,5 1.8 + 0.5

—2.2 + 1.01.0581.57

1.3 + 0;45 0.66 + 0.301.55 + 0.05 1.18 + 0.10 —1.8 + 0.6

1.55 + 0.05 1.32 + 0.10 —1.2 + 0.4 0.71 + 0.25

0.74+ 0.32

1.4 + 0.51.8 + 0.5 1.3 + 0.3

2.0 + 0.21.6 + 0.2

1.6 + 0.2

—0.6 + 0.2 1.2 + 0.3 0.95 + 0.2 1.3 + 0.4

3.2 + 0.2 —0.4 + 0.2 0.85 + 0.2 0.75 + 0.15 1.1 + 0.35 0.94 + 0.36

exponents were consistent with the expected 3D Is-
ing values. The data were not sufficiently accurate to
allow a truly rigorous test of exponent values, howev-
er, assuming Ising values we could obtain rather ac-
curate estimates for critical amplitudes. The
specific-heat amplitudes were the least accurate be-
cause of the uncertainty in the background term [see
Eq. (10d)]. The results are shown in Table I. The
susceptibility amplitude F+ increases as b, 0 while
the specific-heat amplitudes 3+ decrease. The order
parameter amplitude remains relatively constant. We
have also determined the "universal" amplitude"
R = A+E+/8' (see Table I). Within the admittedly
large errors R is indeed independent of h. We add a
word of caution because the finite-size scaling
analysis for 4 =1 misestimates the background term
b and hence seriously overestimates 3+.

linear chain behavior with J~~ =19 K. A sharp peak at
3.38 K signals the onset of 3D long-range order.
The ratio kT, /J~~ =0.18 is clearly in the asymptotic
region where Eq. (3) is valid and corresponds to a
value of 4 -10 . Estimates for the interchain in-
teractions obtained from the magnetic phase boun-
daries are of the order of b —10 ', It is believed
that the nearest-neighbor intrachain coupling includes
a substantial Dzyaloshinski-Moriya term" and that
the interchain interactions may be almost isotropic.
If these expectations are valid, the true Hamiltonian

1.0—

D. Comparison with experiment

One of the most one-dimensional physical systems
known is CoC12 2NC5H5. Experimental specific-heat
data are shown in Fig. 15 along with series expan-
sion and Monte Carlo results for 6 =0.01. The
series results lies slightly too high at high tempera-
tures and is too low at low temperatures. The Monte
Carlo curve agrees rather well over a wide tempera-
ture range but is noticeably too high near T,. We do
not know if the discrepancy is due to errors in our
data, the experimental data, or to the inadequacy of
the model. For CoC12 ~ 2H20 series expansions agree
quite well with the experimental data assuming
4 =0.2. Interpolation between our data for 6 =0.1
and 0.3 support this conclusion. Experimental mea-
surements' ' of the specific heat of CsCoC13 2H20
show two clearly separated peaks. The rounded,
higher temperature maximum corresponds to Ising

—05—C
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00 I

1.0
T

C

I

2.0
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FIG. 15. Comparison between the experimental specific-
heat results for CoC12 ~ 2NC5H5 shown by open circles (see
Ref. 16) and the Monte Carlo result for 5 =0.01 given by
the solid curve. The dashed curves were derived from high-
and low-temperature series expansions (Ref. 6).
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is sufficiently different from Eq. (l) that Eq. (3) is

probably not valid.
to determine critical amplitudes and check the
universality-of the ratio R =A+E+/B'

V. CONCLUSIONS ACKNOWLEDGMENTS

We find that the crossover from 3D to 1D
behavior occurs quite slowly and smoothly. Finite-
size effects are very simple shape dependent for all

An analysis of the critical behavior has enabled us

This research was supported in part by the National
Science Foundation. We also wish to thank Professor
Y. Imry, Dr. M. A. Novotny, and Dr. E. B. Rasmus-
sen for helpful comments.

See, e.g. , C, Domb, in Phase Transitions and Critical

Phenomena, edited by C. Domb and M. S. Green
(Academic, New York, 1974), Vol. 3.

2For a review of work on real anisotropic systems see W. P.
Wolf, J. Phys. (Paris) Suppl. 32, Cl (1971).

See, e.g. , L. J. de Jongh, J. Appl. Phys. 49, 1305 (1978).
4J. W. Stout and R. C. Chisholm, J. Chem. Phys. 3C, 979

(1962); D. Hone, P. A. Montano, and T, T. Tonegawa,
Phys. Rev. B 12, 5141 (1975); H. Sato, J. Phys. Chem.
Solids 19, 54 (1961).

5M. F. Sykes, D. L. Hunter, D. S. McKenzie, and B. R.
Heap, J. Phys. A 5, 667 (1972), M. F. Sykes, D. S. Gaunt,
J. W. Essam, and C. J. Elliot, ibid. 6, 1507 (1973).

R. Navarro and L. de Jongh, Physica 94 B and C, 67 (1978).
7C. Y. geng, R. B. Griffiths, and M. E. Fisher, Phys. Rev.

162, 475 (1967); M. E. Fisher, ibid. 162, 480 (1967).
D. P. Landau, Phys, Rev. B 13, 2997 (1976). An excellent

review of importance sampling Monte Carlo methods may
be found in K, Binder, in Monte Carlo Methods in Statistical

Physics, edited by K. Binder (Springer Verlag, Berlin,
1979), Chap. 1.

~A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J, Comput.
Phys. 17, 10 (1975).

' Tom Graim, M.S. thesis (University of Georgia, 1978)
(unpublished).

~'M. E. Fisher, in Proceedings of the International Summer

School Enrico Fermi, Course 5I, Varenna, I970, edited by
M. S. Green (Academic, New York, 1971),

' D. P. Landau, Phys. Rev. . B 14, 255 (1976).
' A. E. ferdinand and M. E. Fisher, Phys. Rev. 185, 832

(1969).
' L. Onsager, Phys. Rev. 65, 117 (1944).
'5A. Aharony and P. C. Hohenberg, Phys. Rev. B 13, 3081

(1976).
~6K. Takeda, S. Matsukawa, and T. Haseda, J. Phys. Soc.

Jpn. 30, 1330 (1971).
7A. Heweijer, %. J. M. de Jonge, A. C. Botterman, A. L.

M. Bongaarts, and J. A. Cowen, Phys. Rev. B 5, 4618
(1972).

'SK. Kopinga, Q. A. G. van Vlimmeren, A. L. M. Bongaarts,
and W. J. M. de Jonge, Physica 86—88B, 671 (1977).


