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Magnetic susceptibilities of antiferromagnetic Res+ compounds
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The low-temperature (0—30 K) antiferromagnetic susceptibilities of hexachloro- and hexabro-
morhenates (K2ReC16 and K2ReBr6) are explained by using correlated effective-field theory and

considering XYsymmetry of the exchange Hamiltonian. The theory gives a good account of the
observed magnetic susceptibilities of these compounds and the sublattice magnetization of the

K2ReCi6 compound. The nearest- and next-nearest-neighbor exchange integrals for these com-

pounds are J~ = —1.32 cm ', J2=0.20 cm ' for K2ReC16 and J& = —1.82 cm ', J2=0.15 cm

for K2ReBr6.

I. INTRODUCTION

Hexachloro- and hexabromorhenates belong to a
class of sublattices where the magnetic ions form an
fcc lattice. These are antiferromagnetic below the
Neel temperatures 12.3 and 15.3 K, respectively. '

Among theoretical methods which have been applied
to antiferromagnetism we may mention the general-
ized molecular-field model, 4 the self-consistent
molecular-field theory' and the Green's-function
method. Of these the generalized molecular-field
model is the simplest and predicts various types of
ordering possible in an antiferromagnetic lattice. The
main drawback of this method is that it is not possi-
ble to include crystal-field effects, whereas one can
include the crystal-field effects in the self-consistent
molecular-field method. But using the self-consistent
molecular-field method it is difficult to estimate the
individual exchange integrals (Jt,J2), etc. , which give
rise to the molecular field. The Green's function
method though powerful becomes unwieldy to treat
fcc lattices. As there is a minimum of four sublat-
tices, one gets four coupled equations for the Green's
functions. General solution in the presence of an
external magnetic field is possible in random-phase
approximation7 (RPA). In contrast to these methods
the correlated effective-field (CEF) theory, s while re-
taining the simplicity of mean-field (MF) theories, is

capable of taking into account crystal-field effects
and correlations. In Sec. II we represent a summary
of available results of K2ReC16 and K2ReBr6 and con-
clusions can be obtained by the generalized molec-
ular-field model. In Sec. III we give CEF theory as
applied to the compounds under investigation and in
Sec. IV we present our results and comment on
them.

II. SUMMARY OF AVAILABLE RESULTS

The hexachloro- and hexabromorhenates belong to
the space group Fm3m (Os') and have the antifluorite

type of lattice. The magnetic ions are distributed in
an fcc arrangement. The lattice constant ao and the
parameter u [acu is the Re—Cl(Br) distance] are
9.861 and 0.24 A for K2ReC16 and 10.445 and 0.25 A
for K2ReBr6. The nearest-neighbor distance between
the magnetic ions is 6.97 A in K2ReC16 and 7.39 A in

K2ReBr6. K2ReC16 undergoes structural changes' at
temperatures 76, 103, and 111 K. The structural
phase transitions at 103 and 111 K show no hys-
teresis whereas the transition at 76 K clearly shows
hysteresis. On the basis of this observation the two
transitions at higher temperatures may be of second
order but the transition at 76 K is certainly of first
order. Though the overall symmetry (space group) is

reduced at low temperature the immediate environ-
ment of Re4+ ions has essentially octahedral sym-
metry. "

Since the ground electronic state is orbitally nonde-
generate (r2, 'A2), the cluster is stable against Jahn-
Teller distortion. However, if one includes the spin-
orbit interaction, the ground state becomes fourfold
degenerate and it belongs to I'8 irreducible represen-
tation of the octahedral double group. This state
does become Jahn-Teller sensitive, but weakly so.
The neutron-diffraction experiments" suggest that
the magnetic ordering in the compounds K2ReC16 and
K2ReBr6 is of type I. The magnetic moments are fer-
romagnetically aligned in (001) planes and the mag-
netic moments in adjacent planes are oriented an-

tiparallel to each other. The magnetic structure of
the compounds is shown in Fig. 1. The transition
temperatures from these experiments are (12.3 +0.5)
and 15.3 K for K2ReC16 and K2ReBr6, respectively.
The magnetic susceptibility data' show that the tran-
sitions occur at (12.4 +0.5) K and (15.3 +0.5) K,
respectively, agreeing with neutron-diffraction experi-
ments. The specific-heat measurements" ' place
these transitions at (11.9 +0.1) K and (15.2 +0.1) K,
respectively. The specific-heat measurements also
give evidence of second-order phase transitions at 76,
103, and 111 K for K2ReC16 and 225 and 245 K for
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above expressions [0=( —SS +5) K for K2ReC16 and
0 = ( —76 + 10) K for K2ReBr6], we get Jt =—1.2
cm ', J2 = —0.2 cm ' for K2ReC16 and J~ = —1.6
cm ', J2 = —0.4 cm ' for K2ReBr6. J2 values are
small as expected but of wrong signs.

4a

FIG. 1. Type I magnetic structure.

K2ReBr6. Van Driel et a1."have also observed the
existence of a phase transition in K2ReC16 at 111 K
from the study of soft-mode behavior of nuclear
quadrupole resonance (NQR) spectra. EPR measure-
ments"6 of the Re + ion in single crystals of K2PtC16

give g =1.815 +0.001. T' he magnetic susceptibilities
of K2ReC16 and K2ReBr6 have been measured over
the temperature range 80—300 K by several work-
ers." ' A detailed theoretical calculation of the
magnetic susceptibility in the paramagnetic phase has
been done by Eisenstein. " The optical-absorption
spectra of Re4+ ion in dilute as well as concentrated
systems have been recorded and analyzed"" ' by
considering the crystal field of cubic symmetry and
spin-orbit interaction.

ter Haar and Lines have used a method due to
Anderson to study the stability of various antifer-
romagnetic patterns in fcc lattices. They have con-
sidered' third and fourth neighbor interactions and
anisotropies in first and second nearest-neighbor in-

teractions. They have derived expressions for the
transition temperatures TN and 0 in terms of ex-
change integrals. If we assume only nearest- and
next-nearest-neighbor isotropic interactions, T~ and

0, for type I order are given by

2S S+1

T„= (—8J) +12J2)
3k

Further, in order that type I order is stable with
respect to the other types, the second neighbor in-
teraction should be either zero or ferromagnetic.
As discussed in Ref. 26, anisotropies in the exchange
integral also stabilize type I magnetic structure. Sub-
stituting the experimental values of 0 and T& in the

III. CEF THEORY: APPLICATION TO
S -3/2 SYSTEM

The correlated effective field theory was first pro-
posed by Lines in connection with lattice dynamics.
Later he extended it to cover magnetic problems. s In
this and later works he showed the superiority of
this method over the other effective field theories.
The CEF theory has the simplicity of the molecular-
field theories and is applicable to problems where the
crystal-field energies, exchange energies, and thermal
energies are all of the same order of magnitude. The
correlations are determined by forcing a consistency
with the fluctuation theorem. "

In the CEF theory developed by Lines' static spin
correlations are taken into account. In this theory
each spin SJ appearing in the equations of motion of
a particular spin Sl is replaced by the sum of two
terms as follows

Si"- (SP) +A,J(Sr —(S;")), (3 =x,y, z)

where (SP) represents the thermal average of S&'

and A&" is the temperature dependent static correla-
tion parameter. Using the above replacement of the
spin operators the effective Hamiltonian for the ith
ion in the absence of applied magnetic field can be
written as

0,'(eff) =0, XJ)Ja'(SP)'—
vJ

—2 XJgS'((Sg") — '(S') &

yJ

where a'r(y =x,y, z) are parameters defined by

XA,JJJ = ar XJs"
J J

In the above equation, the first term represents an
effective anisotropy energy and the second term
represents the interaction of ith spin with the corre-
lated effective field. The static magnetic susceptibili-
ty is then given by'

2[J"(q) —a'rJr(O)] ((&'Sr) &'
((~":u"& &+

kT —2[J'(q) a "J"(0)]—((S S;"))
(2)



24 MAGNETIC SUSCEPTIBILITIES OF ANTIFERROMAGNETIC. . . 5135

where

J(q) = X Je'q
NN, NNN

p, ; = (~L;+2S,)y,s,
((A:B)) = (A:B& —'(A& (B& ~

(A.B ) X g g y
Nllt NN IIIII INh

(A) = Xp„A„„

(3)

(4)

(5)

(6)
(7)

have,

XkTx "(q) =N ((p,'r:pp) ) + $u'I(q)

where

2[J "(q) —n'J "(o)]((pl" Sl") &'
u&(q) =

kT —2[J~(q) —a'J "(0)]((S,":S,"))

Again from fluctuation theorem we have

XkTx&(q) = N ((p f:p,;"))

p„denotesI the probability of occupation of the
eigenstate ~n) of the effective Hamiltonian (1). Now
summing over (q) in the first Brillouin zone, we

Therefore, the condition X-u~(q) =0 has to be
satisfied, and from this condition the correlation
parameters are determined. Using this condition,

J'r(q) kT

kT —2[J&(q) —n'J "(0)]((SP:SP))
XJ"(0) (9)

which is computationally more convenient than the
expression used by Lines. ' Equation (9) is solved
self-consistently through Eqs. (5)—(7).

For the compounds of interest Re~+(Sd') has tq~

strong field configuration and has 432 ground state in

octahedral field. This is a pure S = —, state and corre-

sponds to I 8 after spin-orbit interaction. The first
excited state is T2 and it is situated at" 7060 cm '
above the ground state. At low temperatures (0—30
K) the excited state does not contribute to magnetic
properties as it is high above the ground state taking
kT as a yardstick. Thus essentially we have a S = —,

system and magnetic moment operator is given by

p, ~
=g JtlgS~

where g is the spectroscopic splitting factor. The sus-
ceptibility given by (2) then reduces to

g'pk ((SP:Si"& )x~q =
kT —2[J "(q) —a~J"(0)]((S;":SP) )

/

and the uniform molar susceptibility (q =0) is given
by

N&'pk((s':s") )X"=
kT —2J"(0)(1—a") ((SP:SP))

The magnetic structure of the compounds under
investigation is type I in which the moments are fer-
romagnetically aligned in XY plane and along Z direc-
tion the alignment alternates. Thus each magnetic
ion has eight nearest-neighbor spins parallel and four
nearest-neighbor spins antiparallel. Out of six next
nearest neighbors, all are parallel. This magnetic
structure has been incorporated in the present calcu-
lation. With the consideration of XYas the sym-
metry of the exchange interaction, the zero-field ef-
fective Hamiltonian is written as

H,'(efr) = H,. —(12J, +6J,) [n"(s,")'+a'(sf)'] —(gJI+»J2) ( (S,")0+ (sf)0)

+(24J, +12J,)( "(S,")o+ '(Sf)o), (12)

where JI and J2 are the isotropic nearest- and next-nearest-neighbor exchange constants and 8; is the Hamilton-

ian containing the free-ion term, interelectronic Coulomb and exchange interaction, spin-orbit, and crystal-field
effects. For Heisenberg symmetry of exchange interaction, the effective Hamiltonian becomes

Ho(eff) =H, —(12J) +6J2) [a"(S;")'+n~(S;)'+ '(Snf)']

(SJ~+12J2)( (SI ))0+ (Sf)p) +(24J] +12J2)(a (S& )0+a (Sf)0) (13)
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Here n's are the correlation parameters to be deter-
mined self;consistently from the Eq. (9). In this
equation, the sum over q is converted into integra-
tion over the first Brillouin zone. In the calculation
of susceptibility the experimental value" of
g(g =1.815) is used. For XY symmetry of the Ham-
iltonian, n"= n~ & n' in both the paramagnetic and
the ordered-phases. As a result, X"=X"~ X'in the
above-mentioned phases. This anisotropy is due to
XY symmetry of the Hamiltonian. For Heisenberg
symmetry; of course, o."= n~ W o. ' and X"= X~ W X'
in the ordered phase but the correlation parameters
and susceptibilities in different directions give identi-
cal results (a =u»=n*, x"=X»=x') in the
paramagnetic phase. The average susceptibility is cal-
culated from

10
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C)

6-
X

2-

0 I I

0 0.5

K2Re CI6 T„= 12.3 K

x,„=-,'(x"+x'+x*) . (14) FIG. 3. Sublattice magnetization of K&ReC16.

The average susceptibility is required to compare the
experimental powder susceptibility. The sublattice
magnetization corresponds to either (S,")0 or (S»)0 as
they are equal in the ordered phase and these ther-
mal averages go to zero in the paramagnetic phase.

IV. RESULTS AND DISCUSSION

The magnetic structure of the compounds under
investigation is shown in Fig. 1. As suggested by the
neutron-diffraction experiment, magnetic moments
lie in a plane perpendicular to one of the cubic axes.
The moments in a plane have ferromagnetic align-
ment and those in adjacent planes are arranged anti-
ferromagnetically. .Introducing this type I magnetic
structure in CEF calculation, the average susceptibili-
ties are calculated for K&ReC16 and K&ReBr6 using the
experimental value of"6 g(g =1.815). The results
are shown in Fig. 2. The results obtained by using
XY symmetry of the exchange Hamiltonian are
shown by full lines whereas those obtained by using
Heisenberg symmetry of the exchange Hamiltonian

—0.25
-1.32 J2= 0.2 {cm ')

are sho~n by broken lines. The parameters used in
these calculations are J& = —1.32 cm ', J& =0.20 cm '

for K2ReC16 and J~ = —1.82 cm ', J2 =0.15 cm ' for
K2ReBr6. The experimental results are shown by
open circles. In Fig. 3 sublattice magnetization of
K2ReC16 is sho~n, where experimental results are
shown by dots. The MF result is shown for compar-
ison. The variation of correlation parameters with
temperature is shown in Fig. 4 for a given set of
parameters (J~= —1.32 cm ', Jq=0.20 cm '). The
susceptibilities in different directions for the same set
of parameters are shown in Fig. 5. The calculations
of sublattice magnetization, correlation parameters
and susceptibilities are referred to the Hamiltonian
(12). The anisotropy due to XY symmetry of the ex-
change Hamiltonian is evident from Fig. 4 and Fig. 5.
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FIG. 2. Low-temperature magnetic susceptibilities. FIG. 4, Variation of correlation parameters with temperature.
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FIG. 5. Variation of susceptibilities with temperature.

It is evident from Fig. 2 that an excellent agree-
ment between theoretical and experimental results is
obtained if we assume XY symmetry of the exchange
Hamiltonian. Figure 3 also shows a good agreement
of experimental results of magnetization. By compar-
ing the results of the present calculation with the cal-
culation of MF theory sho~n in Fig. 3, it is evident
that CEF theory is better than MF theory. This is
because the fluctuation effect which is completely
neglected in MF theory has been considered in CEF
theory. Therefore, though MF explains the qualita-
tive behavior of magnetization in the ordered phase,
it fails to reproduce the experimental results near the
transition temperature, where fluctuation becomes
important. On the other hand, CEF theory explains
the magnetic behavior near the critical temperature

better than does the MF theory. That the fluctuation
becomes important and pronounced in the critical re-
gion is evident from Fig. 4. Since no single-crystal
measurements have been done so far, the anisotropic
susceptibilities shown in Fig, 5 cannot be compared.
The powder susceptibilities are, therefore, compared
with the average susceptibilities as shown in Fig. 2.

The nature of the order parameter as shown in Fig.
3 might indicate a first-order phase transition which
has to be confirmed by hysteresis. This is in agree-
ment with the remarks made by Benguigui on CEF
theory as a self-consistent phonon approximation""
and the generalized spherical model of Brout. This
type of first-order phase transition is called fluctua-
tion-induced first-order phase transition introduced
by Dzyaloshinskii, Brazovskii, and Kukharenko
and also by Bak, Mukamel, and Krinsky. ' ' They
come to the conclusion that the transition becomes
first order when there is no stable fixed point in the '

renormalization-group calculation. Thus the CEF
theory gives a good account of the magnetic behavior
of the antiferromagnetic substances under investiga-
tion. For any realistic theory of antiferromagnetism
in insulators, one needs to know the J integrals and a

tractable model Hamiltonian. Towards this end one
can work with this theory along with the other exist-
ing theories and show the CEF to be a good theory.
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