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Antiferromagnetic clock models in two dimensions
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Antiferromagnetic and asymmetric p-state clock models on a square lattice are analyzed with

the renormalization group, by studying the effect of p-fold symmetry-breaking fields in the

planar model. For p odd and «3 (p =3 is the three-state Potts model) these models exhibit

two phase transitions with a critical line-of continuously varying exponent q(q~;„& q & —)

separating them. %hen the couplings are antiferromagnetic in one direction only, q~;„=2/p,
while for the isotropic case q~;„= Iii'p . In the latter case, the low-temperature phase is charac-

terized by a 2p-fold degeneracy.

I. INTRODUCTION

There has been some recent interest in the antifer-
romagnetic p-state Potts models. These models have
a high degree of degeneracy in the ground state,
resulting in an extensive entropy at zero temperature.
It has been suggested by Berker and Kadanoff' that
the degeneracy is responsible for a low-temperature
phase characterized by power-law decay of correla-
tions with a fixed exponent g. On the other hand,
Monte Carlo simulations in three dimensions, and e-

expansion methods, 2 indicate that the three- and
four-state models undergo continuous transitions to
an ordered low-temperature phase.

In this paper we discuss a class of models on a
square lattice which include the antiferromagnetic p
state clock models. For p odd, these antiferromagnet-
ic models also have highly degenerate ground states,
and for p =3 the model coincides with the three-state
Potts model.

The most general model we consider is defined
with an angular variable 8( r ) at each site
r = (ma, na ) of a square lattice of spacing a. The

Hamiltonian is given by

-px= X s( r) -s( r')—
To pa

+h» gcosp S( r )

where the first term is a sum over nearest-neighbor
sites (with each pair counted once only). The true
clock model is realized in the limit h~ ~, when the
angles S( r ) become discrete. The vector
Z= (5„,d») can, for reasons of periodicity, be con-
sidered to lie in or on the square 0 ~ b,„,4~ ~ 2.
The model (1.1) for 5» =0 but arbitrary d„has been
considered recently by Ostlund. ' Our results for this
case, described below, agree with his. %hen 4„or

~y equals 2, the model is antiferromagnetic in the

respective directions if p is odd.
The basic observation is that by a redefinition

S( r ) S( r ) +2vr Z r /pa (1.2)

%'e can then, following Jose et al. ,
4 consider the ef-

fect of small h~ perturbations on the ferromagnetic
planar model. This enables us to understand the
phase diagram at small h~. Of course, the extrapola-
tion of h~ ~ is questionable, but, for the case
4 =0, rigorous statements can be made to justifiy
this assumption. 5

Our conclusions, based on this extrapolation, are as
follows. '

(A) 5„%0, 5» &0. The results in this case are
typified by those for the pure antiferromagnet
Z= (—,

2
). For p odd and «3 the models exhibit

the two infinite-order phase transitions characteristic
of a ferromagnetic clock model with 2p states. ' The
intermediate "floating" phase has a continuously
varying exponent g in the range 1/p' ~ q ~ —.The

low, but nonzero, temperature phase is characterized
by an effective 2p-fold degeneracy. The order param-
eter, for example for the three-state Potts model,
with a spin s ( r ) capable of being in states A, B,C at
each site, is a complex number

I= (ss.~ + ss, s+~'ger)i —(ss~ +~s. s+~ &;r)a ~

(1.4)

where eo = e' ' ', and I and II refer to the two sublat-
tices. In the presence of a weak uniform field, there
should be a single, Ising-like, transition, with an ef-
fective two-fold degeneracy of the low-temperature
phase.

the model becomes a ferromagnetic one in a stag-
gered p-fold field

h»Re /exp(2mi F7 r /a) exp[ipS( r )] . (1.3)
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II. PURE ANTIFERROMAGNET: h -{2, 2 )

After the transformation (1.1), the Hamiltonian
becomes

-48X = X cos[8( r ) - 8( r ')]
0 (~ ~r)

+ h» X(—1) +"cosp8( r ) (2.1)

(B) h„W 0, 5» =0. Once again, for p «3 there
are two infinite-order transitions separated by a
"fioating" phase with 2/p'» ri » —,. However, in

this case, for 4„(—,, the low-temperature phase is

ferromagnetic with a p-fold degeneracy. For the anti-
1

ferromagnetic case, 4„=—,, the low-temperature

phase cannot exist and the floating phase extends
down to zero temperature. This feature js not ap-
parent in our small hp analysis. A uniform field now
acts to destroy the transition.

The layout of this paper is as follows. In the next
section we analyze the case (A), treating the pure an-
tiferromagnetic model in detail. In Sec. III the case
(B) of a one-dimensional modulation is considered,
and we close in Sec. IV with some further remarks
on extensions to other models and dimensionalities.

When h» =0, for To sufficiently small, Eq. (2.1) will

renormalize onto the Gaussian fixed line with an ef-
fective temperature T.4' When T ) n/2, the fixed
line is unstable to the formation of vortices, and in
this case we assume, as usual, that the flows will end
in a high-temperature fixed point. Since vortex and

hp perturbatioris decouple to lowest orders, we are
therefore led to consider a perturbed Gaussian model

—PX, = — X [8( r ) —8( r ') ]'
(~ ~l)

+h» g( —1) +"cosp8( r ) (2.2)

' In the case of a uniform field hp, Jose et al.4 showed
that the Gaussian fixed line is stable to hp perturba-
tions if T )gw/p'. Thus a segment of the line is
completely stable if p & p, =4. Models with p )p,
and hp initially small enough will exhibit two phase
transitions; with 4/p'» ri » —, on the critical line

separating them.
In our case we have a staggered field hp. First we

show that this is always irrelevant. To O(h») the
partition function has the form

Z =Z, 1+h, X X (-1) — +"-" G, (m m', o o')-+-O(h, ) (2.3)

where

G» —const[(m —m') +(n —n') ]» ~ (2.4)

as
~

r —r '~ ~. We now average over 2 x 2 cells
containing sites (m, n), (m +1,n), (m, n +1), and
( ml+, n 1+) where mand narc even. The O(h»)
term is now proportional to

has the form

-2 d2r d2r'
hp "( r —r ')&)a a

a
'I

p2 T/2++4
(2.7)

From Eq. (2.7) the renormalization-group equation
for hp under an infinitesimal change of scale a ae'
may be read off. It is

Nf, N I I

even even

82 82G»(m —m', n —n') (2.S)
dhp p2T

dl 4m
(2.8)

where the finite difference operator 8 is defined by

5~2 f (m) =f (m+1) +f (m —1) 2f (m) . (2.6)—
Note that Eq. (2.S) does not sum to zero because
only even (m, n) are counted. This expression can,
in the large distance limit, be replaced by an integral
which, after angular terms have been averaged out,

Thus hp is always irrelevant except at T =0. Howev-
er, this is not the ~hole story, since, as was pointed
out for the case p =2 by Knops, under renormaliza-
tion a uniform cos2p8 field will be generated. The
easiest way to see this is to add a term
h2» g-„cos2p8( r ) to the Hamiltonian, and consider
the O(h2»h») term in Z which is

I

h2»h» X (—1) ' ' ' '(cos2p8(r ) cosp8(r ~)cos8(r2))G
r, r i, r

At large distances the correlation function in Eq. (2.9) is proportional to

(2.9)
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a 2p2 T/2m 2» T/2Ã
i
r(—

(2.10)

We now average r ~ and r 2 over 2 2 cells, as before, by applying the finite difference operator. 5 5 5„5„.
1 2 1 "2

The dominant term in the limit
~

r —r ) ( ~, ( r (
—r 2~ fixed, which we shall need, is generated when this

operator acts only on the third factor in Eq. (2.10). This piece has the form, on replacing sums over even
(m(, n)) and (m2, n2) by integrals, and averaging over angular terms

1

h 2» h» A T JI
a

r —r i

2p T/2e a
(

2 T/21r1T

(2.11)

where A is positive for T ( 4m/p2. On changing
a ae' in the cutoff

~
r (

—r 2~ ) a, a term propor-
tional to

d2rd2r
Ih 2»h» A TJ I

a4

4p2 T/2e
(2.12)

will appear which must be interpreted as a renormali-
zation of the O(h22») term. Thus, to lowest order,
the renormalization-group equation for h2p takes the
form

2T

i

(2.13)

h2» is thus irrelevant only for T ) 2m/p2, and there
will be a stable segment of the Gaussian line if
p )p, =2. Although hp is irrelevant, for sufficiently
low (but nonzero) temperatures h2» will be generated
and renormalize to large values, resulting in a 2p-fold
degeneracy. Note that at T =0 no h2p term is gen-
erated, and so the character of the low-temperature
phase is quite different from that of the zero-
temperature state. 9 The order parameter, in terms of
the original variables 8( r ) in Eq. (1.1) is

[

gered field, which will always be irrelevant, but, once
again, this will generate a two-fold uniform field.
The Gaussian line is always unstable to such pertur-
bations for T ~ m/2, 4 and we expect the model to fall
into the same universality class as the Ising model.
This is reasonable on the oasis of the symmetry of
the ground state. For example, in the three-state
Potts model, if the field favors the 3 state, the
ground states will have a basic two-fold degeneracy,
with either 3 on sublattice I and 8 or C on sublattice
II, or vice versa. The remaining degeneracy between
8 and C is unimportant.

By the same argument, the addition of a p = 2 field
to the original model should have the same effect as
cubic ( p =4) symmetry breaking in the ferromagnet-
ic model, which is known to correspond to another
line of fixed points. ' The antiferromagnetic clock
model with p «3 and a p = 2 uniform field may then
have a critical line with continuously varying ex-
ponents, like the Ashkin-Teller model.

Finally, we discuss how the results extend to the
case of arbitrary nonzero ~„, 4~. Let us assume that

6„, 5» are both rational, with 5„=u„/v„, b» = u»/v»

in irreducible form. The staggered field has the form

M = (e ()( )) (e e( ')) (2.14) h»Re Xexp[2mi(b, „m +it(»n)] exp[ip8( r )]
m, n

g ~ exp[ —const( T —T, ) 'i2] (2.15)

while the specific heat will have an unobservable
essential singularity like ( . At the lower transition,
T,~, the order pirameter M will vanish with the same
type of essential singularity as T T, ~ from below.
The correlation length will also diverge as T T,~,

Next, we consider the effect of adding a weak uni-
form field h) Xcos8( r ) to the Hamiltonian (1.1).

r

After the transformation (1.2) this will give a stag-

where I and II refer to the two sublattices. For the
case p =3 we obtain the order parameter quoted in

the Introduction.
The critical behavior should be similar to that of

the 2p-state ferromagnetic clock model. At the upper
transition T,2, the susceptibility and correlation length
will diverge with an essential singularity

-2
hp

(1 —cos2md„) (I —cos2mh»)

x J
" d'rd'r' a p2T/2m+4

(2.17)

where we have displayed the full b„, b~ dependence.
Once again, the staggered field hp is irrelevant, but a

uniform field h2p is generated. The other main
difference is that the coefficient A in Eq. (2.12) is

now proportional to (1 —cos2nh„) '

(1 —cos2md») '. This shows that our analysis (as-
suming h2» is small) breaks down for sufficiently

(2.16)

In considering the analog of Eq. (2.3) we now aver-
age over ))„xu» cells. The expression (2.7) is re-
placed by
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small b„, h~. This is satisfying, since in the next sec-
tion we find quite different results when one of them
vanishes.

The main conclusions for the purely antiferromag-
netic case extend to this case also. A subtle point ar-
ises if v„or v~ is large, because then our analysis in-
dicates that h~ will only become irrelevant on scales
larger than v„a or v~a. If either b„or 4~ are irra-
tional, our analysis fails completely. The fact that
our final equations like Eq. (2.17) depend only on
(5„,A~) and not (u„ur) suggests that this is an ar-
tifact of our method. When 4~ =0, we obtain, by the
same method, results which agree with those ob-
tained by methods which make no reference to the
rationality of 5„.

III- ONE DIMENSIONAL MODULATION- 5 ~Ax 0

In this case, the staggered field is

phase is characterized by the staggered field h~

becoming relevant, which means that the phase is
ferromagnetic in terms of the original variables.
However, when 4„=—,, the ferromagnetic state is

clearly unstable, so the low-temperature phase does
not in fact exist, and the floating phase extends down
to zero temperature. When 4„. is small our analysis
fails, and we expect the behavior to be that of the
ferromagnetic model.

All these results are in agreement with those of
Ostlund, 3 who used a method based on the low-
temperature domain-wall analysis of Villain and
Bak." This is an important check on our extrapola-
tion to h~ ~, since domain walls emerge only in
this limit.

Finally we note that a uniform field hl in the origi-
nal model will now always be relevant for T & m/2.
We expect it to destroy the transition in this case.
This is in agreement with the fact that the ground
state now has no sublattice degeneracy.

h Re Xe "e'r~t'~ (3.1)
IV. CONCLUSIONS AND FURTHER REMARKS

h~ X X exp[2mih„(m m')] G—r(m —m', n —n')

(3.2)

As before, we let 5„=u„/u„, but this time average
over v„& 1 cells. This has the effect of introducing
only two extra powers of

~
r —r '~ in the denomina-

tor, rather than four, and, in the large-distance limit,
we obtain

-2
"u

,

I' d~rd~r'

1 —cos2nb, „" a

2 T/2++2
(3.3)

The renormalization-group equation for h~ is now

dhp p2y

dl 4m
t

(3.4)

so that h~ is irrelevant for T & 4n/p~. Once again, a
uniform field h2~ will be generated, with a
renormalization-group equation

dh2~

dl

1

2T A' T= 2 — hp~+ h~, (3.5)
7T 1 cos27TAx

where A
'

& 0 and is independent of T. Note the fac-
tor T, which appears after appropriate angular aver-
ages have been made. We see that h2~ is irrelevant
for T & 2w/p'. Thus the Gaussian fixed line is
stable for 4m/p~ & T & n/2, and p, =2J2. Once
again there are two transitions, the lo~er one now
characterized by q =2/p~. The low-temperature

and the 0(h~ ) contribution to the partition function
is proportional to We have shown that the antiferromagnetic clock

models (in general, the asymmetric models) have an
interesting phase structure in two dimensions for
p «3. Although the ground state has a finite entro-
py per site, the conclusions of Berker and Kadanoff, '

based on single-parameter recursion relations, appear
to be wrong. . Our analysis suggests that at least three
parameters are required to describe the essential phy-
sics. There is an ordered low-temperature phase,
whose degeneracy is, however, 2p fold and not that
of the zero-temperature state.

Our analysis may be simply extended to 2+ e

dimensions, ' ' when the fixed line disappears and
all models considered have a single transition in the
same universality class as the XY model. This is in
agreement with the Monte Carlo data for the three-
state model in three dimensions. Our conclusions
with regard to the low-temperature phase remain the
same.

We have shown that models with antiferromagnetic
couplings in only one direction have a quite different
low-temperature phase, although they still show an
intermediate floating phase in general. Finally, we
mention that these methods may be applied to the
general antiferromagnetic p-state Potts models near
two dimensions, and work is in progress on this prob-
lem.
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