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Equation of state and melting curve of helium to very high pressure

David A. Young, A. K. McMahan, and Marvin Ross
University of California, Lavvrence Livermore National Laboratory, Liverrnore, California 94550

(Received 10 April 1981)

An "exponential-six" interatomic pair potential, together with accurate statistical models for
solid and liquid phases, is shokn to yield good agreement with experimental pressure-volume
and melting-curve data for 4He up to 120 kbar. For pressures from 120 kbar to 250 Mbar,
linear-muffin-tin-orbitals electron-band-theory calculations have been used to obtain the T =0
pressure-volume isotherm. An effective pair potential is fitted to these, results in order to com-
pute the melting curve and shock Hugoniot curve in this region. The band-theory calculations
indicate T =0 metallization at 112 Mbar.

I. INTRODUCTION

Very recently the equation of state' of fluid 4He

has been measured up to 20 kbar. The room-
temperature melting point2 near 120 kbar has also
been determined. Together with earlier work3 on the
equation of state of the 4-K solid to 20 kbar, these
recent measurements provide y set of thermodynamic
data suitable for testing statistical-mechanical theories
of molecular solids and fluids.

To extend these experimental data to higher pres-
sure, we have made electronic band-structure calcula-
tions to 250 Mbar. These ultrahigh pressures are of
interest in connection with the interiors of the giant
planets. Jupiter and Saturn are known~ to consist
mainly of H and He, where He is 21'/0 by mass. The
pressure in the fluid H-He phase of Jupiter ranges
from 1 bar at the radius to 45 Mbar at the boundary
of the inner rock core where the temperature has
been estimated at 20000 K.5 Saturn is smaller than
Jupiter and has a pressure of 10 Mbar .and a tempera-
ture of about 11000 K at its core boundary. Recent
planetary exploration has provided accurate structural
data for these planets, and the construction of plane-
tary models consistent with the data will require reli-
able-equations of state of H, He, and their mixtures.

%e have recently used lattice dynamics and liquid
perturbation theories, together with a semiempirical
effective potential, to generate accurate predictions~'
for the thermodynamic properties of H2 and D2. In
this paper we use these same theories to obtain a pair
potential sufficiently accurate to generate He thermo-
dynamic data in good agreement with experiment to
120 kbar. %e extend the pair potential to very high
pressures by requiring it to fit the equation of state
predicted by linear-muffin-tin-orbitals (LMTO) elec-
tronic band theory. In this way we have developed a
theory of condensed He that can be used to predict
thermodynamic properties over the whole range of

interest. 'We suggest shock-wave experiments that
will be useful in testing the theory,

II. PAIR POTENTIAL AT LO% PRESSURE

y(r) =e 6 r
exp a 1-—,

a —6 r'

where ejk =10.8 K and r'= 2.9673 x 10 s cm, as
given in Ref. 10. The parameter a is to be deter-
mined by using Eq. (1) in the statistical models of
the following section to find the best overall fit to ex-
perimental solid, liquid, and melting data.

A number of attempts have recently been made to
test simple semiempirical pair potentials against ex-
perimental solid-state He data. The agreement at
high pressure ranges from poor to adequate. A re-
cent accurate semiergpirical interatomic potential for
He based on low-density-gas thermodynamic and
transport data has been developed. ' %hen this po-
tential is used to compute solid and liquid pressures,
however, the results are substantially larger than ex-
periment, showing that the potential is too stiff. The
problem appears to be the absence of many-body
terms in the potential. Calculations with clusters of
three atoms" suggest that many-body corrections at
high density are attractive and thus have the effect of
softening the potential. These effects are already im-
portant at 20 kbar.

Given the uncertainty about the quality of available
potentials, our approach here is to use a very simple
-analytic pair potential as a fit to the experimental
thermodynamic data. %e use the "exponential-six"
(exp6) potential
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III. STATISTICAL MODELS

+ NkTF(g(q) (2)

where Ao(g, T) =NkT(4' —3~ )/(l —g) is a very
accurate approximation' to the excess hard-sphere
free energy, p = N/V, d is the hard-sphere diameter,
ri=nNd /6 V, go(r, q) is the Percus-Yevick hard-
sphere pair distribution function, and F~q(g)
=—(q~/2+ g'+ q/2). The theory can be generalized
to include quantum effects, which in He are impor-

For the liquid we use a modified version'~ of the
variational hard-sphere perturbation theory in which
the reference potential is the repulsive inverse twelfth
power, $0(r) =e(o/r)" Th. is potential is much
more realistic than the hard-sphere reference poten-
tial, and as a result the theory is accurate for fluids at
high density along the melting curve. This theory-
gives very good agreement with Monte Carlo calcula-
tions on Lennard-Jones and exponential-six poten-
tials. ' The widely used %CA' '" and Barker-
Henderson' theories are inapplicable at the high
pressures of interest to us. These theories assign a
diameter to the hard sphere that is in the vicinity of
the attractive well. Consequently, under compression
atomic separations are soon attained that are compar-
able to the hard-sphere diameter and the theories be-
come unreliable.

In the modified perturbation theory, the excess
Helmholtz free energy satisfies the inequality

A,„(V, T) ~AD(rt, T)

+2~pN qb(r)go(r, 7i) r dr

tant even at room temperature, by adding the first
term in the signer-Kirkwood expansion. The final
form of the variational free energy for liquid He is

A,„(V,T) Ao(q, T)+2mpN &f Q(r)g 0(r, rt)r dr

+NkTFtp(rt)

N ~

+
&

'7 $(r)go(r, ri)r dr, (3)24mmkT ~&

A~, ~(V, T) =A,„(V,T) NkTln—(Ve/NA ) (4)

where A = h /(2n mkT) ' ~. Then p = —BA .../8 V and
t" =~tot+u~

For the solid we use quasiharmonic lattice dynam-
ics with anharmonic corrections. %e assume an fcc
lattice, which is known" to be stable above 15 K.
%e make use of the lattice symmetry to reduce the
Brillouin zone to

4~
of its full size, and the normal-

mode frequencies are determined by sampling over
this reduced volume in k space. Accurate free ener-
gies are given with 2048 points in the Brillouin zone.
zone.

The Helmholtz free energy in the harmonic ap-
proximation is

where m is the mass of the He atom. The right-hand
side of Eq. (3) is evaluated at fixed ( V, T) and the
minimum value with respect to d is found and equat-
ed to A,„(V, T). Finally, the total Helmholtz free en-
ergy is given by

T

gy, —pp,
Ah, (V, T) = U(0)+kT X' +in l —exp

2kT

where U(0) is the static lattice energy and v; are the normal-mode frequencies, We compute U(0) using 20
shells of neighbors, and the v&'s using 7 shells.

Equation (5) assumes that the particle displacements are infinitesimal, but in fact, the displacements are not in-
finitesimal and anharmonic corrections are needed. %e approximate these corrections as

N „„s[ V(R) Vho(R) ] exp[—p Vh.(R)]R'dR
A„h( V, T) =—"""

exp[ —P Vh, (R) ]R' dR
cell

mcvR~
J [ V(R) —Vh, (R) ] exp — R ~ dR

cell

+
2

exp
m %R R2 dR

2

cell

&he first term in Eq. (6) is a sphericalized-cell-model approximation to the ciassical anharmonic correction. yhe
integration is taken over the volume available to a molecule with fixed nearest neighbors. Here V(R) is t e total
potential seen by a single Particle and V»(R) is the harmonic potential, obtained from V(R) in the limit of small
displacements. Thus"

V(R) = X+&~ &
[Q((R; +R~ 2RR;cos8)'1~) —P(R—,)]singdg

l
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and

Vh, (R) =
2

KR = XNj3 [R/@ (R/) + 2R/ $"(RI)]
I

(8)

Here we have defined V(0) = Vh, (0) =0, and the
sum. is taken over the neighbor shells containing lf/

neighbors at a distance RI from each molecule in the
static lattice.

The second term in Eq. (6) is the quantum anhar-
monic correction, also approximated with a spheri-
calized-cell model. Here cu = (~/m) '~' and the ex-
ponential factor is the square of the ground-state
harmonic-oscillator wave function. In both terms the
factor of 2 prevents double counting of interactions.

The total free energy in the solid is now

A„,(V, T) =A„,(V, T) +A,„h(V, T)

As with the liquid model, the other thermodynamic
functions can be determined by differentiating
A„,( V, T). This perturbation approach is expected to
be valid at high pressure, but not in the very low-

pressure range where solid properties are dominated

by quantum effects.

IV. LOW-PRESSURE CALCULATIONS AND
COMPARISON KITH EXPERIMENT

We have found by trial and error that Eq. (I) with

a =13.1, together with the statistical models of Sec.

III, gives satisfactory agreement with the experimen-
tal equation of state and melting curve of helium.

In the liquid, recent experiments' have been made
for He over the range 2 «p «20 kbar and 75 «T
«300 K. Volume and sound speed were measured

and accurately fitted with simple functions. Experi-
mental and theoretical p- V isotherms are compared
in Fig. 1. The maximum percentage disagreement is
5%, occurring at 300 K, and 2 kbar. Overall, the
agreement is good.

In the solid, there is a 4-K p- V isotherm' to 20
kbar. Experimental and theoretical isotherms are
compared in Fig. 2. Agreement is quite good above 5

kbar, but the theory deviates from experiment at
lower pressure as the anharmonic terms become
large. Quantum crystal effects become significant in
this region, and thus our simple treatment of anhar--
monicity is no longer adequate.

New high-pressure melting points up to 120 kbar
have recently been measured' and it is of interest to
compare theory and experiment, since the predicted
melting curve is a sensitive measure of the adequacy
of the models. The comparisons are shown in Figs. 3
and 4. The agreement is good at 300 K because this
was one of the criteria for choosing a in Eq. (I). At
lower pressures the theoretical melting curve falls

20—
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FIG. 1. Experimental (Ref. 1) and theoretical pressure-
volume isotherms of liquid helium. From left to right, the
isotherm temperatures are 75, 150, 225, and 300 K. The
dashed curve is in the solid phase.

V(cm3/moie)

FIG. 2. Experimental (Ref. 3) and theoretical 4-K solid-

helium pressure-volume isotherm.
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FIG. 3. Experimental (Refs. 1 and 2) and theoretical
melting curve for helium.

FIG. 4. Experimental (Ref. 1) and theoretical solid
volume along the melting curve.

below the measured curve. This is very likely a
result of the inadequacy of the very simple potential.
The experimental and theoretical solid volumes along
the melting curve are compared in Fig. 4, and the
agreement is satisfactory. The theoretical melting
curve data are presented in Table I. As expected, '

the value of the packing fraction q along the melting
curve is close to 0.45.

V. LMTO ELECTRON BAND-STRUCTURE
CALCULATIONS

To extend our helium equation of state to much
higher pressures, we have used the linear-muffin-
tin-orbitals (LMTO) method'8 to calculate the pres-

sure. and total energy of zero temperature He up to
250 Mbar. Details of the computer program used in
this work have been given previously. ' The present
nonrelativistic calculations carried all angular-
momentum expansions through I =2, and included
the first-order corrections to the atomic-sphere ap-
proximation (ASA) of Andersen. 's The muffin-tin
correction of Glotzel and Andersen was found to be
negligible in the range investigated here for He.
Since the usual local-exchange-correlation potentials
may not be reliable ' for atoms with as few electrons
as He, we have chosen the Xn potential22 with
o. =0.6105 in order to match the T =0 static lattice
pressure computed from Etl. (1) near 100 kbar. The
Hedin-Lundqvist potential yields pressures smaller
by about 40 kbar in this region, but gives results
within 9% and 4'/0 of our Xo, calculated pressures

TABLE I. Theoretical low-pressure helium melting curve.

p (kbar) V& (cm3/mole) V& (cm /mole) LL V {cm3/mole)

50
100
150
200
250
297

5.5
18.6
36.0
59.5
86.0

114.0

8.65
6.69
5.73
5.07
4.62
4.30

9.25
6.99
5.96
5.25
4.78
4.43

0.60
0.30
0.23

. 0,18
0.16
0.13

0.442
0.449
0.451
0.453
0.454
0.455
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10

LMTO

exp 6
~ Fit

0.1—

0.01
0.8

!

1.2
S(bohr)

2.0

FIG. 5. Comparison of LMTO calculation of the fcc ener-

gy with an exponential fit and with the exp6 potential.

near 10 and 100 Mbar, respectively.
Calculations for the fcc structure using 20 and 240

points per irreducible wedge of the Brillouin zone
(IBZ) yielded pressures differing by only 1% in the
range 0.1 to 250 Mbar; energies, by about 0.01 Ry (1
Rydberg =2.1799 && 10 "erg) or 0.3% of the overall

energy variation. Accordingly, 20 points per IBZ cal-
culations were used to generate the T =0 isotherm
throughout most of this range. In the metallic re-
gion, however, the large number of points per IBZ
was used to avoid any possible scatter in the calculat-
ed quantities due to band crossing at the Fermi level.
The results for the total LMTO energy and pressure
are given in Figs. 5 and 6, respectively, and in Table
II. The abscissa in Figs. 5 and 6 is the Wigner-Seitz
radius S in units of bohrs (1 bohr =0.52918 x 10 '
cm), where the volume per atom is 4n S'/3
Pressures calculated by the augmented-plane-eave
(APW), Xa method24 agree with these LMTO, Xa
results to within about 1% over the range 1—250
Mbar.

Low-pressure solid He is of course an insulator
with a full 1s band below a large energy gap. Under
extreme compression, this gap decreases to zero, and

the bottom of the 2p band (L2 state for fcc structure)
drops belo~ the Fermi level, leading to metallic
behavior. For the bcc, fcc, and hcp [c/a = ( 3)

8 1/2

structures, we find this to occur at pressures of 31.5,
97, and 112 Mbar, respectively, corresponding to
volumes of 0.539, 0.310, and 0.291 cm'/mole. These
results were obtained with the Xo. exchange-

100

LMTO

exp 6
~ Fit

Perturbation
Theory

10—

0.1

0.8
!

1.2 1.6

S(bohr)

2.0

FIG. 6. Comparison of LMTO calculation of the fcc pres-
sure with an exponential fit and with the exp6 potential.
The dashed curve is the free-electron perturbation-theory
calculation.

correlation potential as mentioned above. Use of the
Hedin-Lundqvist potential increases the fcc transition
pressure by only 2%. Throughout the range 0.8—0.2
cm /mole, the width of the 1s band for bcc He is
about 20% larger than that for the two close-packed
lattices, presumably due to the smaller nearest-
neighbor distance in bcc He. Since the insulating gap
is already less than a third of the 1s bandwidth at the
beginning of this range, it is not surprising that the
bcc metallization volume representing the point of
band-gap closure should be so much larger than for
the close-packed lattices. Given the exponential
dependence of pressure on volume, this volume
difference is further amplified in the values of the
transition pressures. It is interesting that Herzfeld, "
in 1927, predicted metallization at 0.518 cm /mole,
which is in close agreement with the present bcc
result.

Energy differences between the various lattice
types are shown in Fig. 7 (solid curves), relative to
the bcc structure. The quantity actually plotted is
S(E —Eb„), where S is the Wigner-Seitz radius.
Since these differences are on the order of 1% of the
total energy, very accurate LMTO calculations are
necessary. We have used sufficiently fine sampling
of the Brillouin zone (—500 points per IBZ) to in-

sure convergence of the total energy to about 10~
Ry. Also, it was necessary for S «0.8 bohr to in-

clude f angular momentum, due to the increasing
plane-wave nature of the electron states. As can be
seen in Fig. 7, fcc is the most stable phase for



5124 DAVID A. YOUNG, A. K. McMAHAN, AND MARVIN ROSS 24

TABLE II. Energies and pressures computed by the LMTO method.

S (bohr) V (cm3/mole) E (Ry) E (10I2 erg/mole) p (Mbar)

0.80
0.82
0.84
0.&6

0.88
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20

0.1914
0.2061
0.2215
0.237&
0.2547
0.2725
0.3205
0.3738
0.4327
0.4975
0.5683
0.6459
0.7301
0.8212
1.0257
1.2616
1.5311
1.8364
2.1800
2.5638
2.9904
3.4617
3.9802

3.2534
2.9862
2.7427
2.5210
2.3182
2.1333
1.7380
1.4194
1.1679
0.9580
0.7872
0.6477
0.5334
0.4395
0;2984
0.2022
0.1363
0.0913
0.0605
0.0396
0.0255
0.0161
0.0099

42.708
39.201
36.004
33.094
30.432
28.004
22.815
18.633
15.331
12.576
10.334
8.503
7.002
5.769
3.917
2.654
1.789
1.198
0.794
0,520
0.335
0.211

. 0.130

256.03
221.76
192.64
167.,52
146.09
127.66
91.92
66.76
49.39
36.55
27.26
20.48
15.48
11.77
6.89
4.10
2.46
1.48
0.90
0.54
0.33
0.20
0.11
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FIG. 7. Energy differences S [E(fcc)—E(bcc) l and
S[E(hcp) —E(bcc) l vs Wigner-Seitz radius S. LMTO
(solid curves) and free-electron perturbation-theory (dashed
curves) calculations are shown. The arrows indicate the
metallization volumes.

S ) 1.3 bohrs, hcp is the most stable for 0.4 (S( 1.3 bohrs, and bcc is the most stable for S (0.4
bohr. %e extended the calculations to sufficiently
small volumes to show that the correct high-density
limit is indeed achieved, i.e., the stable phase of the
one-component plasma is bcc. As the hcp-to-bcc
transition does not occur until approximately 10
Mbar, it is clear that the stable phase of T =0 He will

be close packed throughout the range of astrophysical
interest, and that metallization will occur at 112
Mbar. This implies that planetary He is never metal-
lic.

Our observation of the reversal of relative stability
from fcc to bcc with decreasing S is similar to recent
calculations reported for solid Xe." In that case,
however, the reversal occurred in the insulating
phase. Also, no hcp calculations were done.

The dashed curves in Fig. 7 show the results of
second-order free-electron perturbation theory, '
which are given for comparison. The same Xo. ex-
change factor was used as in the LMTO calculations.
The energy differences were multiplied by S so that
the effect of the Madelung contribution to the total
energy ~ould show as the intercepts of these curves
at S =0. Thus it is the band-structure term which
dominates these curves. In the region S & 0.5 bohr
the LMTO and perturbation-theory results are in
qualitative agreement as to the relative order of sta-
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bility of the three lattices. For S & 1 bohr, the 1s
shell is fully intact, and so we expect the free-
electron perturbation theory to become inadequate.
The dashed curve in Fig. 6 also shows the
perturbation-theory' predictions for the total pressure,
which are seen to be too low by 15% or more below
100 Mbar.

104—

103

VI. PAIR POTENTIAL AT HIGH PRESSURE

The LMTO total-energy results in Fig. 5 can be
reproduced by a lattice sum over an effective pair po-
tential which is a simple repulsive exponential. An
accurate fit is given by

hC

L

. 102

10—
$(r) = SS 912.1e exp( —11r/r") (10) 0—

where e and r' are the same values used in Eq. (1).
The fit is shown in Figs. 5 and 6. This effective po-
tential is compared with the exp6 low-pressure poten-
tial and with experimental molecular-beam data in
Fig. 8. The discrepancy between beam data and ef-
fective potential represents the attractive many-body
contribution to the effective potential. The magni-
tude of this effect, about a factor-of-2 reduction in
the potential, is the same found in comparisons of
bare and effective potentials between hydrogen
molecules. '

Given the importance of many-body contributions
to the effective potential, we may expect some
dependence of the effective pair potential on the type
of lattice structure. This is borne out by the fact that
Eq. (10) yields lattice energy differences more than
an order of magnitude smaller than those seen in Fig.
7. If we acknowledge possible structure dependence
of Q(r); however, it would require adjustments only
of order 1% in the parameters in Eq. (10) to repro-

0
OppCP

3.0
I

1.00 2.0

r(10 8cmj

FIG. 8. Comparison of LMTO fit, exp6, and molecular-
beam (Ref. 29) potentials.

duce at least approximately the results of Fig. 7.
Since these adjustments have a correspondingly small
effect on the normal-mode frequencies, we have used
Eq. (10) with the parameters shown for all structures.
We find the thermal corrections to the static lattice
energies to be much smaller than the differences
shown in Fig. 7, so that throughout the solid phase it
is primarily the static lattice energies which determine
phase stability.

If the exp6 potential in Eq. (1) is designated $2(r)
and the pure exponential in Eq. (10) Q~(r), then a
combined potential can be constructed using a cubic
polynomial interpolation:

@)(r), r ( r)

P(r) = A +B(r —r~) + C(r —r2) +D(r —r~) (r —r2), r~ ~ r ~ r2

qh2(r), r ) r2

The two model potentials intersect at r =1.77 x 10
cm and we have chosen r ~

= 1.57 & 10 ' cm and
r2=1.97 x10 cm. The cubic form joins the two po-
tentials smoothly together with the correct values of
@(r) and @'(r) at the end points. For our choice of
r ~ and r 2, A =3.9340 & 10 "erg, 8 =—8.0649 & 10 '
erg/cm, C = 1.6297 & 10"erg/cm, and D = —1.2621
& 10"erg/cm'. The static lattice energies computed
from Eq. (11) fall somewhat below the pure ex-
ponential fit in the lower LMTO region, but bn the
whole the combined potential is adequate over the
whole range from zero pressure to metallization.

VII. HIGH-PRESSURE MELTING CURVE
AND HUGONIOT CURVE

Using the solid (fcc) and liquid models of Sec. III
and Eq. (10), we have computed the melting curve
shown in Fig. 9 and tabulated in Table III. For these
very high pressures, many more shells of neighbors
must be used than at low pressures. We use 40
shells in the static lattice energy and 15 shells in the
dynamical matrix calculations. The anharmonic
terms are so small under these conditions that they
can be neglected.
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'120— out on CH4 and NH3. Of the important planetary
condensed gases, only He has not been studied under
shock compression.

We can predict the shock-compression, or Hugoni-
ot, curve for liquid helium by solving the equation

90— E-E,= —,(p+p, )( v, —v),1 (12)

30—

0
0 2000

T(K),

4000 6000

FIG. 9. Computed high-pressure phase diagram. The
solid phase is assumed to be fcc.

While it is unlikely that, in the near future, helium
isotherms or melting curves will be measured in the
megabar range, it is possible to carry out shock
compression experiments that will test the pair poten-
tial at very small separations. Temperatures and
pressures for He, H2, and the "ices" (H20, CH4,
NH3) comparable to those in planetary interiors can
at present be achieved in the laboratory only by
shock compression. High-velocity guns have been
used to study the properties of matter shock-
compressed to high pressure and temperature. For
example, van Thiel et al. "shock-compressed 02 to
0.9 Mbar and 7000 K. A pressure of 2.3 Mbar at an
estimated temperature of 8000 K has been obtained"
in H20, and measurements have now been carried

where Eo, po, and Vo are the energy, pressure, and
volume of liquid helium in the initial state and the
unsubscripted variables refer to the final state. 3 The
Hugoniot curve shown in Fig. 10 can be calculated by
choosing a final-state volume and determining the
temperature for which the computed p and E satisfy
Eq. (12). The pressure and energy were computed
using the fluid theory of Eq. (3) together with the to-
tal intermolecular potential. Some computed tem-
peratures are also shown in Fig. 10.

This figure shows the principal Hugoniot curve
which for liquid He can reach 140 kbar and 11 200 K,
and a reflected Hugoniot curve in which the primary
shock is reflected from an anvil and the already
compressed He is reshocked to about 550 kbar and
20000 K. The high temperatures obtained in a re-
flected shock experiment will test the pair potential to
significantly smaller interatomic separations than
would be achieved by isothermal static compression.
Specifically, at 20000 K the He repulsive potential
'will be probed by the high atomic velocities to an in-

teratomic separation of 10 cm, which is comparable
to a solid volume at T =0 of 0.6 cm3/mole.

0.6—

0.4

TABLE III. Theoretical high-pressure helium metling

curve.
0.2

r (K) p (Mbar) V& (cm /mole)

1000
2000
3000
4000
5000
6000

1.59
7.59

21.5
48.1
92.4

155.0

1.S1
0.99
0.64
0.45
0.33
0.26

0
4

V(cm /mole)

10

FIG. 10. Computation of experimentally achievable shock
experiments on liquid helium. The principal Hugoniot
curve, reflected Hugoniot curve, and T =0 isotherm are
shown. The initial condition is Vo = 32 cm /mole, TO=4 K.
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VIII. DISCUSSION

The satisfactory agreement between theory and ex-
periment at pressures below 120 kbar sho~s that the
exponential-six model potential is an adequate
representation of the interactions occurring in dense
He. The failure of the solid model below 5 kbar is
probably due to the inadequacy of the model rather
than the potential used in it. Accurate representation
of the low-pressure phase diagram, involving. equili-
bria among bcc, fcc, and hcp phases, would require
improvements in both the lattice model and the po-
tential.

At high pressures the adequacy of the theory is
much less certain, because no experimental data are
yet available. Both the choice of e in the LMTO cal-
culation and the effective pair potential have inherent
uncertainties requiring experimental check. The
most useful experiment would be the measurement

of the shock Hugoniot curve. This would allow a
direct check on the effective potential in the lower
LMTO pressure range. An indirect check on the
method would be a comparison of LMTO-derived po-
tentials and shock-wave and static-high-pressure ex-
periments in other noble gases such as argon and xe-
non.
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