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Decay of pair correlations in three-dimensional crystals
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The long-range behavior of spatial correlations in three-dimensional crystals is analyzed in the context of a Landau
model. A scaling argument is used to show that the two-particle density distribution p, (Pig', ) decays to its asymptotic
value p I(fI)p I(P2) as 1/r „when the distance r» between the positions PI and P, in the crystal becomes large. An
elastic analogy is developed whereby this asymptotic behavior may also be interpreted in terms of displacement
fields induced by the action of point forces. The slow 1/r l2 decay of the density correlations is seen to be entirely
consistent with expressions for the elastic moduli and the thermal diffuse scattering intensity.

I. INTRODUCTION

Although the literature on x-ray and neutron
scattering from crystals is quite extensive, there
are suprisingly few results dealing with the decay
of molecular correlations in real space. For in-
stance, one would like to know how the two-parti-
cle density distribution p,(r„r,) decays to its
asymptotic value p, (r, )p,(r, ) as the distance
between the positions r, and r, in the crystal be-
comes large, and how this decay is reflected in
expressions for the elastic constants. Experiment-
ally one knows that lattice vibrations manifest
themselves in the thermal diffuse scattering of
x rays from near-perfect crystals, ' and it would
be useful to develop a clear understanding of how
this thermal motion is related to the spatial
correlation of atomic positions.

In his 1954 paper on the pair correlation func-
tion in space and time, G(r, t), Van Hove' gives
what is apparently the only definite statement
in the literature regarding the decay of p,(r„r,).
For the three-dimensional harmonic model, Van
Hove states, without proof, that for fixed t, r-,
G(r, t) approaches its asymptotic value, the con-
vergence being in ~r

~

'. This result implies, at
least for the harmonic model, that p,(r„r,)
—p, (r,)p,(r, ) decays to zero at large distances as
the reciprocal of the distance ~„between the
positions r, and r, in the crystal.

Aside from the Van Hove statement, there are
two independent lines of reasoning which place
restrictions on the decay of p,(r„r,). Both argu-
ments lead to the same result, namely that

p,(r„r,) —p,(r,)p,(r, ) must decay to zero as r„'
or slower if the equilibrium state of the system
is to possess the directional properties of a
single crystal. The first argument, due to Still-
inger, ' derives from the extension of the com-
pressibility equation for fluids to the case of
anisotropic elastic solids. One can readily show
that the response of the system to long-wavelength

external body forces (which must necessarily de-
pend on the direction of these forces for an aniso-
tropic body) will be independent of direction if
p, (r„r,) —p, (r, )p, (r, ) decays to zero faster than
r,,'. But this would contradict the original assump-
tion, namely that the state of the body is crystal-
line. The second argument, presented recently
by Gruber and Martin, ' is based on the BBGKY
equations. These authors show that if one imposes
an g'-clustering condition on the molecular dis-
tribution functions, then the single-particle density
distribution p, (r) must be constant, This assumed
clustering, which at the level of the two-point
function implies that p,(r„r,)-p, (r,)p, (r, ) goes to
zero faster than r,,', is therefore incapable of
yielding equilibrium states with the symmetry
appropriate to a crystal. One can only conclude
from this that if the body is crystalline, then, the.
molecular distribution functions do not satisfy
~' clustering.

In this paper the decay of p,(r„r,) —p, (r,)p, (r, )
is analyzed for three-dimensional crystals in the
context of a Landau model, which has been used
to argue that translational long-range order does
not exist in one and two dimensions' and, more
recently, as the basis for a model of two-dimen-
sional solids. ' Inasmuch as the Landau theory
is essentially exact in its treatment of long-wave-
length fluctuations and since these will be seen to
give rise to the dominant correlations at large
distances, the results obtained should hold for any
system which on a macroscopic level obeys linear
elasticity theory. A brief synopsis of the relevant
parts of the Landau theory is given in the next
section and, in Sec. III, scaling arguments are
used to deduce the asymptotic form of the density
correlations. In Sec. IV, a macroscopic elastic
analogy is developed whereby the density correla-
tions are interpreted in terms of macroscopic
displacement fields induced by the action of point
forces. In Sec. V, the effects of the slow rate
of decay of the density correlations on expressions
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for the elastic constants and thermal diffuse scat-
tering intensity are analyzed.

II. BASIC APPROACH

form u(r+A) = u(r), where A is an arbitrary trans-
lation vector in the superlattice generated by A;.
Under these conditions, u(r) may be expanded in a
Fourier series of the form

n, (r) = Q 5(r —a) (2.1)

or, as a Fourier series,

n, (r)= —pe'b' .
V

The sums are to be carried out over all transla-
-tion vectors of the direct and reciprocal lattices,
respectively, and v (= 1/p, p being the number
density) denotes the volume of a primitive cell
in the direct lattice. At finite temperatures T,
the atoms of the crystal vibrate about their lattice
sites with small displacements u(r) and the
microscopic density is given in terms of that at
T=O by

(2.2)

The notation introduced in this section is es-
sentially that of Lifshitz and Pitaevskii' and, for
simplicity, only Bravais lattices are considered.
The primitive translation vectors of the direct
lattice are denoted by a, (i = 1, 2, 3) and those of
the associated reciprocal lattice by b, .

At absolute zero the system is assumed crystal-
line with a periodic microscopic density n, (r)
given by

ei)r ~ r

where the wave vectors k are translation vectors
in the lattice reciprocal to the superlattice gener-
ated by A,-. Clearly, one has

(2.8)

(2.9)

so that different Fourier components are ortho-
gonal. The prime affixed to the sum in (2.8)
denotes the usual restrictions that the term k= 0
is to be excluded from the sum and that one is to
sum only over wave vectors which lie within the
first Brillouin zone, i.e. , whose associated wave-
lengths are larger than about twice the lattice
spacing a.' The term k= 0 in (2.8) would, of
course, correspond to macroscopic motion of the
center of mass of the crystal.

The change &E in the Helmholtz free energy
due to displacements u(r) at constant, tempera-
ture yields their probability distribution via
exp(- & F/krrT), where krr is Boltzmann's constant.
At the low temperatures considered, the most
probable displacements will be elastic waves and
in the Landau theory &I" is therefore written'

n(r) = n,(r —u(r)) . (2.3)

The one- and two-particle density distributions
are then defined as where

dr u„(r) ur„(r),
V

(2.10)

p, (r, ) = (n(r, )), (2.4) 1 ~u; (r) &ur (r))(
(2.11)

p,(r„r,)+ O(r, —r, ) p, (r,) = (n(r, )n(r, )),
which on using (2.2) and (2.3) may be written

(2. 5)

p (r ) g ei b r r(e
- i b ' u(r r))

V
b

p,(r„r,)+ 5(r, —r,)p,(r,)

(2 8)

1 g g eibr'rr+rb ru(e-ib 'u(rr)-ibu u(rgb
/ ~

bl b2 (2 7)

The angular brackets ( ~ ~ ~ ) in these expressions
denote averaging with respect to the ensemble
probability distribution for the displacement fields
u(r).

Before stating the Landau theory result for the
probability distribution, the mathematical repre-
sentation of u(r) must first be stipulated. One
considers a finite volume V of the crystal spanned
by the vectors A, =Na;, where N is a large inte-
ger, and imposes periodic boundary conditions
on u(r). In the present context, these take the

Here A, » is the elastic modulus tensor, '
r = (x„x„x,), and summation over repeated indices
is implied. The quantity u;r(r) is just the usual
strain tensor of linear elasticity theory. An ex-
pression for &+ in terms of the Fourier coeffi-
cients ug of u(r) is obtained by substituting ex-
pression (2.8) into (2.10). On using the ortho-
gonality condition (2.9), one has

~F= u I'Q u;Tur brtr;r(k), - (2.12)

where

err(k)=&rrr krkm ~ (2.18)

The real, symmetric' tensor ((r, r is thus a quadra-
tic function of the components of k= (k„k„k,).

From the form (2.12) of the free energy, one
sees that the probability distribution for the
Fourier components u-„of u(r) is Gaussian, and
from the general formulas of fluctuation theory, "
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one therefore has the average values

k'a T
(uik uik')» Ir rt il (k) 6 k', -k (2.14)

Q, ,'(k) being the matrix inverse of Q«(k). Dif-
ferent Fourier components are therefore uncor-
related unless k+k'= O. The angular brackets
with the subscript V are used to denote averages
defined for finite volumes V. The infinite volume
limits of such quantities, which are taken by let-
ting the large integer N tend to infinity, are de-
noted without subscripts.

Equation (2.14) is the most important result in
the Landau theory, for by using it one can readily
compute the displacement correlation tensor
(u;(r, )u, (r,))„. Using (2.8) and (2.14), one finds

1

(u, (r, )u, (r,))„= Air'(k)e' 'r "'. (2 16)
k

Since p, ,'(k}=p, ,'(-k), (u,.(r.,) u, (r, ))» is an even

(e"'"'r'& =exp(- —,'&[b u(r, )]'&j,

(eider
~ u (r r)+i b2 u(r2)

&

(2.16)

= exp [- 2'([br u(r, )+b, u(r, )]'&) . (2.17)

On using these results in (2.6) and (2.7}, it fol-
lows that

function of the vector difference r, —r, as well as
being invariant under interchange of the indices
i and l.' It is worth noting that, in contrast to the two-
dimensional result, the mean-square displacement
(u;(r) u, (r)& in three dimensions is finite.

The Gaussian nature of the probability distribu-
tion may be used to transform the expressions
(2.6) and (2.7) for p, (r, ) and p,(r„r,). Since
both b.u(r, ) and b, u(r, )+b, u(r, ) are linear
functions of normally distributed variables (the
Fourier components uk), one has from a well-
known general formula" that

Pr(rr)= QPTe (2.18)

p,(r„r,}+6(r, —r, )p,(r, ) = g ph e' r'rg pk e' 2 "2exp [-b„.b» (u, (r, ) u, (r,)&],
by b2

where

(2.19)

pk = —exp[- —,
'

b, b, (u, (0) u, (0))] . (2.20)

Hence, to calculate p, (r, ) and p, (r„r,) one need only compute the displacement correlation tensor. This is
the subject of Sec. III.

III. DECAY OF DENSITY CORRELATIONS

After having taken the limit Y- , the displacements at two widely separated positions in the crystal
must be almost statistically independent. Consequently, the correlations (u,.(r,) u, (r, )) must tend to zero
as r» tends to infinity. On expanding the exponential factor in {2.19) and using (2.18), at large separations
one therefore has

p,(r„r,) —p, (r,) p,(r,)=(u, (r,)u, (r, ))
' ', ' ' + ~(u, (r,)u, (r, ))(ui(r, )u (r, ))
xlf x2l xlf X15 x2l X2m

(3.1)

In general, the first term on the right is not zero,
so p, (r» r, ) —p, (r,) p, (r, ) decays to zero at the
same rate as (u;(r, ) u, (r,)); as is shown below
[see (3.9)], this is as rr2' When th. e first term
on the right is zero, as it is when either r, or r,
corresponds to a lattice site, p,(r„r,) —p, (r,)p,(r,)
decays as r„' or faster.

A direct argument for the r,,' decay of
(u;(r, ) u, (r, )) is now given based on its definition
(2.15). Letting r=r, —r, and using the symmetry
properties of (u;(r, ) u, (r,))», one has (3.3)

&u;(o)ui(r)&»= ' Z 4;r'(k) e'"'. (3.2)
k

While obviously depending on the vector r and the
volume V, this quantity also depends implicitly
on the lattice spacing a. For as was discussed in
Sec. II, it is precisely this length which provides
the criterion for the short-wavelength cutoff of the
sum over wave vectors in (3.2). One may there-
fore write with no'loss of generality

&u;(o)ui(r)&»= X;i(r, I', u),
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y;, being some function of r, t/", and a.
Consider now(u, (0. )u r(nr))» with a scaling pa-

rameter o, ; since (2.13) implies that rjr, 'r( ok)
= o. 'rjr;r'(k), (3.2) becomes

(u, (0)u r(ar))»= —
(V/ ), P, r'(ak) e'""'. (3.4)

k

But by definition, Vrx: a' and k ~ 1/a, so the right-
hand side of (3.4) is exactly the same as the right-
hand side of (3.2) if in the latter a is replaced by
a/u. The functions y,-r therefore satisfy the scal-
ing relation

macroscopic elasticity theory is now given. Con-
sider the equations of equilibrium for an elastic
body subject to an as yet unchosen body force 7;
one has'

+f,(r) .=0,s'v, (r)
+m

(4.1)

vrk = 4;r'(k)frk (4.2)

where the displacement field has been denoted by v
to distinguish it from u considered above. The
equations for the Fourier transforms v- and f kk
of v and f are then, using (2.13),

y, r(err, V, a)= nr 'y, r(r, V/n', a/a)

or, in the V- ~ limit,

X;r(», ",a)= n 'X;r(r, , a/n)

(3.5)

(3 6)

It is the obvious similarity of this equation to (2.14)
which is now exploited. After setting k'= -k and
forming c; (u;k u, k) in (2.14), one has

Note that if a were zero, X;& would be a homo, -
geneous function" of r of order —1; i.e. ,

a, T
CC( lukul- k)» V Cr 0 r (k) (4.3)

g, ,( or, ~, 0)= o 'y, (rr, ~, 0). (3.7)

From these results, the asymptotic form of the
displacement correlations may be readily deduced.
Multiplying both sides of (3.6) by a and letting
n- ~, one has

(3.8)

But it follows from (3.7) that y, ,(r, ~, 0) must be
of the form G, r (r)/r where r" = r/r and r =

~
r ~, G;, (r)

being a homogeneous function of order zero. From
the definition (3.3), the required asymptotic
behavior of (u, (0)u, (r)) is therefore

(u, (0)u, (r)) = G, ,(r)/r+ ~ ~ ~, r- ~. (3.9)

where c is here taken to be an arbitrary constant
vector independent of k. The following choice of
the force 7 is now made:

c;err T/V for k contributing

frk= to the sum in (2.8)
0 otherwise, (4.4)

so that by comparing (4.2) with (4.3) one obtains
the identity

cr(u&kur k)»= -vrk. (4.5)

On transforming (4.5) from Fourier space to real
space and using the symmetry properties of the
displacement correlations, it therefore follows
that

On inserting this result into (3.1) and keeping
only the first term on the right, for the density
correlations one has

c,(u; (0)ur(r))„= v, (r),
v being the displacement field due to the body
force

(4.6)

(3.10)

It is interesting that the superposition of ther-
mally distributed elastic waves [which is what
the ensemble average in (3.9) represents] gives
rise to such long-range spatial correlations. In-
deed, . it is the infinitely long waves which give
rise to the term proportional to 1/r. For as the
derivation of (3.9) clearly shows, this term is
independent of the short-wavelength cutoff, i.e. ,
the lattice spacing a, and is in fact obtained by
letting the cutoff tend to zero.

IV. A MACROSCOPIC ELASTIC ANALOGY

An alternative interpretation of the displace-
ment and density correlations in terms of

(4.7)

c,.(u,.(0) u, (r)) = v, (r),

v now being due to the force

(4.8)

f (~) ~ B dk rk'r
(2m)'

(4.9)

in which lim„„(1/V) g' has been replaced by

This result relates the equilibrium displacement
correlations to a definite macroscopic displace-
ment field in an elastic body.

As a first application of the analogy embodied
in (4.6) and (4.7), the asymptotic formula (3.9) is
rederived and the functions G, ,(r) are obtained
from a somewhat different point of view. On
taking the limit V-~, one first has
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(2gg) 'f dk. Since the contribution to the integral
from the neighborhood of the origin k=0 may be
made arbitrarily small, the restriction k= 0 may
here be dropped. Scaling arguments are now

employed to determine the asymptotic form of
v(r) and hence, via (4.8), the asymptotic form of
(u, (5)ug(r)). Using (4.9) and introducing the scaling
parameter gg. , one has from (4.1)

This expression yields the local density change at
a distant point r, induced by fixing a particle at
r, . Since (u, (r,)u, (r,)) =(u,.(5)ug(r, —r, )), on letting
c=- V, lnp, (r, ) in (4.12) and (4.13), one has

&in p, (r, )
(u, (r, )ug(r, )) =w g(r, —r, )+ ~ ~ ~,

l.f

(4.1V)

In the limit n-, the force term becomes a
representation of the 5 function and, with
lim „gg.v(nr) =w(r), it follows that

s'w g(r)
ig gm + cgkBT6(r) —0,

j m

(4.10)

(4.11)

The implications of this result are most apparent
when it is combined with (4.8) and (4.9):

c,(u, (ti) ug(r)) = w, (r) + ~ ~, r- ~

where w(r) is the displacement field due to the
point force

(4.12)

(4.13)

The displacement correlations at large distances
are therefore formally equivalent to the elastic
displacement field due to a 6-function force.

The mathematical form of w may be deduced
directly from (4.11): Since 6(r) is a homogeneous
function of r of order —3 and since (4.11) in-
volves only second derivatives of the components
of w, these components must be homogeneous of
order -1. The result (4.12) is thus identical in
content to (3.9), and one has the correspondence

(-,), ~, g(&)&rr (4.14)

Since the general solution to (4.11) may be ex-
pressed in terms of the Green's tensor Ir„by

w g (r) = cg kBTHg g(r), (4.15)

p, (r„r,)/p, (r, ) —p, (r, )

=(u, (r, )u, (r, )) ' ' ' ' + ~ ~ . (4.16)
2t

it also follows that, aside from the factor of k~T,
the displacement correlation tensor is nothing but
the Green's tensor for a general anisotropic
elastic body.

As a second but related example of the macro-
scopic elastic analogy, consider the local density
change induced by fixing a pa,rticle. Dividing both
sides of (3.1) by p, (r, ) and keeping only the first
term on the right, one obtains

where w(r) is the displacement field due to the
force

f (r}=-kggTV, lnp, (r, ) 6(r). (4.18)

p, (r„r,)/p, (r, ) = p,(r, —w(r, —r,)). (4.20)

The effect of fixing a particle is therefore to sim-
ply shift the unperturbed density distribution by
the amount %(r, —r, ), without changing its ampli-
tude.

Since the divergence of an elastic displacement
field gives the local density change in an elastic
body, it may have seemed reasonable, a priori,
that the local density change p,(r„r,)/p, (r, )
—p, (r,) could be expressed in terms of the di-
vergence of some such field. ' This is not the
case, however, as can be seen from (4.19) written
in the form

p, (r„r,)/p, (r,) —p, ( r,)

= —V, [ pg('P, )%('P, —r, )]

+p, (r,}V,~ w(f, -r, )+ ~ ~, (4.21)

where the first term on the right, which corre-
sponds to an induced mass flux, is not in general
zero. Such terms are always zero in conventional
elasticity theory, which deals with a continuum
of mass points, but should be expected to appear
when elasticity theory is applied to problems iri-
volving distribution functions embedded in elastic
media.

The amplitude of this force, ksT V, lnp, (r„), is
just the mean statistical force which would act
on a particle at the position r„ in case V, ln p, (r, )
= 0, as it is when r, corresponds to a lattice site
say, then higher-order terms in the expansion
(4.16) determine the asymptotic density change.
It is noted that in the present context the coordi-
nate r', plays the role of a parameter and for a
given value of r„ the vector c may still be con-
sidered a constant vector. Substitution of (4.17)
into (4.16) yields the result

p, (r„r,)/p, (r, ) —p, (r,)

=-w(r, —r, ) V, p, (r,)+ ~ ~ ~, (4.19)

which to the same order of approximation may
be written
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V. THE 1/r DECAY AND THE EI ASTIC CONSTANTS

The angular distribution of x rays or neutrons
scattered from a system of identical particles is
given by the static structure factor S(q}, defined

by

~ ~12
p$(q) = lim — g e'q

v
(5.1)

(5.2)

or, in terms of the molecular distribution func-
tions,

where q is the change in wave vector on scattering
and the sum is over all particles j, r, denoting
their position vectors. The average is, as in Sec.
II, over a canonical ensemble of systems satisfy-
ing periodic boundary conditions and the infinite
volume limit is to be taken over a sequence of
parallelopipeds containing an ever increasing
integral number of primitive cells along each
edge. Since Bragg scattering results from the
underlying periodicity of the lattice rather than
from correlations of the atomic positions, a direct
measure of these correlations is obtained by sub-
tracting from S(q) the contribution due to Bragg
scattering. Denoting the resulting quantity by

S'(q), one has
/

sors, respectively. Since (5.5) yields the response
of the system to an infinitely long wavelength
external force in the direction of q, S'(q) in the
limit q- 0 depends, as it must for crystals, on
this direction. This fact imposes a rather strong
condition on the decay of G(r) F.or if G('P) (in
the infinite volume limit) decayed to zero faster
than I/) a, the integral would be absolutely con-
vergent and the successive limits p'-~, q- 0
could be taken immediately, the result being a
quantity independent of the direction of q. Thus,
G(r) can decay to zero no faster than 1/4 a for
three-dimensional crystals. As stated in the In-
troduction, an identical result is implied by the
recent work of Gruber and Martin' on the BBGKY
hierarchy. To deduce the actual asymptotic be-
havior of G(r) given only that lim, 0S'(q) exists
is, however, an extremely difficult, if not im-
possible, task. Not only must one carry out the
intricate sequence of limits P-~, q-0, but one
must bear in mind that for finite volumes G(r)
depends on t/' and, due to the periodic boundary
conditions, does not even decay to zero at large
distances.

As has been shown in Sec. III, the density corre-
lations p,(r„r,) -p, (r,)p, (r,) for the Landau
model decay as 1/)» Keep. ing only the first term
on the right of (3.1) and substituting it into (5.4)
one finds, after several integrations by parts,

pa'(q)=pe uep f pre"'u(r),

where

(5.3)

G(r) = (((((0)u((r))
~X]8XE

x — d r, p, (r,)p, (r, +r) + ~ ~ .
8

(5.8)

G(r)= v dr, [pa(r„r, +r) —p, (i,)p, (r, +r)],
t)

(5.4)

v=1/p being the volume of a primitive cell in the
direct lattice. For crystals, $ (q) gives what is
generally referred to as the thermal diffuse scat-
tering.

Stillinger' has shown that the 1q1- 0 limit of

(5.3) yields the correct generalization of the'com-
pressibility equation for fluids to the case of anis-
otropic elastic solids. One obtains in fact that

In view of (3.9), G(r) for the Landau model there-
fore also decays as I/p. While it might appear
that such a slow rate of decay could lead to di-
vergent elastic constants when one takes the q- 0
limit of (5.3}, due to the complicated limits in-
volved this is not necessarily the case. Indeed,
for the Landau model, and probably in general,
it is definitely not the case. Since (5.2) and (5.3)
are formally equivalent, this can be proven sim-
ply be showing that the q- 0 limit of (5.2) exists.
Setting r( ='K,. +u(a() in (5.2) and letting p ~, one
has

limS'(q)= pksTq(q;q(q„A(, .( /q4, (5.5)

where q =1q1 and the relation of A(, ,„to the elastic
modulus tensor A... is embodied in the conjugate
relations

Sp(~) —P (q a(( (q (u(a)-u(0)])

(e( q u( a ))(e
-( q u(o)) ) (5.9)

+ii ~ill m +E m&

+Em Aiilm +ij &

(5.6)

(5.7)

0,&
and ~,&

being the elastic stress and strain ten-

where the sum over particles j has been replaced
by the sum over all lattice translation vectors%
and the index j has been dropped. After a final
transformation using (2.16), S'(q) becomes
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Sl( q) &[ q II(() )]

)( g e&q a(e&q ~ u(a)q'u&o)&
lp (5.10)

the factor preceding the sum being the usual
Debye-Wailer factor. Expanding the real expo-
nentials and using the infinite volume limit of
(2.15), to leading order for small q one now has

1

5'(q)=k d'pe' 'd~d, , f dkd, ,'(k)e"",' =k Td~d, f kdd'(k), Qe"I
a a

I

=&&7.'q;q& &k &,
' k —

& q-k-b =p&&Tq&q, ,' q-bD q-b
b b

(5.11)

where D(q —b) vanishes unless q —b lies within
the first Brillouin zone, in which case it is unity.
Since the only nonzero contribution to the sum
in (5.11) in the q 0 limit is clearly the term with
b = 0, one has then

(5.12)

gg ga
0

~X ~X~ ~X~
(5.13)

With the choice (I&',. =q,.q, sin(q r)/q' and the sub-
stitution «& =I)& cosq r, (5.13) becomes

~~gS m%&m~S

which on using (2.13) is equivalent to

P«{q)v&

or

v& =q;y«(q).

(5.14)

{5.15)

(5.16)

Multiplying (5.15) by I)& and (5.16) by q& and com-
paring the two results one finds the useful identity

lim S'(q) = p)'&~Z'q&q& y, &'(q).

The right-hand side depends, as it should, on
the direction of q, for from (2.13) it follows that

P,&'(q) is a homogeneous function of q of order
—2 and consequently, q&q& p, &'(q) is homogeneous
of order zero. This result shows that the 1/~
decay of G(r) is clearly not at odds with the exis-
tence of the elastic constants.

It is worth pointing out that the Landau theory
and Stillinger expressions for the elastic con-
stants, (5.12} and (5.5}, respectively, are actually
equal. Since this is not obviously the case, and
since the relations (5.6) and (5.7) are not sufficient
to prove it, the following argument is given. If
stresses p',

&
are applied to an elastic body, inter-

nal stresses 0&& are induced which exactly balance
them, that is, 0, +&',. = 0; one also has the equa-
tions of equilibrium which in this case are

v, ,«, ;=y«(q)v;&)& sin'q r, (5.18)

o'& &&& =g&(f&&f&(f A&&& sin (q' r)/(f . (5.19)

On using (5.17) in (5.18) and comparing with (5.19),
one arrives at the desired result, namely

0;& {q)&f&% =V&V &f&V (5.20)

The elastic constants in Stillinger's approach in-
volve the distribution functions defined in terms
of the intermolecular potential, whereas in the
Landau approach these distributions depend on
the elastic constants as parameters. The result
(5.20) shows, however, that if one uses the Lan-
dau G(r} in the Stillinger expression for the elas-
tic constants, one obtains an identity. The Landau
theory thus provides a consistent parameteriza-
tion of g(r) in terms of the elastic constants.

Finally, consider S'(q) near a Bragg peak, that
is, for q=b'+5 where b'is a nonzero reciprocal-
lattice vector and P is small. The Debye-Wailer
factor in (5.10) may not here be expanded but the
derivation of (5.11) remains otherwise valid. The
only nonzero term in the sum in (5.11) now has
b =b', and to leading order in 5 one has,

S((b( + 5) — ([b"u( u )] ) 5d5( y-1( 5) (5.21)

This formula provides the basis for elastic con-
st3nt measurements from the thermal diffuse
scattering of x rays; moreover, since Q«'(Q)
= (5( 'P, &'(5/(5(), it also implies that near Bragg
peaks S(b'+o) diverges as ~5~ '. As can be seen
from (5.10), this is a direct manifestation of the
slow 1/& decay of the displacement correlations
or, equivalently, of the density correlations.

(5.17)

Since (I,, =q, q, sin(q r)/qa, «, , = ——,'{t),.q,. +I),q,.)

multiplying (5.6) by u„and (5.7) by (I&„, one also
has
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