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Predicted precritical second-sound damping in superfluid 4He:

"High-temperature" expansion
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A "high-temperature" expansion in powers of l t
~

2~3, where t is the reduced temperature, is

employed to predict the first rise above background in the second-sound damping as the A. point

is approached from below. We show that this precritica1 rise is determined by the corresponding

precritica1 rise in the thermal conductivity as the A, point is approached from above.

Because of the high experimental precision that can
be attained, the X transition in liquid 4He provides a
proving ground par excellence for testing theories of
critical dynamics. Dynamic scaling theory" predicted
a I

r I
+ divergence for the normal-state thermal con-

ductivity, h. (t), and for the superfluid state second-
sound damping coefficient, D2( l t I) l t = ( T —T„)/T„
is the reduced temperature]. Experimentally these
expectations have been only qualitatively realized.
But recently we' have pointed out that the theory
above the X point can be reconciled quantitatively
with experiment by recognizing that the measure-
ments are by necessity not carried out in the asymp-
totic scaling region. Therefore noncritical and
nonuniversal background effects are important.
Furthermore, the theory predicts that the entropy re-
laxation rate y~ is at least one order of magnitude
larger than the order-parameter relaxation rate y& in
the experimentally unattainable asymptotic region.
This requires a steep rise in y~ in the observable re-
gion as the A. point is approached. The corresponding
effective critical exponent for X(t) is therefore about
20% bigger than its dynamic scaling value, in good
accord with the trend noted by Ahlers, and as con-
firmed by further contributions to the theory along
this line. The purpose of this short note is to point
out that the situation is less clear in regard to
second-sound damping, the other important test of
the theory. %e present here a new calculation of
D2( I r I) over the temperature range 10~ & r & 10 '.
In the distant region the measured values of D2 devi-
ate from our theoretical prediction, suggesting the
need for further experimental study.

In order to make our theoretical prediction as com-
pelling and unequivocal as possible we first consider
relatively large values of I r I, corresponding to tem-
peratures well below T&. In this region the same
background'parameters dominate as in the normal re-
gion well above T&. Furthermore, when the X point
is approached the onset of criticality is described by a
"high-temperature" expansion ' in powers of the
correlation length ~ ' ~
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FIG. 1. Temperature dependence of the background con-
tributions to the second-sound damping coefficient.

behavior of D2( l
t l) below the A. point can thereby be

connected to the known behavior of A.(t) above, with
very little freedom for the theory to go astray.

The background second-sound damping coefficient
D2s(

l r
~
) is dominated by the background kinetic

coefficient for order-parameter relaxation, ' 8&, and
the background thermal conductivity, '

A.~. Identify-
ing the half-width at half-maximum of the second-
sound resonance with (Di/2) k', we have from the
standard theory of second-sound damping the total
background damping coefficient

D'= "'+ ~' +—P' - =a + ' + 4 P' -
(1)

k k 3 C' 3p
. Critical temperature dependence is introduced by the

specific heat in the second term and by the super to
normal fluid density ratio in the third term. q, the
kinetic viscosity, has a very weak critical variation.
The temperature dependence of the individual terms
in Eq. (1) is plotted in Fig. 1 versus T & T„over a
wide temperature range. The dashed curve adds to
A~ the precritical rise explained below. Light scatter-
ing provides a means of distinguishing experimentally
the separate components. Thermal diffusion pro-
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2 + d3 2pp g2(p „)
81r 'ys(pe k)

Here g is the standard coupling constant, while the
order-parameter correlation function has the
Ornstein-Zernike' form g(p, ~) = (p'+ ~ ) '. In the
background region the relaxation rate is expressed by
a Van Hove-type formula in which the critical slow-

ing down results entirely from the weakening ther-
modynamic-force

(2)

ys(p, ~) =BE '(p, ~) =Bs(p'+~').

Substituted into Eq. (2) this yields hh. = (g'/3n )
x (I/~B&), where the definite integral is

I = du u (u +1) =3m/16.
Qp

duces an absence of scattering intensity at the center
of the spectrum, while order parameter relaxation
tends to fill in this valley. While Tarvin, Vidal, and
Greytak'p infer that the latter is twice as strong as the
former in the interval 10 ' ~

~
t

~
~10 ', Fig. 1 indi-

cates roughly equal strength. The temperature
dependence of the total background predicted from
Eq. (1), i.e., the sum over all three of the com-
ponents shown in Fig. 1, is shown by the dot-dash
curve in Fig. 2.

The dotted curve of Fig. 2 shows the prediction of
our theory when the leading terms of the "high-
temperature" expansion are included in Eq. (1), pro-
ducing the "precritical" rise. We calculate the pre-
critical rise below the A. point in close analogy with
the calculation4 5 of the precritical rise above the A.

point, which we now briefly review. The precritical
thermal conductivity in excess of A.g for t & 0 is
given by elementary kinetic theory" as

4 g' ". d'p p'g(p, 0)g(p, K )
3Bq gn' " g '(p, 0)+g '(p, x')

g2

3m 8~]c
(3)

The ratio of the two integrals is I'/I =8(2 —J2)/3
=1.56. The above results enable us to compare very
directly the predicted precritical rise for t (0 with the

By substituting K = Kpt' ', where Kp is chosen as
0.63 x 10 cm ', we obtain a predicted "high-
temperature" behavior of 4A. proportional to t
with the coefficient of proportionality equal to
2.2 x 10 ' erg cm sec 'K '/B&. Figure 3 confronts
the above precritical theory with the measurements
by Ahlers6 of X(t) at saturated vapor pressure (S&P).
It is seen from this plot of li(t) vs t '~' that the data
can be well fitted by a parabola, corresponding to an
effective three-term high-temperature expansion.
The first term of this expansion is the vertical inter-
cept A.g 0.1S3 mW/K. The dashed straight line
represents the two-term high-temperature expansion.
its slope corresponds to 8&= 1.0S x 10~ cm sec '.
These are the background parameters which have
been employed in plotting Figs. 1 and 2. The higher
terms of the expansion will be discussed in a forth-
coming report. "

The corresponding calculation below the A. point
can be carried out in a completely analogous way.
We know, however, from ultrasonic attenuation, '

that we must use the different length scale
Kp= 1.50 x 10 cm '. Thus, Ko/Kp=0. 42. A further
modification of the theory is that the intermediate
lines in the "single-bubble" expression of Eq. (2) are
no longer identical. One of the lines belongs to the
transverse order parameter, with ~ =0. Consequent-
ly, below the A. point, the integral corresponding to
Eq. (2) becomes

CP
4)

eu
E
O

OJ
O

O

~ ~ ~~ ~ 0 ~ z

~ ~~ ~~ +~~~ ~ ~+

0.8

0,6

E
O

0.4
E

0.2

4 -2
IOQIO

FIG. 2. Predicted background (dot-dash curve) and total
(solid curve) second-sound damping vs reduced tempera-
ture. The dotted curve includes background and precritical
rise while the dashed curve shows the addition of unmodi-
fied relaxation. The crosses indicate the theory of Dohm
and Folk (Ref. 8). Data references: 0-16, ~-17, 0-18, -
19, and b, -20.
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FIG. 3. Thermal conductivity vs correlation length. The
dashed and solid curves are the two- and three-term high-
temperature fits, respectively, to Ahler's saturated vapor
pressure data (Ref. 6). The dot-dash curve is the two-term
"high-temperature" prediction for A,

'
below the X point.
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known precritical rise for t )0. For equal values of
(t( we have 4X'([t()/AX(t) =(Kp/Kp)(I'/I) =0 66.

This predicts the precritical behavior of A.
' = A.~+ b X'

shown by the dot-dash straight line in Fig. 3 and
which yields a two-term "high-temperature" expres-
sion for the entropy kinetic coefficient D' = A. '/C/.

As the X point is approached, D~ replaces its back-
ground value 8s = h.s/C/ in Eq. (1).

It is also necessary to replace 8p in Eq. (1) by

D& =B&+bD&, the two-term "high-temperature"
expression for the order-parameter kinetic coefficient.
The precritical single-loop expression for CphD& is of
the same final form as Eq. (3) where in place of I'
the definite integral is

e) 3
~

duu /(u +1)
2 "o (1+w' ')u +1

3' I 1—
4

' 1/2'

1+w' (4)

The background ratio of the kinetic coefficients is
w'=8p/8s =0.8. The ratio of Eq. (4) to the earlier
integral is J/I =1.07. The precritical rise that has to
be added to Eq. (1) is therefore

gD I y AX I 69 5Ã I 1 I 6X AX (5)
Cp Cp Cp Cp

D, ( I
—t I) =8p+, +-&expt( t) 4 ps

Cp p( t) 3 p„—, (6)

The 11% error incurred in the final form of Eq. (5) is
within the accuracy of the truncated "high-
temperature" expansion. The addition of Eq. (5) to
Eq. (1) yields the remarkably simple result

ponents of. the order parameter. Each type of fluc-
tuation contributes in principle to the damping of
second sound. We are therefore obliged to consider
the longitudinal relaxation of the order parameter.
This, in fact, is the sole contribution to the precritical
damping' of low-frequency first sound for t (0.
The relaxation at rate ~ ' causes a thermal lag which
introduces a dependence of Cp on the frequency co.

Introducing this ao dependence into the second-sound
velocity via its explicit dependence on Cp would
result in the total damping shown by the dashed
curve in Fig. 2. But the situation is more complicat-
ed, because of some compensating effects.
Khalatnikov's theory, ' without the approximation
that he makes, results in a much more moderate re-
laxational contribution. This yields the total damping
shown by the solid curve in Fig. 2, in satisfactory
agreement with the recent measurements reported by
Ahlers. '6 It lies, however, about a factor of 2 below
the measurements of Hanson and Pellam, "of Notar-
ys, ' and of Greytak' and co-workers. The latter
point is more closely in accord with the earlier mea-
surements of Tyson. This is a puzzling discrepancy
which has already been encountered in connection
with the light scattering from pressurized superfluid
He." It would clearly be desirable to have a single
experiment cover the entire precritical and back-
ground region. In addition, an experimental check of
the pressure dependence predicted by Eq. (6) would
be useful. In the interval 10 ~ (t ~

~10 ', l.,„pt(t)
drops by a factor of 2 in going from SVP to 22 bar.
Cp pt has a much weaker pressure dependence. We
can therefore make the following prediction: at the
top of the A, line the precritical rise in D2( [ t ~

) has one
half of the strength found by Ahlers at SVP.

where the subscripts emphasize that the quantities in-
volved are experimentally determined. [As explained
above, the background constant B& is found from the
derivative of h.,„pt(t) with respect to t 2i'.] Equation
(6) is plotted versus log~p~ t

~
as the dotted curve in

Fig. 2.
The above theoretical treatment is not complete.

The three fluctuating fields in the problem are the
entropy and the transverse and longitudinal com-
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Left-hand side of Fig. 7 of Ref. 5. The precritical rise cal-
culated in the present paper reduces the discrepancy
shown in this figure by approximately 50%.

This is consistent with the weaker pressure dependence re-
ported by Greytak (Ref. 19) at

~
t

~
=10 3. At this tem-

perature the relatively pressure insensitive background
(dot-dash curve of Fig. 2) constitutes a significant fraction
of D2.


