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Quantum fluctuations in two-dimensional superconductors
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For granular metallic films or two-dimensional arrays of Josephson'junctions, fluctuations in

the number of Cooper pairs are conjugate to the superconducting phase and can lead to zero-

point destruction of, phase coherence at zero temperature. In two dimensions the resulting criti-

cal behavior is shown to be that of the X point of 4He in three dimensions, with the charging

energy playing the role of temperature. The nature of the quantum classical crossover and its

effect on the frequency dependence of precursor diamagnetism near the quantum critical point

are discussed.

I. INTRODUCTION

The idea that zero-point fluctuations of the phase
difference of the superconducting order parameter
across a Josephson junction can become large as the
effective local capacitance, C, of the junction tends to
zero was proposed by Anderson in 1963.' Recently
measurements by a number of groups have demon-
strated the effects of this zero-point motion on the
junction critical current. For any assembly of cou-
pled junctions, Abeles3 pointed out that the zero-
point phase fluctuations could actually destroy the
phase coherence of the assembly for C below a criti-
cal value, even at zero temperature. A mean-field
theory of this quantum phase transition has been
worked out by Simanek4 and Efetov. '

For two-dimensional arrays of junctions, or weakly
coupled granular films for which the BCS coherence
length gscs is smaller than the grain size, vortex-pair
fluctuations will be expected to dominate the
superconducting-to-paracoherent (resistive) transition
at finite temperature. 6' The purpose of this paper is
to show that space-time quantum fluctuations of the
superconducting order parameter for a two-
dimensional array of junctions will also strongly
modify the nature of the zero-temperature
paracoherent critical point away from the mean-field
results.

II. EFFECTIVE GINZBURG-LANDAU
FREE-ENERGY FUNCTIONAL

For grain sizes large compared to g, the Anderson
formulation for charging fluctuations leads to the
Hamiltonian

where a =2e'/C and we take the sum to be over
nearest-neighbor pairs of grains on a two-dimensional
lattice. In order to discuss the phase diagram for
this model it is convenient to use a Hubbard-
Stratanovich representation for the partition function
in terms of "coarse-grained" classical local field vari-
ables (I(k(r):

—H &"OZ =Tre ~H =Tr e OTexp — dr H)(r), (2)
~l o

where T is the time-temperature ordering operator

and H)(r) =e ' H)e 0 . Then (2) may be rewrit-
ten as
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and D = ff„Jkis the determinant of the coupling ma-

trix.
Here

J
Jk =—Xexp( I k R(J)

N (IJ)

(A )0 denotes Tr(e OA)/Zo, 'with
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pHO ~ ( k ' R ( cosg(
sing;

)

H = —XJ cos(if&( Iflj) —(k X
&v& t(J), ~~(
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III. MEAN-FIELD STABILIT'Y CONDITION

The mean-field approximation consists in replacing
(i)k(r ) by Ngk 0(l( in Eq. (4) and looking for the sad-
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die point in the free-energy functional:

tyMF p 2

N 8JP —I» TexP —2ZP d
d X, ( ) )e

2.0q .

I

p2 —In Tr, exp —p Hp —2|ii /%1, Zp
l J

I.o—

where g =number of nearest neighbors and p = 1l T
is the inverse temperature (units are chosen so that
Boltzmann's constant ks has the value unity).

The mean-field stability condition 8$MF/By =0
gives, on expanding to second order in P and orient-
ing P along the x axis,

)p
1 =28JT dr dr'(T[Si"(r)S("(r')])p

tP
=2bJT Jl drdr'gp(r —r')

0
(6)

Using a quantum rotor representation
lmd) = (1/42m)exp(im&dtp, ), one has

gp(r —r') = exp —pa X (m, —m))
1

Zo f~ (IJ)

x (m, l T[S,"(r)Sf(r') ]lmi), (7)

which is a correlation function of the two-
dimensional discrete Gaussian model. At very low
temperatures, pa )) 1 and the main contribution
comes from a state in which all m& have the same
value. Setting this equal to zero gives

g (r) =e dxlxl-
from which the mean-field stability condition (6) be-
comes

I

1 = 2 g —1 — for pa » 1
J (1 —es)
A pa

(9)

ap(T) =2g J —T+0(T /J) (10)

At high temperature (pa « 1), all the rotors may
be treated as independent, so that (7) becomes

-Jam
gp(r) =— Xe ' e l'l cosh(2mialrl)

m l

from which the stability condition (6) becomes

2gJ 2 p2 p2

Zp m 2

(b J/T) (1 —a/3 T)

This leads to a stability boundary at low temperatures
given by

0.0
0.0 1.0

T/p J

FIG. 1. Sketch of mean-field stability boundary as a func-
tion of quantum coupling e and temperature T;

IV. FLUCTUATION EXPANSION AT LO%
TEMPERATURE

For values of 0, and T near the mean-field stability
line, the general free-energy functional (4) may be
expanded in powers of Pk(T) using a cumulant ex-
pansion. This leads to a Ginzburg-Landau-wilson
(GLW) form for $[p] which, as we shall see, has a
critical superconducting-paracoherent phase boundary
below the mean-field line. ' In general, the coupling
constants of this effective functional are only aproxi-
mately calculated using the cumulant expansion.
However, we expect the universality class of the
resulting critical behavior to be correctly represented
using this approach even if the coupling constants are
only given approximately in terms of the parameters
of the original Hamiltonian (1).

Writing 4Ik(r) in terms of Matsubara frequencies
dp -2wmT (m =0, +1, +2, ...),

I Ittlp„(r)=xe y„„,o~r(p,
Jmay be expanded to fourth order in p as

X 4a. 'Aa, ,[PJk'g 2g(~, ~ )]—
)

k, lN, Ii)

+ Jt « fi X[(y )']', (13)

where
lol )T

g(PPIII ~ ) =—
2 Jl dr dr'e e g(r —r')

leading to a high-temperature mean-field phase boun-
dary (to order a),

Tp(J, a) =—p. J —a/3

The mean-field phase boundary is sketched in Fig. l.
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and the v dependence of the fourth-order cumulant has been neglected. In the low-temperature regime

(Pa « 1), we can use the limiting form (8) for g (r) to give

Pa a —M 03

g(~, ~ )-& —(1-e s )m nag 2+ 2 ( 2+ 2)( 2 + 2)
(14)

which in general leads to damped propagation of the fluctuation modes. However, as T 0 (p ~), the second
term becomes 0 ( T/a) with respect to the first and the modes may be treated as purely propagating.

Expanding J» ' to order k' and Eq. (14) to order su~ the low-temperature limiting form reduces to

(15)

with U - (g J)'/6al, which is an n 2 GLW model
defined in a two-dimensional position-space and a fi-
nite time slice of "thickness" P =1/T.

In the limit P ~, the sums over ao become in-
tegrals and the critical properties of Eq. (15) become
those of a three-dimensional n =2 model, i.e., those
of the X point of liquid He in three dimensions with
the quantum coupling constant a playing the role of
temperature.

V. CRITICAL-POINT PHASE BOUNDARY
AT LOW TRMPRATURE

At T -0, the universal critical properties of the
model may be deduced from what is known about
the d =3, n =2 critical point.

The role of temperature is now played by the quan-
tum fluctuation energy a, which varies as the sample
parameters are changed. The critical value a, will oc-
cur at some fraction of the mean-field instability cou-
pling ao, and for a & a, the superfluid density, p~,
will vary as

ps(a) (16)
—2

where P =——,.
At finite temperature, only the co =0 modes of

the system will exhibit critical behavior so that the
system will behave as a d =2 X- Ymodel, i.e., we ex-
pect it to show Kosterlitz-Thouless critical behavior at
a renormalized two-dimensional critical temperature
Tlo(a). In order to estimate the effect of quantum
fluctuations on this transition, one needs a way to es-
timate the renormalization of the local superfluid
density py. which determines the vortex-vortex cou-
pling

U( r s) qiqg ln(rs/()

(where rs is the vortex spacing, q, = n, q and
ni - 21, f2, ... the vorticity) via the hydrodynamic re-

lation for the vortex charge,

q' = (g'/m) psL, (18)

For a close to a„the zero-temperature coherence
length for quantum order-parameter fluctuations,

go(a) ~ (n, —a) "
~

will determine the length scale beyond which the su-
perfiuid density ps(a) will describe the superfluid
hydrodynamics. At finite temperature, leading to fi-
nite "film thickness" in the time dimension,
d,fr(T) =a(a/T) [using Eq. (15) to relate the ~ scale
to the k scale) the system will behave three-
dimensionally until a crossover temperature T„is
reached at which d,fr & go(a), giving

T„(a)=aa/Co(n) (a, —n)" . (20)

At this temperature, T will still be very small com-
pared to a„and so g(a) will not have changed very
much from its zero-temperature value. Hence for
T —T„(a),psL, will still be determined mainly by the
quantum fluctuations and may be equated with ps(a,
T =0).

Using this relation and Eq. (18), the vortex charge
at temperatures T such that the system is starting to
behave two-dimensionally is given by

q' = q,'(„,(1 —n/n, )&, (21)

d.n( Tlo)/Co(n) (23)

Since v and P are of the same order of magnitude for

where q,'h„is the a =0 limit (classical) vortex charge.
This leads to a predicted two-dimensional vortex un-
binding temperature given via T2D =2q as

Tlo(a) = T2o(0)(1 - n/n, )s .

At this temperature, the ratio of the effective time
thickness to the zero-temperature coherence length is
given by
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(24)

for a given sample. This may be done by measuring
the precursor diamagnetism for temperatures above
the two-dimensional critical temperature T2o(a). In
order for the unrenormalized coupling constants to
be seen, T —T2o(n) must be outside the critical re-
gion. In the presence of a magnetic field with vector
potential A(x) the Josephson part of the Hamiltonian
may be written

FIG. 2. Sketch of the effective superconducting density
pg(e, T), as measured in a diamagnetic response experi-
ment, as a function of quantum Auctuation coupling con-
stant e and temperature T expressed in units of the Joseph-
son coupling energy J. The universal jump at T2D, rescaled
as a varies, is exhibited for several arbitrary choices of n.

Using a complex notation f'"r the phase variables de-
fined in real space (not to be confused with the com-
plex representation of the k-space transform) this be-
comes

H(= —
2
J X(e S, Sje j+c.c.)

1 /A] ~ -lA

&v)

(25)

d =3 and n = 2, ' ' it may be seen that finite "time-
size" effects will not play a very strong role in modi-

fying Eq. (16) as T is raised to T2o(a), so that,
pending more detailed numerical investigation, Eq.
(22) should provide a reasonable estimate of the
universal part of the dependence of T2o(n) on
Ac A

Finally, following Nelson and Kosterlitz, " the glo-
bal superfluid density ps( T, a) measured, say, by the
diamagnetic response will then exhibit a "universal
jump" at T2o(a) whose height is proportional to
T2o(a). So a plot of the effect of quantum zero-
point fluctuations on the global superfluid density will

exhibit a "cliff face" of universal jump as o, is
varied, dropping to zero at a n, . (See Fig. 2.)

Vl. EFFECT OF QUANTUM FLUCTUATIONS
ON THB PRECURSOR DIAMAONBTISM

In order to test out the above ideas experimentally,
it is necessary to have some way of characterizing a/J

where

Ai= Jt d I A(x)

and the Hubbard-Stratanovich representation be-
comes

fP -iAI ) iAr[y]= J dr Xy,'e 'J„'e~y~
0

1——1n Texp —
&

d zy,'s, (rj +H.c:),
I

(26)

where the P variables have been redefined
p, xep( iAI) to t—ake up the gauge factors in Eq.

(25).
Expanding the first term of Eq. (26) in powers of

the lattice constant a, and inserting the cumulant ex-
pansion (15) for the second term, the continuum
limit becomes

2rsP-

$[P] = J/n' x(g J) ' ay'(x, r) [0 iA(x) l'g—(x, r)+Q'(x, r)$(x, r)r(T, a)—, + [U)y(x, r)
~

]'
CX

where

r(T, a) = [(gJ) —2/a+2T/a ]

(27)

(28)

The diamagnetic susceptibility in the paracoherent region may now be calculated by expanding in powers of A(x)
to give, in the Gaussian limit,

8'( —TlnZ) . g k q a '
g( P z A)2 I P Pq2 g 2+ (k +q)2+& 2 2 ( 2+k2+& 2~2 (29)



QUANTUM FLUCTUATIONS IN TWO-DIMENSIONAL. . . 5067

Here Xp = —,AT(a/$2o) is a susceptibility per unit

volume, with @p the quantum of flux (hc/e),
g 2(a, T) =a 'g Jr(T, a) is the Ginzburg-Landau
coherence length in the paracoherent region and c is
the group velocity of the Josephson plasmon modes
given by (co =2wnrT has dimensions of energy),

1.0
C =Oa (30)

On performing the k integration, Eq. (29) becomes"

X(u, T) ~ 2a' gc
h

g'c
Xp (g +c ra ) 2Ta 2T

coth

01)

T Tp(a)—
To(u)

=Co t (32}

where Tp(a) is the mean-field estimate of the critical
boundary

To(u) =(2u/uo)(ao —a),
with up=2' J, and go2=a Tp/a=a (ap —a)/a,
and Eq. (31}may be reexpressed as

X(a, T) (4oc/&'}
h

(o'c Jt (34)
Xp 2(1+t)Jt 2Tp (1+t)

Hence, for gp'c/2Tp & 1 the quantum limit (where
the argument of the hyperbolic cotangent is » 1)
will extend to small values of t, i.e., inside the critical
region. Using Eqs. (32) and (33) this condition reads

1 —a/ao & —,
1

Hence there will be a range of coupling constants, n,
above which quantum fluctuations will be expected to
dominate the diamagnetic fluctuations in the region
of the critical phase boundary even at finite tempera-
tures. The crossover temperature is given in this ap-
proximation by

go'c

2Tp (I+t )
giving

t» ~ 4(1 —a/ap) (35)

Since the phase boundary becomes renormalized to
lower temperatures by the non-Gaussian P4 interac-

Note that X(a, T) remains finite as T 0 for a & a,
since Xp is proportional to T. Since Eq. (31) has been
obtained in a Gaussian approximation, it will not be
valid as the critical phase boundary is approached.
Nonetheless, we use it to get an indication of the
classical-to-quantum crossover as ( T, a) are in-
creased away from the critical boundary. To lowest
order in (2Jg —a), f ' may be written as

a
ac

0 9

O.S

0' 0.O O. I 0.2 0.5
T/TzD{O}

04

FIG. 3. Sketch of the classical-to-quantum crossover line
in the vicinity of a, . The Gaussian estimate tEq. (35)] for

t ~~/~2D(a) —1 j has been tacked on to the renormal-
ized curve for T2D(e) [Eq. (22)].

VII. FREQUENCY DEPENDENCE OF THE
DIAMAGNETIC FLUCTUATIONS —LO%-

TEMPERATURE LIMIT

As may be seen from Eq. (29), the measurement
of a diamagnetic response corresponds to the excita-
tion of pairs of order-parameter propagators
(Q(x, r)f'(x', r') ) summed over the Brillouin zone
of wave vectors. The effect of the quantum term in

I

tions, Eq. (35) may be expected to provide an
overestimate of the classical-to-quantum crossover
regime (see hatched region in Fig. 3). So observa-
tion of the quantum exponent I/v t temperature
dependence of fluctuation diamagnetism as opposed
to the 1/t Curie-like behavior of the classical precur-
sor fluctuations' will provide a signa1 for samples
which have entered the quantum regime. The mag-
nitude of the coefficient of the I/v t term in expres-
sion (34) for X, proportional to I/gp'a

. = fa/(ap —a) ]'t', will give a measure of closeness to
the critical value of the quantum coupling. The
above Gaussian estimate relates this to the mean-
field value 0.0, though renormalization of the Gauss-
ian propagator will reduce this to o, In practice this
may be hard to determine from a static measurement
owing to uncertainties about other material parame-
ters, and a frequency-dependent measurement will

give a better way to estimate this parameter. This is
discussed in the remainder of the paper.
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the Hamiltonian is now to produce propagating
Josephson plasmon modes of energy

0„=c(g '+-k') 'i' (36)

continuation of the current-current correlation func-
tion defined for imaginary time t i ~:

So at finite frequencies, the diamagnetic response will

contain an absorptive part even at a temperature so
low that the usual normal-electron damping mechan-
ism for quantum phase fluctuations has become very
small (since the normal-electron component becomes
exponentially small as T 0). This absorption corre-
sponds to the excitation of propagating Josephson
plasmon modes above a threshold frequency
00 = cf ', which will tend to zero as the critical
phase boundary is approached. In order to calculate
the strength of this absorption within the framework
of the Hubbard-Stratanovich effective free-energy
functional (15), we use the fact that the linear di-

amagnetic response to a time varying vector potential
A(x, t) may be expressed in terms of the analytic

C s(x, r) - (j (x, r)js(0, 0) )~~

8 8
S~.(x, .) S~,(0,0)

i

(37)

Bp/Br = [H(r), p], p(0) = e s (3S)

and A(r) is switched on at r =0. This may be calcu-
lated in terms of the P variables via the explicit r
dependence of Eq. (27) introduced through A(r). In
the Gaussian approximation, the Matsubara
transform of Eq. (37) becomes

where Z (A) is determined in terms of a r-dependent
density matrix satisfying

(k )(k+q)IN 1 k2

N ~ i

(39)

(40)

leading to a diamagnetic susceptibility whose absorptive part is given by

X."s(cu) =
z

lim
z (disc[C s(q, co) l]e-~ Bq

where the discontinuity is across the real cut of expression (39) in the complex ru plane. The real part may be
obtained by a Kramers-Kronig transform of Eq. (40). Using a contour integral representation, the analytic con-
tinuation of Eq. (39) becomes, as q 0, in units of Xoa ',

a
, C s(q, z)

Bq

leading to

t

tdgcoth
2 2 „02—(f —z)2 Ok —(

(41)

X"(co)=
5 Xcoth k [8(co—20k)+8(cu+20k)]1 POk

2' k
&

2
t

2=coth —g 'c' [8(o)—2cg ') +0(—o) —2c( ')]
4 2cu4 4

(42)

So at low temperatures for which damping can be
neglected, the diamagnetic absorption will have a fre-
quency gap with threshold co = 2 00 =2c g '( T, u) and
strength which grows quadratically as ao —400 due to
the current matrix elements k' in Eq. (42) with a
maximum at 400 (see Fig. 4). As the phase boun-
dary is approached the Josephson plasma frequency
00 will go to zero and so will the absorption gap.

VIII. EFFECT OF NORMAL-ELECTRON DAMPING
ON THE FREQUENCY DEPENDENCE OF THE

PRECURSOR DIAMAGNETISM

The finite-frequency diamagnetic absorption
derived in Sec. VII is valid only in the limit that clas-

sical damping effects which usually dominate the
frequency-depenent linear response of a Josephson
junction are neglected. This phenomenological
damping of form yd $/dt in the equation —for the
phase, which arises at low temperatures from voltage
fluctuations induced by normal-current noise, cannot
be incorporated directly into the Lagrangian form for
the free-energy functional used in the above deriva-
tion. %e here simulate its effects by incorporating a
self-energy part in the propagator for order-parameter
fluctuations used in Eq. (39). This would correspond
to a Lagrangian in which coupling to heat-bath modes
have been included. '

%riting

G(k, a„)=, (43)Op+a„+IIis„
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with

(44)

& p(q, ~'~ ) = $ [k (k+q)pG(k+q, a„+co )
k, e„

&& G(k, e„)—S~pk~ [G(k, kg) ]'}

II(is„)-—
Jl ds1 I' y(k)a

&~+&

where y(k) represents a spectral function for cou-
pling to a heat bath, the current correlation function
(39) may be generalized to

x"(~)

0 I

II(cu +i a) +i y (46)

for ~ small compared to the range of e over which
y(k) varies rapidly. We then find

(45)
Provided the coupling to the heat bath spreads over a
wide range of frequencies compared to that of the
Josephson modes, the self-energy (44) may be re-
placed by a purely imaginary damping

Cd /Qp

FIG. 4. Plot of the absorptive part, X", of the precursor
diamagnetism in the low-temperature regime. close to n, .
Damping effects will tend to broaden the threshold for exci-
tation of Josephson plasmons. X"(ce) is given in arbitrary
units.

rk', '~ h p» y' 4y[flk' —(» —~)']
k &2 ( fik»)2+ y2 ([ flk2 (» ~)2]2 +y2}2 (47)

reducing to Eq. (45) in the limit y ~0. So damping
effects will become important for y/00 & 1 and the
absorption features of Fig. 4 will become washed out
as the Josephson plasmon threshold approaches the
critical phase boundary.

IX. CONCLUSIONS

Observation of the reduction of the superconduct-
ing transition temperature in granular-metal-
film-two-dimensional arrays of Jospehson junctions
as the grain-size —junction capacitance is reduced will

in practice be due both to a reduction in average
Josephson coupling energy J, and to an increase in
the quantum fluctuation parameter e. The above
analysis suggests that these may be sorted out by ob-
servation of the frequency dependence of the precur-
sor diamagnetic fluctuations in the paracoherent
phase. As shown in Fig. 4, a Gaussian approxima-
tion predicts this should display a maximum absorp-
tion at frequency proportional to II0= c( '(a, T)
whose temperature dependence (for fixed a) will

vary as [T/T2o(a) —1]",with v =
2

in the Gaussian

limit. The coefficient of this temperature-dependent
factor will then give a direct measure of the scale of
the quantum fluctuations in a given sample, as dis-
cussed in Sec. VI. As seen in Sec. VII, damping ef-

fects will tend to wash out the threshold of the
Josephson plasmon-mode absorption spectrum, but
should not change the above general relation of the
frequency of maximum absorption to the inverse
coherence length ( '(a, T) for the paracoherent fluc-
tuations, provided the system is close to the quantum
critical point O.„sothat the low-temperature limits
taken in the above discussion of fluctuation effects
[Eq. (15)] are applicable. As the classical critical re-
gime is approached, vortex fluctuations (not dis-

cussed here) will start to affect the frequency-
dependent response. '

As the critical phase boundary is approached, the
Gaussian approximation will be renormalized by
mode-mode coupling effects and critical slowing
down may be expected to take place. However, the
effects of disorder in real granular systems will prob-
ably affect the quantitative details of this renormali-
zation.
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